101
|
Ishikuro K, Urakawa S, Takamoto K, Ishikawa A, Ono T, Nishijo H. Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects. Front Hum Neurosci 2014; 8:292. [PMID: 24860474 PMCID: PMC4026732 DOI: 10.3389/fnhum.2014.00292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
To investigate the relationship between the frontal and sensorimotor cortices and motor learning, hemodynamic responses were recorded from the frontal and sensorimotor cortices using functional near infrared spectroscopy (NIRS) while healthy subjects performed motor learning tasks used in rehabilitation medicine. Whole-head NIRS recordings indicated that response latencies in the anterior dorsomedial prefrontal cortex (aDMPFC) were shorter than in other frontal and parietal areas. Furthermore, the increment rate of the hemodynamic responses in the aDMPFC across the eight repeated trials significantly correlated with those in the other areas, as well as with the improvement rate of task performance across the 8 repeated trials. In the second experiment, to dissociate scalp- and brain-derived hemodynamic responses, hemodynamic responses were recorded from the head over the aDMPFC using a multi-distance probe arrangement. Six probes (a single source probe and 5 detectors) were linearly placed 6 mm apart from each of the neighboring probes. Using independent component analyses of hemodynamic signals from the 5 source-detector pairs, we dissociated scalp- and brain-derived components of the hemodynamic responses. Hemodynamic responses corrected for scalp-derived responses over the aDMPFC significantly increased across the 8 trials and correlated with task performance. In the third experiment, subjects were required to perform the same task with and without transcranial direct current stimulation (tDCS) of the aDMPFC before the task. The tDCS significantly improved task performance. These results indicate that the aDMPFC is crucial for improved performance in repetitive motor learning.
Collapse
Affiliation(s)
- Koji Ishikuro
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Susumu Urakawa
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Kouich Takamoto
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Akihiro Ishikawa
- Medical Systems Division, R & D Department, Shimadzu, Co. Ltd. Kyoto, Japan
| | - Taketoshi Ono
- Department of Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
102
|
The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BIOMED RESEARCH INTERNATIONAL 2014; 2014:547290. [PMID: 24895588 PMCID: PMC4026962 DOI: 10.1155/2014/547290] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive technique that could improve the rehabilitation outcomes in stroke, eliciting neuroplastic mechanisms. At the same time conflicting results have been reported in subacute phase of stroke, when neuroplasticity is crucial. The aim of this double-blind, randomized, and sham-controlled study was to determine whether a treatment with cathodal tDCS before the rehabilitative training might augment the final outcomes (upper limb function, hand dexterity and manual force, locomotion, and activities of daily living) in respect of a traditional rehabilitation for a sample of patients affected by ischemic stroke in the subacute phase. An experimental group (cathodal tDCS plus rehabilitation) and a control group (sham tDCS plus rehabilitation) were assessed at the beginning of the protocol, after 10 days of stimulation, after 30 days from ending of stimulation, and at the end of inpatient rehabilitation. Both groups showed significant improvements for all the assessed domains during the rehabilitation, except for the manual force, while no significant differences were demonstrated between groups. These results seem to indicate that the cathodal tDCS, provided in an early phase of stroke, does not lead to a functional improvement. To depict a more comprehensive scenario, further studies are needed.
Collapse
|
103
|
Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, Fregni F, Dipietro L, Thickbroom GW, Edwards DJ. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation 2014; 33:49-56. [PMID: 23949028 DOI: 10.3233/nre-130927] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Combining tDCS with robotic therapy is a new and promising form of neurorehabilitation after stroke, however the effectiveness of this approach is likely to be influenced by the relative timing of the brain stimulation and the therapy. OBJECTIVE To measure the kinematic and neurophysiological effects of delivering tDCS before, during and after a single session of robotic motor practice (wrist extension). METHODS We used a within-subjects repeated-measurement design in 12 chronic (>6 months) stroke survivors. Twenty minutes of anodal tDCS was delivered to the affected hemisphere before, during, or after a 20-minute session of robotic practice. Sham tDCS was also applied during motor practice. Robotic motor performance and corticomotor excitability, assessed through transcranial magnetic stimulation (TMS), were evaluated pre- and post-intervention. RESULTS Movement speed was increased after motor training (sham tDCS) by ∼20%. Movement smoothness was improved when tDCS was delivered before motor practice (∼15%). TDCS delivered during practice did not offer any benefit, whereas it reduced speed when delivered after practice (∼10%). MEPs were present in ∼50% of patients at baseline; in these subjects motor practice increased corticomotor excitability to the trained muscle. CONCLUSIONS In a cohort of stroke survivors, motor performance kinematics improved when tDCS was delivered prior to robotic training, but not when delivered during or after training. The temporal relationship between non-invasive brain stimulation and neurorehabilitation is important in determining the efficacy and outcome of this combined therapy.
Collapse
Affiliation(s)
- V Giacobbe
- Burke-Cornell Medical Research Institute, White Plains, NY, US
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Metaplasticity refers to the modification of plasticity induction (direction, magnitude, duration) by previous activity of the same postsynaptic neuron or neuronal network. In recent years evidence from animal studies has been accumulated that metaplasticity significantly contributes to network function and behavior. Here, we review the evidence for metaplasticity at the system level of the human cortex as investigated by non-invasive brain stimulation. These studies support the notion that metaplasticity is also operative in the human brain and is mostly homeostatic in nature, that is, keeping network activity within a physiological range. However, non-homeostatic metaplasticity has also been described, which can increase non-invasive brain stimulation-induced aftereffects on cortical excitability, or learning. Current evidence further suggests that aberrant metaplasticity may underlie some neurological and psychiatric diseases. Finally, first proof-of-principle studies show that the concept of metaplasticity can be harnessed for treatment of patients suffering from brain diseases.
Collapse
Affiliation(s)
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
105
|
Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimul 2014; 7:443-50. [PMID: 24582369 DOI: 10.1016/j.brs.2014.01.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/11/2014] [Accepted: 01/25/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is known to reliably alter motor cortical excitability in a polarity dependent fashion such that anodal stimulation increases cortical excitability and cathodal stimulation inhibits cortical excitability. However, the effect of tDCS on agonist and antagonist volitional muscle activation is currently not known. OBJECTIVE This study investigated the effect of motor cortical anodal tDCS on EMG/force relationships of biceps brachii (agonist) and triceps brachii (antagonist) using surface electromyography (EMG). METHODS Eighteen neurologically intact adults (9 tDCS and 9 controls) participated in this study. EMG/force relationships were established by having subjects perform submaximal isometric contractions at several force levels (12.5%, 25%, 37.5%, and 50% of maximum). RESULTS Results showed that anodal tDCS significantly affected the EMG/force relationship of the biceps brachii muscle. Specifically, anodal tDCS increased the magnitude of biceps brachii activation at 37.5% and 50% of maximum. Anodal tDCS also resulted in an increase in the peak force and EMG values during maximal contractions as compared to the control condition. EMG analyses of other elbow muscles indicated that the increase in biceps brachii activation after anodal tDCS was not related to alterations in synergistic or antagonistic muscle activity. CONCLUSIONS Our results indicate that anodal tDCS significantly affects the voluntary EMG/force relationship of the agonist muscles without altering the coactivation of the antagonistic muscles. The most likely explanation for the observed greater EMG per unit force after anodal tDCS appears to be related to alterations in motor unit recruitment strategies.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Rajiv Ranganathan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shailesh S Kantak
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasin Y Dhaher
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
106
|
Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed. Brain Stimul 2014; 7:122-9. [DOI: 10.1016/j.brs.2013.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/10/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
|
107
|
Stagg CJ, Johansen-Berg H. Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Hum Neurosci 2013; 7:857. [PMID: 24376413 PMCID: PMC3859898 DOI: 10.3389/fnhum.2013.00857] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) is showing increasing promise as an adjunct therapy in stroke rehabilitation. However questions still remain concerning its mechanisms of action, which currently limit its potential. Magnetic resonance (MR) techniques are increasingly being applied to understand the neural effects of tDCS. Here, we review the MR evidence supporting the use of tDCS to aid recovery after stroke and discuss the important open questions that remain.
Collapse
Affiliation(s)
- Charlotte J Stagg
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford , Oxford , UK
| | - Heidi Johansen-Berg
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford , Oxford , UK
| |
Collapse
|
108
|
Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst Rev 2013:CD009645. [PMID: 24234980 DOI: 10.1002/14651858.cd009645.pub2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Stroke is one of the leading causes of disability worldwide. Functional impairment resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance and function after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve ADL performance and function. OBJECTIVES To assess the effects of tDCS on generic activities of daily living (ADLs) and motor function in people with stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (March 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, May 2013), MEDLINE (1948 to May 2013), EMBASE (1980 to May 2013), CINAHL (1982 to May 2013), AMED (1985 to May 2013), Science Citation Index (1899 to May 2013) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we analysed only the first period as a parallel-group design) that compared tDCS versus control in adults with stroke for improving ADL performance and function. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS We included 15 studies involving a total of 455 participants. Analysis of six studies involving 326 participants regarding our primary outcome, ADL, showed no evidence of an effect in favour of tDCS at the end of the intervention phase (mean difference (MD) 5.31 Barthel Index (BI) points; 95% confidence interval (CI) -0.52 to 11.14; inverse variance method with random-effects model), whereas at follow-up (MD 11.13 BI points; 95% CI 2.89 to 19.37; inverse variance method with random-effects model), we found evidence of an effect. However, the confidence intervals were wide and the effect was not sustained when only studies with low risk of bias were included. For our secondary outcome, upper limb function, we analysed eight trials with 358 participants, which showed evidence of an effect in favour of tDCS at the end of the intervention phase (MD 3.45 Upper Extremity Fugl-Meyer Score points (UE-FM points); 95% CI 1.24 to 5.67; inverse variance method with random-effects model) but not at the end of follow-up three months after the intervention (MD 9.23 UE-FM points; 95% CI -13.47 to 31.94; inverse variance method with random-effects model). These results were sensitive to inclusion of studies at high risk of bias. Adverse events were reported and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.00; 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model). AUTHORS' CONCLUSIONS At the moment, evidence of very low to low quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance and function after stroke. Future research should investigate the effects of tDCS on lower limb function and should address methodological issues by routinely reporting data on adverse events and dropouts and allocation concealment, and by performing intention-to-treat analyses.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, Dresden, Sachsen, Germany, 01307
| | | | | | | |
Collapse
|
109
|
Spiegel DP, Li J, Hess RF, Byblow WD, Deng D, Yu M, Thompson B. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia. Neurotherapeutics 2013; 10:831-9. [PMID: 23857313 PMCID: PMC3805870 DOI: 10.1007/s13311-013-0200-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.
Collapse
Affiliation(s)
- Daniel P. Spiegel
- />State Key Laboratory of Ophthalmology, Zhongshan, Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
- />Department of Optometry and Vision Science, The University of Auckland, Auckland, 1142 New Zealand
- />Centre for Brain Research, The University of Auckland, Auckland, 1142 New Zealand
| | - Jinrong Li
- />State Key Laboratory of Ophthalmology, Zhongshan, Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Robert F. Hess
- />Department of Ophthalmology, McGill University, Montreal, QC Canada
| | - Winston D. Byblow
- />Centre for Brain Research, The University of Auckland, Auckland, 1142 New Zealand
- />Department of Sport & Exercise Science, The University of Auckland, Auckland, 1142 New Zealand
| | - Daming Deng
- />State Key Laboratory of Ophthalmology, Zhongshan, Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Minbin Yu
- />State Key Laboratory of Ophthalmology, Zhongshan, Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Benjamin Thompson
- />Department of Optometry and Vision Science, The University of Auckland, Auckland, 1142 New Zealand
- />Centre for Brain Research, The University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|