101
|
Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage 2013; 21:1308-15. [PMID: 23973145 PMCID: PMC3771690 DOI: 10.1016/j.joca.2013.06.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex and painful disease of the whole joint. At present there are no satisfying agents for treating OA. To promote OA research and improved treatment, this review summarizes current preclinical evidence on the development of OA. METHODS Preclinical OA research was searched and key findings are summarized and commented. RESULTS Mechanisms of OA-associated pain have been studied in rodent knee OA models produced by intra-knee injection of the chondrocyte glycolytic inhibitor mono-iodoacetate (MIA), surgery, or spontaneous development in some species. These models are clinically relevant in terms of histological damage and functional changes, and are used to study mechanisms underlying mechanical, thermal, ambulatory, body weight supporting-evoked, and ongoing OA pain. Recent peripheral, spinal, and supraspinal biochemical and electrophysiological studies in these models suggest that peripheral pro-inflammatory mediators and neuropeptides sensitize knee nociceptors. Spinal cytokines and neuropeptides promote OA pain, and peripheral and spinal cannabinoids inhibit OA pain respectively through cannabinoid-1 (CB1) and CB1/CB2 receptors. TRPV1 and metalloproteinases contribute and supraspinal descending facilitation of 5-hydroxytryptamine (5-HT)/5-HT 3 receptors may also contribute to OA pain. Conditioned place preference tests demonstrate that OA pain induces aversive behaviors, suggesting the involvement of brain. During OA, brain functional connectivity is enhanced, but at present it is unclear how this change is related to OA pain. CONCLUSION Animal studies demonstrate that peripheral and central sensitization contributes to OA pain, involving inflammatory cytokines, neuropeptides, and a variety of chemical mediators. Interestingly, brainstem descending facilitation of 5-HT/5-HT3 receptors plays a role OA pain.
Collapse
Affiliation(s)
- Rui-Xin Zhang
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
102
|
Malfait AM, Little CB, McDougall JJ. A commentary on modelling osteoarthritis pain in small animals. Osteoarthritis Cartilage 2013; 21:1316-26. [PMID: 23973146 PMCID: PMC3903124 DOI: 10.1016/j.joca.2013.06.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe the currently used animal models for the study of osteoarthritis (OA) pain, with an emphasis on small animals (predominantly mice and rats). OUTLINE Narrative review summarizing the opportunities and limitations of the most commonly used small animal models for the study of pain and pain pathways associated with OA, and discussing currently used methods for pain assessment. Involvement of neural degeneration in OA is briefly discussed. A list of considerations when studying pain-related behaviours and pathways in animal models of OA is proposed. CONCLUSIONS Animal models offer great potential to unravel the complex pathophysiology of OA pain, its molecular and temporal regulation. They constitute a critical pathway for developing and testing disease-specific symptom-modifying therapeutic interventions. However, a number of issues remain to be resolved in order to standardize pre-clinical OA pain research and to optimize translation to clinical trials and patient therapies.
Collapse
Affiliation(s)
- Anne-Marie Malfait
- Department of Medicine, Section of Rheumatology, and Department of Biochemistry, Rush University Medical Center, Chicago IL, To whom correspondence should be addressed
| | - Christopher B. Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Jason J. McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
103
|
Ko FC, Dragomir C, Plumb DA, Goldring SR, Wright TM, Goldring MB, van der Meulen MCH. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. ACTA ACUST UNITED AC 2013; 65:1569-78. [PMID: 23436303 DOI: 10.1002/art.37906] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 02/12/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. METHODS Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. RESULTS Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. CONCLUSION This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression.
Collapse
Affiliation(s)
- Frank C Ko
- Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
The age-related changes in cartilage and osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916530. [PMID: 23971049 PMCID: PMC3736507 DOI: 10.1155/2013/916530] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes' low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA) in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.
Collapse
|
105
|
Reproductive status and sex show strong effects on knee OA in a baboon model. Osteoarthritis Cartilage 2013; 21:839-48. [PMID: 23499674 PMCID: PMC3648634 DOI: 10.1016/j.joca.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/27/2012] [Accepted: 03/06/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We aimed to characterize severity and occurrence of knee osteoarthritis (OA), and effects of age, sex, body mass, and reproductive status on population-level normal variation in this condition in the baboon, a natural model of human knee OA. METHODS We visually inspected articular cartilage of distal right femora of 464 baboons (309 females, 155 males) and assigned an OA severity score (comparable to a modified Outerbridge score) from 1 = unaffected to 4 = advanced OA (eburnation). Presence/absence of osteophytes was recorded. We tested for significant effects of age, sex, body mass, and, in females, reproductive status (pre-, peri-, or post-menopausal) on OA. When appropriate, analyses were repeated on an age-matched subset (153 of each sex). RESULTS Knee OA was more frequent and severe in older animals (P < 0.0001), but significant age variation was apparent in each severity grade. Sex differences within the younger and older age groups suggest that males develop knee OA earlier, but females progress more quickly to advanced disease. There is a strong relationship between reproductive status and OA severity grade in females (P = 0.0005) with more severe OA in peri- and post-menopausal female baboons, as in humans. CONCLUSIONS Idiopathic knee OA is common in adult baboons. Occurrence and severity are influenced strongly by reproductive status in females, and by sex with regard to patterns of disease progression - providing an animal model to investigate sex-specific variation in OA susceptibility in which the environmental heterogeneity inherent in human populations is vastly reduced.
Collapse
|
106
|
Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol 2013; 9:485-97. [PMID: 23689231 DOI: 10.1038/nrrheum.2013.72] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common of all arthropathies, is a leading cause of disability and has a large (and growing) worldwide socioeconomic cost. Despite its burgeoning importance, translation of disease-modifying OA therapies from the laboratory into clinical practice has slowed. Differences between the OA models studied preclinically and the disease evaluated in human clinical trials contribute to this failure. Most animal models of OA induce disease through surgical or mechanical disruption of joint biomechanics in young individuals rather than the spontaneous development of age-associated disease. This instability-induced joint disease in animals best models the arthritis that develops in humans after an injurious event, known as post-traumatic OA (PTOA). Studies in genetically modified mice suggest that PTOA has a distinct molecular pathophysiology compared with that of spontaneous OA, which might explain the poor translation from preclinical to clinical OA therapeutic trials. This Review summarizes the latest data on potential molecular targets for PTOA prevention and modification derived from studies in genetically modified mice, and describes their validation in preclinical therapeutic trials. This article focuses on how these findings might best be translated to humans, and identifies the potential challenges to successful implementation of clinical trials of disease-modifying drugs for PTOA.
Collapse
Affiliation(s)
- Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia. christopher.little@ sydney.edu.au
| | | |
Collapse
|
107
|
Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthritis Cartilage 2013; 21:700-9. [PMID: 23384547 DOI: 10.1016/j.joca.2013.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hypertrophy-like changes are often observed in chondrocytes during the development of osteoarthritis (OA). These changes play a crucial part in the OA-associated cartilage degradation and osteophyte formation. However, the pathogenesis leading to such changes is still unknown. In this study, we investigated the mechanism by which these hypertrophy-like changes are induced from the viewpoint of impaired glycolytic metabolism. METHODS The effect of sodium fluoride (NaF) on glycolytic metabolism of cultured chondrocytes was confirmed by measurement of intracellular adenosine triphosphate (ATP) production. Translocation of phosphorylated Smad1/5/8 to the nucleus was evaluated by subcellular fractionation and Western blotting. Chondrocyte hypertrophy-like changes were investigated by real-time RT-PCR and Western blot analysis of differentiation markers. RESULTS ATP production was dose-dependently decreased by NaF in the human chondrocytic cell line HCS-2/8. In addition, both chondrocyte proliferation and differentiation were inhibited, whereas cell death was promoted by treatment with NaF. Interestingly, combinational treatment with NaF and lactate enhanced translocation of phospho-Smad1/5/8 to the nucleus, as well as gene expression of ALP, VEGF, COL10a1, and matrix metalloproteinase13 (MMP13), which were the markers of late mature and hypertrophic chondrocytes. Furthermore, the production of type X collagen and activation of MMP9 were also promoted under the same conditions. CONCLUSIONS These findings suggest that decreased ATP production by NaF promotes hypertrophy-like changes via activation of phospho-Smad1/5/8 in the presence of lactate. Novel metabolic aspects of OA pathogenesis are indicated herein.
Collapse
|
108
|
Teeple E, Jay GD, Elsaid KA, Fleming BC. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J 2013; 15:438-46. [PMID: 23329424 PMCID: PMC3675748 DOI: 10.1208/s12248-013-9454-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, affecting millions of individuals worldwide. New treatment approaches require an understanding of the pathophysiology of OA and its biomechanical, inflammatory, genetic, and environmental risk factors. The purpose of animal models of OA is to reproduce the pattern and progression of degenerative damage in a controlled fashion, so that opportunities to monitor and modulate symptoms and disease progression can be identified and new therapies developed. This review discusses the features, strengths, and weaknesses of the common animal models of OA; considerations to be taken when choosing a method for experimental induction of joint degeneration; and the challenges of measuring of OA progression and symptoms in these models.
Collapse
Affiliation(s)
- Erin Teeple
- Department of Emergency Medicine, Brown Medical School/Rhode Island Hospital, 1 Hoppin Street Coro West, Suite 106, Providence, RI 02903, USA.
| | | | | | | |
Collapse
|
109
|
Useful animal models for the research of osteoarthritis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2013; 24:263-71. [PMID: 23508348 DOI: 10.1007/s00590-013-1205-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/01/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is a major cause of suffering for millions of people. Investigating the disease directly on humans may be challenging. The aim of the present study is to investigate the advantages and limitations of the animal models currently used in OA research. The animal models are divided into induced and spontaneous. Induced models are further subdivided into surgical and chemical models, according to the procedure used to induce OA. Surgical induction of OA is the most commonly used procedure, which alters the exerted strain on the joint and/or alter load bearing leading to instability of the joint and induction of OA. Chemical models are generated by intra-articular injection of modifying factors or by systemically administering noxious agents, such as quinolones. Spontaneous models include naturally occurring and genetic models. Naturally occurring OA is described in certain species, while genetic models are developed by gene manipulation. Overall, there is no single animal model that is ideal for studying degenerative OA. However, in the present review, an attempt is made to clarify the most appropriate use of each model.
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Aging is a primary risk factor for the development of osteoarthritis and the understanding of how aging processes contribute to the development of osteoarthritis is an important area of active research. The most recent literature in this area was reviewed in order to update investigators on the status of the field. RECENT FINDINGS The field is beginning to move beyond a cartilage focus to include other joint tissues relevant to osteoarthritis such as ligaments, meniscus, and bone. Synovitis also appears to play a role in osteoarthritis but has not been a focus of aging studies. Studies in small animals, including mice and rats, demonstrate age-related changes that can contribute to osteoarthritis and show that animal age is a key factor to be considered in interpreting the results of studies using surgically induced models of osteoarthritis. There is accumulating evidence that cellular processes such as damage-induced cell senescence contribute to osteoarthritis and a growing body of literature on the role of epigenetic regulation of gene expression in aging and osteoarthritis. SUMMARY Not all osteoarthritis is due to aging processes in joint tissues, but the age-related changes being discovered certainly could play a major contributing role.
Collapse
Affiliation(s)
- Richard F Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
111
|
Longo UG, Loppini M, Fumo C, Rizzello G, Khan WS, Maffulli N, Denaro V. Osteoarthritis: new insights in animal models. Open Orthop J 2012; 6:558-63. [PMID: 23248728 PMCID: PMC3522504 DOI: 10.2174/1874325001206010558] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is the most frequent and symptomatic health problem in the middle-aged and elderly population, with over one-half of all people over the age of 65 showing radiographic changes in painful knees. The aim of the present study was to perform an overview on the available animal models used in the research field on the OA. Discrepancies between the animal models and the human disease are present. As regards human 'idiopathic' OA, with late onset and slow progression, it is perhaps wise not to be overly enthusiastic about animal models that show severe chondrodysplasia and very early OA. Advantage by using genetically engineered mouse models, in comparison with other surgically induced models, is that molecular etiology is known. Find potential molecular markers for the onset of the disease and pay attention to the role of gender and environmental factors should be very helpful in the study of mice that acquire premature OA. Surgically induced destabilization of joint is the most widely used induction method. These models allow the temporal control of disease induction and follow predictable progression of the disease. In animals, ACL transection and meniscectomy show a speed of onset and severity of disease higher than in humans after same injury.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery. Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy ; Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
112
|
Fu SC, Cheuk YC, Hung LK, Chan KM. Limb Idleness Index (LII): a novel measurement of pain in a rat model of osteoarthritis. Osteoarthritis Cartilage 2012; 20:1409-16. [PMID: 22890187 DOI: 10.1016/j.joca.2012.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Mechanical allodynia during ambulation in osteoarthritis (OA) animal models can be assessed as decreased extent of loading or decreased duration of loading. We propose to measure gait adaptation to pain by both mechanisms with the development of Limb Idleness Index (LII) in a rat model of knee OA. METHODS Rats were assigned to anterior cruciate ligament transection (ACLT), Sham, or Normal group (n = 6). Gait data were collected at pre-injury, 1, 2, 3 and 6 months post-injury. Ratios of target print intensity, anchor print intensity, and swing duration were combined to obtain LII. The association of gait changes with pain was assessed by buprenorphine treatment at 3 and 6 months post-injury. At 6 months, OA-related structural changes in knee joints were examined by μCT and results from histological scoring were correlated with LII. RESULTS As compared to pre-injury level (range 0.75-1.20), LII in ACLT group was increased at 6 months post-injury, which was significantly higher than that in Sham and Normal groups (P = 0.024). The increase in LII in ACLT group was effectively reversed by buprenorphine treatment (P = 0.004). ACLT group exhibited a significantly higher maximum Osteoarthritis Research Society International (OARSI) score as compared to Sham (P = 0.005) and Normal (P = 0.006) groups. Significant correlation was found between LII and side-to-side difference in OARSI score (r = 0.893, P < 0.001). CONCLUSIONS LII presents a good measurement for OA-related knee pain in rat model.
Collapse
Affiliation(s)
- S C Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | |
Collapse
|