101
|
Zheng L, Chai H, Yu S, Xu Y, Chen W, Wang W. EEG theta power and coherence to octave illusion in first-episode paranoid schizophrenia with auditory hallucinations. Psychopathology 2015; 48:36-46. [PMID: 25359515 DOI: 10.1159/000366104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/19/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. METHODS We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. RESULTS After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. LIMITATIONS We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. CONCLUSION Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis.
Collapse
Affiliation(s)
- Leilei Zheng
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
102
|
Soh P, Narayanan B, Khadka S, Calhoun VD, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Pearlson GD. Joint Coupling of Awake EEG Frequency Activity and MRI Gray Matter Volumes in the Psychosis Dimension: A BSNIP Study. Front Psychiatry 2015; 6:162. [PMID: 26617533 PMCID: PMC4637406 DOI: 10.3389/fpsyt.2015.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many studies have examined either electroencephalogram (EEG) frequency activity or gray matter volumes (GMV) in various psychoses [including schizophrenia (SZ), schizoaffective (SZA), and psychotic bipolar disorder (PBP)]. Prior work demonstrated similar EEG and gray matter abnormalities in both SZ and PBP. Integrating EEG and GMV and jointly analyzing the combined data fully elucidates the linkage between the two and may provide better biomarker- or endophenotype-specificity for a particular illness. Joint exploratory investigations of EEG and GMV are scarce in the literature and the relationship between the two in psychosis is even less explored. We investigated a joint multivariate model to test whether the linear relationship or linkage between awake EEG (AEEG) frequency activity and GMV is abnormal across the psychosis dimension and if such effects are also present in first-degree relatives. METHODS We assessed 607 subjects comprising 264 probands [105 SZ, 72 SZA, and 87 PBP], 233 of their first degree relatives [82 SZ relatives (SZR), 71 SZA relatives (SZAR), and 80 PBP relatives (PBPR)], and 110 healthy comparison subjects (HC). All subjects underwent structural MRI (sMRI) and EEG scans. Frequency activity and voxel-based morphometric GMV were derived from EEG and sMRI data, respectively. Seven AEEG frequency and gray matter components were extracted using Joint independent component analysis (jICA). The loading coefficients (LC) were examined for group differences using analysis of covariance. Further, the LCs were correlated with psychopathology scores to identify relationship with clinical symptoms. RESULTS Joint ICA revealed a single component differentiating SZ from HC (p < 0.006), comprising increased posterior alpha activity associated with decreased volume in inferior parietal lobe, supramarginal, parahippocampal gyrus, middle frontal, inferior temporal gyri, and increased volume of uncus and culmen. No components were aberrant in either PBP or SZA or any relative group. No significant association was identified with clinical symptom measures. CONCLUSION Our data suggest that a joint EEG and GMV model yielded a biomarker specific to SZ, not abnormal in PBP or SZA. Alpha activity was related to both increased and decreased volume in different cortical structures. Additionally, the joint model failed to identify endophenotypes across psychotic disorders.
Collapse
Affiliation(s)
- Pauline Soh
- Olin Neuropsychiatry Research Center, Institute of Living , Hartford, CT , USA
| | - Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living , Hartford, CT , USA
| | - Sabin Khadka
- Olin Neuropsychiatry Research Center, Institute of Living , Hartford, CT , USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico , Albuquerque, NM , USA ; The Mind Research Network , Albuquerque, NM , USA ; Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia , Athens, GA , USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living , Hartford, CT , USA ; Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Department of Neurobiology, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
103
|
Outhred T, Kemp AH, Malhi GS. Physiological Correlates of Bipolar Spectrum Disorders and their Treatment. Curr Top Behav Neurosci 2014; 21:47-102. [PMID: 24844679 DOI: 10.1007/7854_2014_297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bipolar spectrum disorders (BSDs) are associated with great personal and socioeconomic burden, with patients often facing a delay in detection, misdiagnosis when detected, and a trial-and-error approach to finding the most appropriate treatment. Therefore, improvement in the assessment and management of patients with BSDs is critical. Should valid physiological measures for BSDs be identified and implemented, significant clinical improvements are likely to be realized. This chapter reviews the physiological correlates of BSDs and treatment, and in doing so, examines the neuroimaging, electroencephalogram, and event-related potential, and peripheral physiological correlates that both characterize and differentiate BSDs and their response to treatment. Key correlates of BSDs involve underlying disturbances in prefrontal and limbic network neural activity, early neural processing, and within the autonomic nervous system. These changes appear to be mood-related and can be normalized with treatment. We adopt an "embodied" perspective and propose a novel, working framework that takes into account embodied psychophysiological mechanisms in which the physiological correlates of BSD are integrated. This approach may in time provide the objective physiological measures needed to improve assessment and decision making when treating patients with BSDs. Future research with integrative, multimodal measures is likely to yield potential applications for physiological measures of BSD that correlate closely with diagnosis and treatment.
Collapse
Affiliation(s)
- Tim Outhred
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | | | | |
Collapse
|