101
|
Koo SK, Kim SC, Wee YM, Kim YH, Jung EJ, Choi MY, Park YH, Park KT, Lim DG, Han DJ. Experimental microencapsulation of porcine and rat pancreatic islet cells with air-driven droplet generator and alginate. Transplant Proc 2008; 40:2578-80. [PMID: 18929806 DOI: 10.1016/j.transproceed.2008.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transplantation of microencapsulated islets is proposed as an ideal therapy for the treatment of type 1 diabetes mellitus without immunosuppression. This strategy is based on the principle that foreign cells are protected from the host immune system by an artificial membrane. The aim of this study was to establish an ideal condition of microencapsulation using an air-driven droplet generator and alginate in vitro. The optimal conditions for islet encapsulation were an alginate inflow rate of 10 mL/h, CO2 flow rate of 2.0 L/min in a concentration of 2% alginate. For 2.5% alginate, the alginate inflow rate of 20 mL/h, CO2 flow rate 3.0 L/min was ideal; alginate inflow rate of 40 mL/h, CO2 flow rate of 4.0 L/min showed good microcapsules at 3% alginate. Viability of encapsulated islets was greater than 90%. In terms of insulin secretion, encapsulated islets secreted insulin in response to glucose in static culture medium. However, there was no normal response to low or high glucose challenge with a stimulation index less than 2.0. Microencapsulation of pig islets was successfully performed with air-driven droplet generator and alginate in vitro. Further studies about biocompatibility and glucose control in vivo may provide a useful tool for treatment of patients with diabetes mellitus.
Collapse
Affiliation(s)
- S K Koo
- Asan Institute for Life Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Yang KC, Wu CC, Lin FH, Qi Z, Kuo TF, Cheng YH, Chen MP, Sumi S. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 2008; 15:407-16. [DOI: 10.1111/j.1399-3089.2008.00503.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
103
|
Prakash S, Malgorzata Urbanska A. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells. Biologics 2008; 2:355-78. [PMID: 19707368 PMCID: PMC2721377 DOI: 10.2147/btt.s2372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review.
Collapse
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Aleksandra Malgorzata Urbanska
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
104
|
Inducible nitric oxide synthase-nitric oxide plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Transplantation 2008; 85:323-30. [PMID: 18301327 DOI: 10.1097/tp.0b013e31816168f9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Islet transplantation is a potential strategy to cure type 1 diabetes mellitus. However, a substantial part of the islet graft becomes nonfunctional due to several factors including hypoxia. However, the precise mechanism of cell damage is largely unknown in hypoxic exposure to pancreatic beta cells. The aim of the present study was to investigate whether acute and severe hypoxic injury could involve inducible nitric oxide synthase (iNOS)-nitric oxide (NO) signaling in beta cells. METHODS The rat beta cell line (INS-1) and primary rat islets were incubated in an anoxic chamber. Cell viability was determined by propium iodide staining or cell counting kit. The expression of iNOS mRNA and protein was examined using reverse-transcription polymerase chain reaction and Western blot analysis. NO production was measured as nitrite accumulation by Griess reagent method. RESULTS After hypoxic exposure, marked cell death occurred in INS-1 cells and rat islets, accompanied by increase in activated caspase-3 expression. NO production was increased in the culture medium in a time-dependent manner. Increase in expression of iNOS mRNA and protein was found. Pretreatment with a selective iNOS inhibitor, 1400W, significantly prevented cell death during hypoxia. In addition, hypoxia activated c-Jun N-terminal kinase (JNK) significantly, but the addition of 1400W inhibited hypoxia-induced JNK phosphorylation. CONCLUSIONS Our data suggest that iNOS-NO plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Therefore, iNOS-NO might be a potential therapeutic target for preserving beta cell survival in islet transplantation through prevention of hypoxia-mediated cell death.
Collapse
|
105
|
Wang T, Adcock J, Kühtreiber W, Qiang D, Salleng KJ, Trenary I, Williams P. Successful Allotransplantation of Encapsulated Islets in Pancreatectomized Canines for Diabetic Management Without the Use of Immunosuppression. Transplantation 2008; 85:331-7. [DOI: 10.1097/tp.0b013e3181629c25] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
106
|
Randall CL, Leong TG, Bassik N, Gracias DH. 3D lithographically fabricated nanoliter containers for drug delivery. Adv Drug Deliv Rev 2007; 59:1547-61. [PMID: 17919768 DOI: 10.1016/j.addr.2007.08.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/26/2007] [Indexed: 11/16/2022]
Abstract
Lithographic patterning offers the possibility for precise structuring of drug delivery devices. The fabrication process can also facilitate the incorporation of advanced functionality for imaging, sensing, telemetry and actuation. However, a major limitation of present day lithographic fabrication is the inherent two-dimensionality of the patterning process. We review a new approach to construct three dimensional (3D) patterned containers by lithographically patterning two dimensional (2D) templates with liquefiable hinges that spontaneously fold upon heating into hollow polyhedral containers. The containers have finite encapsulation volumes, can be made small enough to pass through a hypodermic needle, and the 3D profile of the containers facilitates enhanced diffusion with the surrounding medium as compared to reservoir systems fabricated in planar substrates. We compare the features of the containers to those of present day drug delivery systems. These features include ease of manufacture, versatility in size and shape, monodisperse porosity, ability for spatial manipulation and remote triggering to release drugs on-demand, the incorporation of electronic modules, cell encapsulation, biocompatibility and stability. We also review possible applications in drug delivery and cell encapsulation therapy (CET). The results summarized in this review suggest a new strategy to enable construction of "smart", three dimensional drug delivery systems using lithography.
Collapse
Affiliation(s)
- Christina L Randall
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore MD 21205, USA
| | | | | | | |
Collapse
|
107
|
Kai-Chiang Y, Ching-Yao Y, Chang-Chin W, Tzong-Fu K, Feng-Huei L. In vitro study of using calcium phosphate cement as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas. Biotechnol Bioeng 2007; 98:1288-95. [PMID: 17514757 DOI: 10.1002/bit.21506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, the feasibility of using calcium phosphate cement (CPC) as immunoisolative device to enclose insulinoma/agarose microspheres as bioartificial pancreas was evaluated. We fabricated a chamber by CPC and utilized X-ray diffraction, Scanning electron microscope and Mercury intrusion porosimetry to identify the characters of the CPC chamber. The nominal molecular weight cut-off and cytotoxicity of CPC chamber were also evaluated. An insulinoma cell line (RIN-m5F) was chosen as insulin source and encapsulated in agarose microspheres and then enclosed in preformed CPC chamber. Insulin secretion was analyzed by Enzyme-linked immunosorbant assay to evaluate the function of insulinoma enclosed in CPC chamber. Results showed that the CPC chamber was non-cytotoxicity to insulinoma and can block the penetration of molecules which molecular weight larger than 12.4 kDa. Insulinoma inside the CPC chamber can secrete insulin in stable level for 30 days. This study indicated that we may use CPC as immunoisolative material to enclose insulinoma/agarose microspheres as bioartificial pancreas.
Collapse
Affiliation(s)
- Yang Kai-Chiang
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, No.1, Jen Ai Road, Section1, Taipei 100, Taiwan, ROC
| | | | | | | | | |
Collapse
|
108
|
Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. ACTA ACUST UNITED AC 2007; 13:589-99. [PMID: 17518605 DOI: 10.1089/ten.2006.0183] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Although traditional insulin therapy has alleviated the short-term effects, long-term complications are ubiquitous and harmful. For these reasons, alternative treatment options are being developed. This review investigates one appealing area: cell replacement using encapsulated islets. Encapsulation materials, encapsulation methods, and cell sources are presented and discussed. In addition, the major factors that currently limit cell viability and functionality are reviewed, and strategies to overcome these limitations are examined. This review is designed to introduce the reader to cell replacement therapy and cell and tissue encapsulation, especially as it applies to diabetes.
Collapse
Affiliation(s)
- Jonathan Beck
- Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA
| | | | | | | | | | | |
Collapse
|
109
|
Papeta N, Chen T, Vianello F, Gererty L, Malik A, Mok YT, Tharp WG, Bagley J, Zhao G, Stevceva L, Yoon V, Sykes M, Sachs D, Iacomini J, Poznansky MC. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation 2007; 83:174-83. [PMID: 17264814 DOI: 10.1097/01.tp.0000250658.00925.c8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. METHODS Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. RESULTS Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. CONCLUSIONS This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.
Collapse
Affiliation(s)
- Natalia Papeta
- Infectious Diseases Medicine Division and Partner AIDS Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Sun ZJ, Lv GJ, Li SY, Xie YB, Yu WT, Wang W, Ma XJ. Probing the role of microenvironment for microencapsulated Sacchromyces cerevisiae under osmotic stress. J Biotechnol 2007; 128:150-61. [PMID: 17028034 DOI: 10.1016/j.jbiotec.2006.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 08/25/2006] [Accepted: 09/08/2006] [Indexed: 12/20/2022]
Abstract
Cell encapsulation opens a new avenue to the oral delivery of genetically engineered microorganism for therapeutic purpose. Osmotic stress is one of the universal chemical stress factors in the application of microencapsulation technology. In order to understand the effect and mechanism of the encapsulated microenvironment on protecting cells from hyper-osmotic stress, yeast cells of Saccharomyces cerevisiae Y800 were encapsulated in calcium alginate micro-gel beads (MB), alginate-chitosan-alginate (ACA) solid core microcapsules (SCM), and ACA liquid core microcapsules (LCM), respectively. The stress-induced intracellular components and enzyme activity including trehalose, glycerol and super oxide dismutase (SOD) were measured. Free cell culture was used as control. The survival of encapsulated cells and the cells released from MB, SCM and LCM after osmotic shock induced by NaCl solution (1, 2 and 3M) was evaluated. An analysis method was established to probe the effect of encapsulated microenvironment on the cell tolerance to osmotic stress. The results showed that LCM gave rise to the highest level of intracellular trehalose and glycerol, and SOD activity, as well as the highest survival rate of encapsulated cells or cells released from microcapsule. It was demonstrated that LCM was able to induce the highest stress response and stress tolerance of cells, which was adapted during culture, while SCM failed. The theoretical analysis revealed that it was the liquid alginate matrix in microcapsule that played a central role in domesticating the cells to adapt to hyper-osmotic stress. This finding provides a very useful guideline to cell encapsulation.
Collapse
Affiliation(s)
- Zhi-Jie Sun
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | | | | | | | | | | | | |
Collapse
|
111
|
Wu TJ, Huang HH, Hsu YM, Lyu SR, Wang YJ. A novel method of encapsulating and cultivating adherent mammalian cells within collagen microcarriers. Biotechnol Bioeng 2007; 98:578-85. [PMID: 17421039 DOI: 10.1002/bit.21452] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel method of preparing collagen microcarriers was developed and used to entrap adherent cells for cell culturing. This new technique involved seeding of cells in micro gel beads comprised of collagen fibrils dispersed in alginate. The gel beads were washed with phosphate buffered saline (PBS) to remove alginate and the resulting microspheres, about 300-500 microm in diameter, contained evenly distributed collagen fibrils which provided a 3D biomimetic environment for cell growth. The applicability of this microencapsulating system was demonstrated by its ability to support the growth of C2C12 myoblast cells. When seeded and cultured within the 3D collagen microcarriers, the population of C2C12 cells entrapped within the microcarriers increased by 1.5 folds in 7 days after inoculation. This encapsulation technique is potentially useful for culturing cells and especially useful for adherent cells that require a 3D fibrillar collagen environment.
Collapse
Affiliation(s)
- Ta-Jen Wu
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
112
|
|
113
|
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C, Luca G, Basta G, Calafiore R. Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. Int J Pharm 2006; 324:27-36. [PMID: 16949775 DOI: 10.1016/j.ijpharm.2006.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 01/07/2023]
Abstract
Cell encapsulation technology raises great hopes in medicine and biotechnology. Transplantation of encapsulated pancreatic islets represents a promising approach to the final cure of type 1 diabetes mellitus. Unfortunately, long-term graft survival and functional competence remain only partially fulfilled. Failure was often ascribed to the lack of biocompatibility generating inflammatory response, limited immunobarrier competence, hypoxia, and low beta-cell replication. In the present work, ketoprofen loaded biodegradable microspheres, embedded into alginate/poly-L-ornithine/alginate microcapsules, were prepared in order to release ketoprofen at early stages after implantation. Morphology, size, in vitro release behaviour, and in vivo biocompatibility were assessed. The effect of some preparation parameters was also evaluated. Polymeric microspheres were spherical and smooth, two populations of about 5 and 20 microm of mean diameter characterized the particle size distribution. A high burst effect was observed for all preparations during in vitro release studies. Ketoprofen, plasticizing the polymeric matrix, could be responsible of this release behaviour. Alginate/poly-L-ornithine/alginate microcapsules were not modified upon ketoprofen loaded microspheres encapsulation and an optimal dispersion was obtained. Composite system showed good biocompatibility when a high molecular weight polymer was employed. Therefore a potentially suitable composite system for cell encapsulation was obtained. This system may be successfully used to release NSAIDs and other active molecules capable to improve cell system functional performance and life-span.
Collapse
Affiliation(s)
- Paolo Blasi
- Department of Chemistry and Technology of Drugs, School of Pharmacy, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
115
|
Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci 2006; 29:183-97. [PMID: 16777391 DOI: 10.1016/j.ejps.2006.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 04/24/2006] [Indexed: 01/15/2023]
Abstract
Recent advances in the discovery and delivery of drugs to cure chronic diseases are achieved by combination of intelligent material design with advances in nanotechnology. Since many drugs act as protagonists or antagonists to different chemicals in the body, a delivery system that can respond to the concentrations of certain molecules in the body is invaluable. For this purpose, intelligent therapeutics or "smart drug delivery" calls for the design of the newest generation of sensitive materials based on molecular recognition. Biomimetic polymeric networks can be prepared by designing interactions between the building blocks of biocompatible networks and the desired specific ligands and by stabilizing these interactions by a three-dimensional structure. These structures are at the same time flexible enough to allow for diffusion of solvent and ligand into and out of the networks. Synthetic networks that can be designed to recognize and bind biologically significant molecules are of great importance and influence a number of emerging technologies. These synthetic materials can be used as unique systems or incorporated into existing drug delivery technologies that can aid in the removal or delivery of biomolecules and restore the natural profiles of compounds in the body.
Collapse
|
116
|
Li HB, Jiang H, Wang CY, Duan CM, Ye Y, Su XP, Kong QX, Wu JF, Guo XM. Comparison of two types of alginate microcapsules on stability and biocompatibility
in vitro
and
in vivo. Biomed Mater 2006; 1:42-7. [DOI: 10.1088/1748-6041/1/1/007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
117
|
Abstract
BACKGROUND Because standardization of the cell microencapsulation procedure has not yet been achieved, we performed hepatocyte microencapsulation using alginate (ALG)-poly-l-lysine (PLL)-ALG (APA) polymer. METHODS Hepatocytes were microencapsulated using a binozzle air-jet droplet generator. Our study aims were to: (1) clarify how ALG concentration affects the quality of ALG beads; (2) determine how the PLL concentration affects the quality of microcapsules (MCs); (3) ascertain the influence of liquefaction time by sodium citrate (SC) on the quality of the MCs; (4) and clarify how temperature and solution pH, respectively, affect the viability of the hepatocytes inside the MCs. RESULTS The concentration of ALG must be > or = 3% (w/v) to generate droplets with satisfactory homogeneity in size and roundness (P < .01). The total quantity of PLL molecules is the essential component for MCs (P < .01). As our results show, the numeric ratio of PLL (milligrams) to MCs (milliliters) is roughly 25:1. SC incubation for 8 minutes resulted in the proper thickness of the MC wall; however, the time varied according to the size of the MCs (P < .05). Temperature and pH, although both difficult to control, exerted great influences on cell viability: 4 degrees C and pH 7.2 were found to be optimal by this study (P < .05). CONCLUSIONS Concentrations of ALG and PLL exerted decisive effects on the quality and strength of MCs. Higher concentrations were suggested. Because temperature and pH greatly affected cell viability, they must be properly monitored.
Collapse
Affiliation(s)
- Y Gao
- Department of General Surgery, First Clinical Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
118
|
Khattak SF, Chin KS, Bhatia SR, Roberts SC. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng 2006; 96:156-66. [PMID: 16917927 DOI: 10.1002/bit.21151] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Encapsulation devices are often hindered by the inability to achieve sufficient oxygen levels for sustaining long-term cell survival both in vivo and in vitro. We have investigated the use of synthetic oxygen carriers in alginate gels to improve metabolic activity and viability of HepG2 cells over time. Perfluorocarbons (PFCs), specifically perfluorotributylamine (PFTBA) and perfluorooctylbromide (PFOB), were emulsified with alginate and used to encapsulate HepG2 cells in a spherical geometry. Cellular state was assessed using the MTT assay and Live/Dead stain as well as through analysis of both lactate and lactate dehydrogenase (LDH) levels which are indirect indicators of oxygen availability. Addition of 1% surfactant resulted in stable emulsions with evenly dispersed PFC droplets of the order of 1-2 microm in diameter, with no influence on cell viability. Both PFCs evaluated were effective in increasing cellular metabolic activity over alginate-only gels. The presence of 10% PFOB significantly increased cellular growth rate by 10% and reduced both intracellular LDH and extracellular lactate levels by 20-40%, improving glucose utilization efficiency. The characteristic drop in cellular metabolic activity upon encapsulation was eliminated with addition of 10% PFC and viability was better maintained throughout the bead, with a significant decrease in necrotic core size. Results were consistent under a physiologically relevant 5% oxygen environment. The incorporation of PFC synthetic oxygen carriers into encapsulation matrices has been successfully applied to improve cell function and viability with implication for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Sarwat F Khattak
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
119
|
Kobayashi T, Aomatsu Y, Iwata H, Kin T, Kanehiro H, Hisanga M, Ko S, Nagao M, Harb G, Nakajima Y. Survival of microencapsulated islets at 400 days posttransplantation in the omental pouch of NOD mice. Cell Transplant 2006; 15:359-65. [PMID: 16898230 DOI: 10.3727/000000006783981954] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The long-term durability of agarose microencapsulated islets against autoimmunity was evaluated in NOD mice. Islets were isolated from 6-8-week-old prediabetic male NOD mice and microencapsulated in 5% agarose hydrogel. Microencapsulated or nonencapsulated islets were transplanted into the omental pouch of spontaneously diabetic NOD mice. Although the diabetic NOD mice that received nonencapsulated islets experienced a temporary reversal of their hyperglycemic condition, all 10 of these mice returned to hyperglycemia within 3 weeks. In contrast, 9 of 10 mice transplanted with microencapsulated islets maintained normoglycemia for more than 100 days. Islet grafts were removed at 100, 150, 200, 300, and 400 days posttransplantation. A prompt return to hyperglycemia was observed in the mice after graft removal, indicating that the encapsulated islet grafts were responsible for maintaining euglycemia. Histological examination revealed viable islets in the capsules at all time points of graft removal. In addition, beta-cells within the capsules remained well granulated as revealed by the immunohistochemical detection of insulin. No immune cells were detected inside the microcapsules and no morphological irregularities of the microcapsules were observed at any time point, suggesting that the microcapsules successfully protected the islets from cellular immunity. Sufficient vascularization was evident close to the microcapsules. Considerable numbers of islets showed central necrosis at 400 days posttransplantation, although the necrotic islets made up only a small percentage of the islet grafts. Islets with central necrosis also showed abundant insulin production throughout the entire islets, except for the necrotic part. These results demonstrate the long-term durability of agarose microcapsules against autoimmunity in a syngeneic islet transplantation model in NOD mice.
Collapse
Affiliation(s)
- Tsunehiro Kobayashi
- First Department of Surgery, Nara Medical University, Nara, 634-8522, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Tam SK, Dusseault J, Polizu S, Ménard M, Hallé JP, Yahia L. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 2005; 26:6950-61. [PMID: 15975648 DOI: 10.1016/j.biomaterials.2005.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/06/2005] [Indexed: 01/04/2023]
Abstract
Alginate-poly-L-lysine-alginate (APA) microcapsules are currently being investigated as a means to immuno-isolate transplanted cells, but their biocompatibility is limited. In this study, we verified the hypothesis that poly-L-lysine (PLL), which is immunogenic when unbound, is exposed at the APA microcapsule surface. To do so, we analysed the microcapsule membrane at the micrometric/nanometric scale using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The results indicate that PLL and alginate molecules interact within the membrane. PLL exists in considerable amounts near the surface, contributing to the majority of the carbon within the outermost 100 Angstroms of the membrane. PLL was also detected at the true surface (the outermost monolayer) of the microcapsules. The exposure of PLL does not appear to result from defects in the outer alginate coating. This physicochemical model of APA microcapsules could explain their immunogenicity and will play an important role in the optimization of the microcapsule design.
Collapse
Affiliation(s)
- Susan K Tam
- Groupe de Recherche en Biomatériaux/Biomécanique, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Qué., Canada
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
Diabetes remains a devastating disease, with tremendous cost in terms of human suffering and healthcare expenditures. A bioartificial pancreas has the potential as a promising approach to preventing or reversing complications associated with this disease. Bioartificial pancreatic constructs are based on encapsulation of islet cells with a semipermeable membrane so that cells can be protected from the host's immune system. Encapsulation of islet cells eliminates the requirement of immunosuppressive drugs, and offers a possible solution to the shortage of donors as it may allow the use of animal islets or insulin-producing cells engineered from stem cells. During the past 2 decades, several major approaches for immunoprotection of islets have been studied. The microencapsulation approach is quite promising because of its improved diffusion capacity, and technical ease of transplantation. It has the potential for providing an effective long-term treatment or cure of Type 1 diabetes.
Collapse
Affiliation(s)
- Seda Kizilel
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
122
|
Ricci M, Blasi P, Giovagnoli S, Rossi C, Macchiarulo G, Luca G, Basta G, Calafiore R. Ketoprofen controlled release from composite microcapsules for cell encapsulation: Effect on post-transplant acute inflammation. J Control Release 2005; 107:395-407. [PMID: 16129507 DOI: 10.1016/j.jconrel.2005.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/03/2005] [Accepted: 06/21/2005] [Indexed: 11/30/2022]
Abstract
Cell encapsulation technology raises hopes in medicine and biotechnology. Encapsulated pancreatic islets is a promising approach for the final solution of Type 1 diabetes. Unfortunately, evidence of long-term encapsulated islet graft survival and functional competence lies behind expectancy. Failure was often ascribed to the lack of biocompatibility generating inflammatory response, or limited immunobarrier competence or hypoxia or finally, low beta-cell replication. In order to prevent severe inflammation at early stages after implantation, composite microcapsules were designed. Biodegradable microspheres containing ketoprofen were enveloped into the well established alginate/poly-L-ornithine/alginate capsules. Polyester microspheres were prepared, by solvent evaporation, and characterized for encapsulation efficiency, particle size and in vitro release. Biocompatibility and efficacy to prevent the inflammatory response were studied in vivo. Good encapsulation efficiency and the desired particle size were achieved. In vitro release studies evidenced a high burst effect probably due to a plasticizing effect of both water and ketoprofen. The composite systems showed good biocompatibility and capacity to completely avoid the inflammatory response and the pericapsular cell overgrowth. In conclusion, the inflammatory response in the immediate post-transplant period can be circumvented using multicompartment microcapsules releasing non-steroidal anti inflammatory drugs.
Collapse
Affiliation(s)
- Maurizio Ricci
- Department of Chemistry and Technology of Drugs, School of Pharmacy, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Heise M, Koepsel R, Russell AJ, McGee EA. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol 2005; 3:47. [PMID: 16162282 PMCID: PMC1262772 DOI: 10.1186/1477-7827-3-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We have previously shown that suspension culture prevents follicle flattening and maintains three-dimensional follicle architecture better than culture on flat plates. However, many of the follicles cultured in suspension do eventually rupture, as basement membrane integrity is lost and the three-dimensional structure of the follicle is altered. Therefore, the objective of this study is to support three-dimensional follicle architecture during in vitro growth of ovarian follicles through encapsulation in calcium alginate, while maintaining responsiveness to FSH stimulation. METHODS Preantral follicles (150-160 micrometers in diameter) were isolated from the ovaries of juvenile rats and grown in culture tubes or encapsulated in calcium alginate and grown in culture tubes. Previous studies revealed that follicles maintained structural integrity but did not grow as well when encapsulated in calcium alginate. In these studies, we evaluated the effect of calcium alginate on FSH-stimulated follicle growth, survival, and morphology in suspension culture. Follicles were grown under 5 culture conditions: 1) not encapsulated; with FSH in the medium, 2) encapsulated in the absence of FSH, grown in medium without FSH, 3) encapsulated with calcium alginate containing FSH but grown in medium without FSH, 4) encapsulated without FSH but grown in medium containing FSH and 5) encapsulated with calcium alginate containing FSH and in medium containing FSH. To assess growth rates, follicles were cultured for 72 hours and analyzed for follicle size increase and DNA content. Survival analysis for encapsulated and unencapsulated follicles was performed by constructing a Kaplan Meier survival curve of daily observations of intact follicle survival. Three-dimensional architecture was assessed histologically and by analysis of the pattern of connexin 43 expression in the cultured follicles. RESULTS In the absence of FSH, follicle diameter increased by only 6.4%. When FSH was included in the alginate bead alone or the media alone, the follicle diameter increased by 13.5% and 19.9% respectively. This was greater than follicles cultured in the absence of FSH (p < 0.05), but less than that of the FSH-treated unencapsulated follicles (p < 0.05). However, when follicles were cultured with FSH included in both the media and the bead, a 32.6% increase in follicle diameter was observed, statistically no different than the growth rate of the unencapsulated follicles grown with FSH. CONCLUSION Microencapsulation supports three-dimensional follicle growth, but may limit access to hormones in the medium resulting in altered development compared to unencapsulated follicles. Inclusion of FSH in the alginate bead restores the follicle growth response to FSH, while also providing a scaffold of support for three-dimensional growth. The application of tissue engineering principles to the problems of follicle culture in vitro may provide advances applicable to fertility preservation in women and endangered species.
Collapse
Affiliation(s)
- Matthew Heise
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Richard Koepsel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Alan J Russell
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Elizabeth A McGee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|