101
|
Gu C, Zhou W, Wang W, Xiang H, Xu H, Liang L, Sui H, Zhan L, Lu X. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats. Oncotarget 2017; 8:27693-27703. [PMID: 28099913 PMCID: PMC5438601 DOI: 10.18632/oncotarget.14611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
Numerous researches supported that microbiota can influence behavior and modulate cognitive function through "microbiota-gut-brain" axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD.
Collapse
MESH Headings
- Animals
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/isolation & purification
- Blood Glucose/analysis
- Cognition/drug effects
- Cognitive Dysfunction/blood
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gastrointestinal Microbiome/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Intestinal Mucosa/microbiology
- Male
- Maze Learning/drug effects
- Medicine, Chinese Traditional
- Mutation
- RNA, Ribosomal, 16S/isolation & purification
- Rats
- Rats, Zucker
- Receptors, Leptin/genetics
- Sequence Analysis, RNA
- Spatial Memory/drug effects
- Stress, Psychological/complications
Collapse
Affiliation(s)
- Chunyan Gu
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wen Zhou
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wang Wang
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Xiang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huiying Xu
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lina Liang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hua Sui
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
102
|
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 2017; 77:1783-1812. [PMID: 28292977 PMCID: PMC5392374 DOI: 10.1158/0008-5472.can-16-2929] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Humans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases, including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases, and even neuropsychiatric disorders. Thus, an interaction of microorganisms with the host immune system is required for a healthy body. Exposure to microorganisms from the moment we are born and appropriate microbiome assembly during childhood are essential for establishing an active immune system necessary to prevent disease later in life. Exposure to microorganisms educates the immune system, induces adaptive immunity, and initiates memory B and T cells that are essential to combat various pathogens. The correct microbial-based education of immune cells may be critical in preventing the development of autoimmune diseases and cancer. This review provides a broad overview of the importance of the host microbiome and accumulating knowledge of how it regulates and maintains a healthy human system. Cancer Res; 77(8); 1783-812. ©2017 AACR.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Emily Walsh
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kristen Batich
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Neurosurgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute University College Cork, Cork, Ireland
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Korin Albert
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - John P Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | |
Collapse
|
103
|
Baugreet S, Hamill RM, Kerry JP, McCarthy SN. Mitigating Nutrition and Health Deficiencies in Older Adults: A Role for Food Innovation? J Food Sci 2017; 82:848-855. [PMID: 28267864 DOI: 10.1111/1750-3841.13674] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022]
Abstract
The aim of this review is to describe the factors contributing to diminished food intake, resulting in nutritional deficiencies and associated health conditions in older adults and proposes food innovation strategies to mitigate these. Research has provided convincing evidence of a link between healthy eating patterns and healthy aging. There is a need to target new food product development (NPD) with functional health benefits specifically designed to address the particular food-related needs of older consumers. When developing foods for older adults, consideration should be given to the increased requirements for specific macro- and micronutrients, especially protein, calcium, vitamin D, and vitamin B. Changes in chemosensory acuity, chewing difficulties, and reduced or poor swallowing ability should also be considered. To compensate for the diminished appetite and reduced intake, foods should be energy dense, nutritionally adequate, and, most importantly, palatable, when targeting this cohort. This paper describes the potential of new food product development to facilitate dietary modification and address health deficiencies in older adults.
Collapse
Affiliation(s)
- Sephora Baugreet
- Food Quality and Sensory Science Dept., Teagasc Food Research Centre, Ashtown, Dublin, 15, Ireland.,Dept. of Food and Nutritional Sciences, Univ. College Cork, Cork, Ireland
| | - Ruth M Hamill
- Food Quality and Sensory Science Dept., Teagasc Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - Joseph P Kerry
- Dept. of Food and Nutritional Sciences, Univ. College Cork, Cork, Ireland
| | - Sinéad N McCarthy
- Dept. of Agrifood Business and Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin, 15, Ireland
| |
Collapse
|
104
|
Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Sci Rep 2016; 6:38481. [PMID: 27922089 PMCID: PMC5138827 DOI: 10.1038/srep38481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
Cognitive difficulties manifested by the growing elderly population with cirrhosis could be amnestic (memory-related) or non-amnestic (memory-unrelated). The underlying neuro-biological and gut-brain changes are unclear in this population. We aimed to define gut-brain axis alterations in elderly cirrhotics compared to non-cirrhotic individuals based on presence of cirrhosis and on neuropsychological performance. Age-matched outpatients with/without cirrhosis underwent cognitive testing (amnestic/non-amnestic domains), quality of life (HRQOL), multi-modal MRI (fMRI go/no-go task, volumetry and MR spectroscopy), blood (inflammatory cytokines) and stool collection (for microbiota). Groups were studied based on cirrhosis/not and also based on neuropsychological performance (amnestic-type, amnestic/non-amnestic-type and unimpaired). Cirrhotics were impaired on non-amnestic and selected amnestic tests, HRQOL and systemic inflammation compared to non-cirrhotics. Cirrhotics demonstrated significant changes on MR spectroscopy but not on fMRI or volumetry. Correlation networks showed that Lactobacillales members were positively while Enterobacteriaceae and Porphyromonadaceae were negatively linked with cognition. Using the neuropsychological classification amnestic/non-amnestic-type individuals were majority cirrhosis and had worse HRQOL, higher inflammation and decreased autochthonous taxa relative abundance compared to the rest. This classification also predicted fMRI, MR spectroscopy and volumetry changes between groups. We conclude that gut-brain axis alterations may be associated with the type of neurobehavioral decline or inflamm-aging in elderly cirrhotic subjects.
Collapse
|
105
|
Khan F, Oloketuyi SF. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol 2016; 122:306-320. [PMID: 27740729 DOI: 10.1111/jam.13327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are considered a serious life-threatening issue regardless of age. Resulting nerve damage progressively affects important activities, such as movement, coordination, balance, breathing, speech and the functioning of vital organs. Reports on the subject have concluded that neurodegenerative disease can be caused by mutations of susceptible genes, alcohol consumption, toxins, chemicals and other unknown environmental factors. Although several diagnostic techniques can be used to determine aetiologies, the process is difficult and often fails. Research shows that nasopharyngeal and gut microbiota play important roles in brain to spinal cord coordination. However, no conclusive epidemiologic evidence is available on the roles played by respiratory and gut microbiota in the development of neurodegenerative diseases. Thus, understanding the connection between respiratory and gut microbiota and the nervous system could provide information on causal links. The present review describes future perspectives on the role played by nasopharyngeal and gut microbiota in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| | - S F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| |
Collapse
|
106
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
107
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
108
|
Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S. Functionality of Sugars in Foods and Health. Compr Rev Food Sci Food Saf 2016; 15:433-470. [DOI: 10.1111/1541-4337.12194] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Roger A. Clemens
- USC School of Pharmacy; Intl. Center for Regulatory Science; 1540 Alcazar St., CHP 140 Los Angeles CA 90089 U.S.A
| | - Julie M. Jones
- St. Catherine Univ; 4030 Valentine Court; Arden Hills Minnesota 55112 U.S.A
| | - Mark Kern
- San Diego State Univ; School of Exercise and Nutritional Sciences; 5500 Campanile Dr. San Diego CA 92182-7251 U.S.A
| | - Soo-Yeun Lee
- Univ. of Illinois at Urbana Champaign; 351 Bevier Hall MC-182, 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Emily J. Mayhew
- Univ. of Illinois at Urbana Champaign; 399A Bevier Hall; 905 S Goodwin Ave. Urbana IL 61801 U.S.A
| | - Joanne L. Slavin
- Univ. of Minnesota; 166 Food Science & Nutrition; 1354 Eckles Ave. Saint Paul MN 55108-1038 U.S.A
| | - Svetlana Zivanovic
- Mars Petcare; Global Applied Science and Technology; 315 Cool Springs Boulevard Franklin TN 37067 U.S.A
| |
Collapse
|
109
|
Mello AM, Paroni G, Daragjati J, Pilotto A. Gastrointestinal Microbiota and Their Contribution to Healthy Aging. Dig Dis 2016; 34:194-201. [PMID: 27028130 DOI: 10.1159/000443350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Studies on populations at different ages have shown that after birth, the gastrointestinal (GI) microbiota composition keeps evolving, and this seems to occur especially in old age. Significant changes in GI microbiota composition in older subjects have been reported in relation to diet, drug use and the settings where the older subjects are living, that is, in community nursing homes or in a hospital. Moreover, changes in microbiota composition in the old age have been related to immunosenescence and inflammatory processes that are pathophysiological mechanisms involved in the pathways of frailty. Frailty is an age-related condition of increased vulnerability to stresses due to the impairment in multiple inter-related physiologic systems that are associated with an increased risk of adverse outcomes, such as falls, delirium, institutionalization, hospitalization and death. Preliminary data suggest that changes in microbiota composition may contribute to the variations in the biological, clinical, functional and psycho-social domains that occur in the frail older subjects. Multidimensional evaluation tools based on a Comprehensive Geriatric Assessment (CGA) have demonstrated to be useful in identifying and measuring the severity of frailty in older subjects. Thus, a CGA approach should be used more widely in clinical practice to evaluate the multidimensional effects potentially related to GI microbiota composition of the older subjects. Probiotics have been shown to be effective in restoring the microbiota changes of older subjects, promoting different aspects of health in elderly people as improving immune function and reducing inflammation. Whether modulation of GI microbiota composition, with multi-targeted interventions, could have an effect on the prevention of frailty remains to be further investigated in the perspective of improving the health status of frail 'high risk' older individuals.
Collapse
Affiliation(s)
- Anna Maria Mello
- Department of Orthogeriatrics, Rehabilitation and Stabilization, Frailty Area, E.O. Galliera Hospital, National Relevance and High Specialization Hospital, Genova, Italy
| | | | | | | |
Collapse
|
110
|
Dong L, Xiao R, Cai C, Xu Z, Wang S, Pan L, Yuan L. Diet, lifestyle and cognitive function in old Chinese adults. Arch Gerontol Geriatr 2016; 63:36-42. [DOI: 10.1016/j.archger.2015.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023]
|
111
|
Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 2016; 120:63-74. [DOI: 10.1016/j.brainresbull.2015.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
|
112
|
Tang EYH, Harrison SL, Albanese E, Gorman TJ, Rutjes AWS, Siervo M, Stephan B. Dietary interventions for prevention of dementia in people with mild cognitive impairment. Cochrane Database Syst Rev 2015. [DOI: 10.1002/14651858.cd011909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene Yee Hing Tang
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| | - Stephanie L Harrison
- Newcastle University; Institute of Health and Society; Baddiley-Clark Building Richardson Road Newcastle upon Tyne UK NE2 4AX
| | - Emiliano Albanese
- King's College London; Health Service and Population Research; De Crespigny Park London UK SE22 0HP
| | - Thomas J Gorman
- Newcastle University; Institute of Health and Society; Baddiley-Clark Building Richardson Road Newcastle upon Tyne UK NE2 4AX
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"; Centre for Systematic Reviews; Via dei Vestini 31 Chieti Chieti Italy 66100
- University of Bern; Institute of Social and Preventive Medicine (ISPM); Finkenhubelweg 11 Bern Bern Switzerland 3012
| | - Mario Siervo
- Newcastle University; Human Nutrition Research Centre, Institute for Ageing and Health; Campus of Ageing and Vitality Newcastle University Newcastle upon Tyne UK NE4 5PL
| | - Blossom Stephan
- Newcastle University; Institute for Ageing and Institute of Health and Society; Baddiley-Clark Building Newcastle upon Tyne UK NE2 4AX
| |
Collapse
|
113
|
Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System. Adv Neonatal Care 2015; 15:314-23; quiz E1-2. [PMID: 26240939 DOI: 10.1097/anc.0000000000000191] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. PURPOSE The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. CONCLUSIONS The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.
Collapse
|
114
|
|
115
|
Welsh L, Dunlop A, McGovern T, McQuaid D, Dean J, Gulliford S, Bhide S, Harrington K, Nutting C, Newbold K. Neurocognitive Function After (Chemo)-Radiotherapy for Head and Neck Cancer. Clin Oncol (R Coll Radiol) 2014; 26:765-75. [DOI: 10.1016/j.clon.2014.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 02/09/2023]
|
116
|
Jellinger KA. Pathogenesis and treatment of vascular cognitive impairment. Neurodegener Dis Manag 2014; 4:471-90. [DOI: 10.2217/nmt.14.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Vascular cognitive impairment (VCI) defines a continuum of disorders ranging from mild cognitive impairment to full-blown dementia, attributable to cerebrovascular causes. Major morphological types – multi-infarct encephalopathy, strategic infarct type, subcortical arteriosclerotic leukoencephalopathy, multilacunar state, postischemic encephalopathy – result from systemic, cardiac and local large or small vessel disease. Cognitive decline is commonly caused by widespread small cerebrovascular lesions (CVLs) affecting regions/networks essential for cognition, memory and behavior. CVLs often coexist with Alzheimer-type and other pathologies, which interact in promoting dementia, but in many nondemented elderly individuals, mixed brain pathologies are also present. Due to the high variability of CVLs, no validated clinical and neuropathological criteria for VCI are available. Cholinesterase inhibitors and memantine produce small cognitive improvement but without essential effect. Antihypertensive treatment, cardiovascular control and lifestyle modifications reducing vascular risk factors are essential. Given its growing health, social and economic burden, prevention and treatment of VCI are a major challenge of neuroscience.
Collapse
|
117
|
Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci 2014; 15:11678-99. [PMID: 24987952 PMCID: PMC4139807 DOI: 10.3390/ijms150711678] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet (MD) is considered one of the healthiest dietary models. Many of the characteristic components of the MD have functional features with positive effects on health and wellness. The MD adherence, calculated through various computational scores, can lead to a reduction of the incidence of major diseases (e.g., cancers, metabolic and cardiovascular syndromes, neurodegenerative diseases, type 2 diabetes and allergy). Furthermore, eating habits are the main significant determinants of the microbial multiplicity of the gut, and dietary components influence both microbial populations and their metabolic activities from the early stages of life. For this purpose, we present a study proposal relying on the generation of individual gut microbiota maps from MD-aware children/adolescents. The maps, based on meta-omics approaches, may be considered as new tools, acting as a systems biology-based proof of evidence to evaluate MD effects on gut microbiota homeostasis. Data integration of food metabotypes and gut microbiota “enterotypes” may allow one to interpret MD adherence and its effects on health in a new way, employable for the design of targeted diets and nutraceutical interventions in childcare and clinical management of food-related diseases, whose onset has been significantly shifted early in life.
Collapse
Affiliation(s)
- Federica Del Chierico
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Pamela Vernocchi
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Lorenza Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| |
Collapse
|
118
|
Gotsis E, Anagnostis P, Mariolis A, Vlachou A, Katsiki N, Karagiannis A. Health benefits of the Mediterranean Diet: an update of research over the last 5 years. Angiology 2014; 66:304-18. [PMID: 24778424 DOI: 10.1177/0003319714532169] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Mediterranean Diet (MedDiet) has been reported to be protective against the occurrence of several diseases. Increasing evidence suggests that the MedDiet could counter diseases associated with chronic inflammation, including metabolic syndrome, atherosclerosis, cancer, diabetes, obesity, pulmonary diseases, and cognition disorders. Adoption of a MedDiet was associated with beneficial effects on the secretion of anti-inflammatory cytokines, antioxidant cellular and circulating biomarkers as well as with regulation of gene polymorphisms involved in the atherosclerotic process. The MedDiet has been considered for the prevention of cardiovascular and other chronic degenerative diseases focusing on the impact of a holistic dietary approach rather than on single nutrients. Epidemiological dietary scores measuring adherence to a MedDiet have been developed. This narrative review considers the results of up-to-date clinical studies (with a focus on the last 5 years) that evaluated the effectiveness of the MedDiet in reducing the prevalence of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Efthymios Gotsis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Anagnostis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | | | - Athanasia Vlachou
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
119
|
Candela M, Biagi E, Brigidi P, O'Toole PW, De Vos WM. Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev 2013; 136-137:70-5. [PMID: 24373997 DOI: 10.1016/j.mad.2013.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
Sharing an intense transgenomic metabolism with the host, the intestinal microbiota is an essential factor for several aspects of the human physiology. However, several age-related factors, such as changes diet, lifestyle, inflammation and frailty, force the deterioration of this intestinal microbiota-host mutualistic interaction, compromising the possibility to reach longevity. In this scenario, the NU-AGE project involves the development of dietary interventions specifically tailored to the maintenance of a healthy trajectory of the intestinal microbiome, counteracting all processes connected to the pathophysiology of the human aging.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paul W O'Toole
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Willem M De Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands, and Departments of Veterinary Biosciences and Bacteriology & Immunology, Helsinki University, Finland
| |
Collapse
|
120
|
Santoro A, Pini E, Scurti M, Palmas G, Berendsen A, Brzozowska A, Pietruszka B, Szczecinska A, Cano N, Meunier N, de Groot CPGM, Feskens E, Fairweather-Tait S, Salvioli S, Capri M, Brigidi P, Franceschi C. Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project's conceptual framework and design. Mech Ageing Dev 2013; 136-137:3-13. [PMID: 24342354 DOI: 10.1016/j.mad.2013.12.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
The development of a chronic, low grade, inflammatory status named "inflammaging" is a major characteristic of ageing, which plays a critical role in the pathogenesis of age-related diseases. Inflammaging is both local and systemic, and a variety of organs and systems contribute inflammatory stimuli that accumulate lifelong. The NU-AGE rationale is that a one year Mediterranean whole diet (considered by UNESCO a heritage of humanity), newly designed to meet the nutritional needs of the elderly, will reduce inflammaging in fully characterized subjects aged 65-79 years of age, and will have systemic beneficial effects on health status (physical and cognitive). Before and after the dietary intervention a comprehensive set of analyses, including omics (transcriptomics, epigenetics, metabolomics and metagenomics) will be performed to identify the underpinning molecular mechanisms. NU-AGE will set up a comprehensive database as a tool for a systems biology approach to inflammaging and nutrition. NU-AGE is highly interdisciplinary, includes leading research centres in Europe on nutrition and ageing, and is complemented by EU multinational food industries and SMEs, interested in the production of functional and enriched/advanced traditional food tailored for the elderly market, and European Federations targeting policy makers and major stakeholders, from consumers to EU Food & Drink Industries.
Collapse
Affiliation(s)
- Aurelia Santoro
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elisa Pini
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Maria Scurti
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giustina Palmas
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Agnes Berendsen
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | | | | | - Noël Cano
- INRA-Clermont Université, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Nathalie Meunier
- CHU Clermont-Ferrand, Unité d'Exploration en Nutrition, Clermont-Ferrand, France
| | - C P G M de Groot
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | - Edith Feskens
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | - Stefano Salvioli
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Miriam Capri
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | | |
Collapse
|