101
|
Weber L, Thoelken C, Volk M, Remes B, Lechner M, Klug G. The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5' Leader Featuring the sRNA UpsM. PLoS One 2016; 11:e0165694. [PMID: 27802301 PMCID: PMC5089854 DOI: 10.1371/journal.pone.0165694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Cell division and cell wall synthesis mechanisms are similarly conserved among bacteria. Consequently some bacterial species have comparable sets of genes organized in the dcw (division andcellwall) gene cluster. Dcw genes, their regulation and their relative order within the cluster are outstandingly conserved among rod shaped and gram negative bacteria to ensure an efficient coordination of growth and division. A well studied representative is the dcw gene cluster of E. coli. The first promoter of the gene cluster (mraZ1p) gives rise to polycistronic transcripts containing a 38 nt long 5’ UTR followed by the first gene mraZ. Despite reported conservation we present evidence for a much longer 5’ UTR in the gram negative and rod shaped bacterium Rhodobacter sphaeroides and in the family of Rhodobacteraceae. This extended 268 nt long 5’ UTR comprises a Rho independent terminator, which in case of termination gives rise to a non-coding RNA (UpsM). This sRNA is conditionally cleaved by RNase E under stress conditions in an Hfq- and very likely target mRNA-dependent manner, implying its function in trans. These results raise the question for the regulatory function of this extended 5’ UTR. It might represent the rarely described case of a trans acting sRNA derived from a riboswitch with exclusive presence in the family of Rhodobacteraceae.
Collapse
Affiliation(s)
- Lennart Weber
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Thoelken
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Marcel Volk
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
102
|
Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A 2016; 113:11591-11596. [PMID: 27671629 DOI: 10.1073/pnas.1609981113] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
Collapse
|
103
|
Peng T, Berghoff BA, Oh JI, Weber L, Schirmer J, Schwarz J, Glaeser J, Klug G. Regulation of a polyamine transporter by the conserved 3' UTR-derived sRNA SorX confers resistance to singlet oxygen and organic hydroperoxides in Rhodobacter sphaeroides. RNA Biol 2016; 13:988-999. [PMID: 27420112 DOI: 10.1080/15476286.2016.1212152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Singlet oxygen is generated by bacteriochlorophylls when light and oxygen are simultaneously present in Rhodobacter sphaeroides. Singlet oxygen triggers a specific response that is partly regulated by the alternative sigma factor RpoHI/HII. The sRNA RSs2461 has previously been identified as an RpoHI/HII-dependent sRNA and is derived from the 3' UTR of the mRNA for an OmpR-type transcriptional regulator. Similar to the RpoHI/HII-dependent CcsR and SorY sRNAs, RSs2461 affects the resistance of R. sphaeroides against singlet oxygen and was therefore renamed here SorX. Furthermore, SorX has a strong impact on resistance against organic hydroperoxides that usually occur as secondary damages downstream of singlet oxygen. The 75-nt SorX 3' fragment, which is generated by RNase E cleavage and highly conserved among related species, represents the functional entity. A target search identified potA mRNA, which encodes a subunit of a polyamine transporter, as a direct SorX target and stress resistance via SorX could be linked to potA. The PotABCD transporter is an uptake system for spermidine in E. coli. While spermidine is generally described as beneficial during oxidative stress, we observed significantly increased sensitivity of R. sphaeroides to organic hydroperoxides in the presence of spermidine. We therefore propose that the diminished import of spermidine, due to down-regulation of potA by SorX, counteracts oxidative stress. Together with results from other studies this underlines the importance of regulated transport to bacterial stress defense.
Collapse
Affiliation(s)
- Tao Peng
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Bork A Berghoff
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Jeong-Il Oh
- b Department of Microbiology , Pusan National University , Busan , Korea
| | - Lennart Weber
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Jasmin Schirmer
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Johannes Schwarz
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Jens Glaeser
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| | - Gabriele Klug
- a Institut für Mikrobiologie und Molekularbiologie, IFZ, Universität Giessen , Giessen , Germany
| |
Collapse
|
104
|
Pahlke J, Dostálová H, Holátko J, Degner U, Bott M, Pátek M, Polen T. The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response. RNA Biol 2016; 13:848-60. [PMID: 27362471 PMCID: PMC5014011 DOI: 10.1080/15476286.2016.1205776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The 6C RNA family is a class of small RNAs highly conserved in Actinobacteria, including the genera Mycobacterium, Streptomyces and Corynebacterium whose physiological function has not yet been elucidated. We found that strong transcription of the cgb_03605 gene, which encodes 6C RNA in C. glutamicum, was driven by the SigA- and SigB-dependent promoter Pcgb_03605. 6C RNA was detected at high level during exponential growth phase (180 to 240 molcules per cell) which even increased at the entry of the stationary phase. 6C RNA level did not decrease within 240 min after transcription had been stopped with rifampicin, which suggests high 6C RNA stability. The expression of cgb_03605 further increased approximately twofold in the presence of DNA-damaging mitomycin C (MMC) and nearly threefold in the absence of LexA. Deletion of the 6C RNA gene cgb_03605 resulted in a higher sensitivity of C. glutamicum toward MMC and UV radiation. These results indicate that 6C RNA is involved in the DNA damage response. Both 6C RNA level-dependent pausing of cell growth and branched cell morphology in response to MMC suggest that 6C RNA may also be involved in a control of cell division.
Collapse
Affiliation(s)
- Jennifer Pahlke
- a Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , Jülich , Germany
| | - Hana Dostálová
- b Institute of Microbiology of the CAS , v. v. i. Videnska, Czech Republic
| | - Jiří Holátko
- b Institute of Microbiology of the CAS , v. v. i. Videnska, Czech Republic
| | - Ursula Degner
- a Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , Jülich , Germany
| | - Michael Bott
- a Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , Jülich , Germany
| | - Miroslav Pátek
- b Institute of Microbiology of the CAS , v. v. i. Videnska, Czech Republic
| | - Tino Polen
- a Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , Jülich , Germany
| |
Collapse
|
105
|
Fröhlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 2016; 101:701-13. [DOI: 10.1111/mmi.13428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin S. Fröhlich
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| |
Collapse
|
106
|
The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat Commun 2016; 7:11667. [PMID: 27229370 PMCID: PMC4894983 DOI: 10.1038/ncomms11667] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA.
Collapse
|
107
|
Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011. [PMID: 27044921 PMCID: PMC5207318 DOI: 10.15252/embj.201593360] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular roles of many RNA‐binding proteins in bacterial post‐transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP‐seq) have begun to revolutionize the transcriptome‐wide mapping of eukaryotic RNA‐binding protein target sites. We have applied CLIP‐seq to chart the target landscape of two major bacterial post‐transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single‐nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3′‐located Rho‐independent terminators as a universal motif involved in Hfq–RNA interactions. Additionally, Hfq preferentially binds 5′ to sRNA‐target sites in mRNAs, and 3′ to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA–mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA‐target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP‐seq approach will bring new insights into post‐transcriptional gene regulation by RNA‐binding proteins in diverse bacterial species.
Collapse
Affiliation(s)
- Erik Holmqvist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Lei Li
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
108
|
Bouloc P, Repoila F. Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Curr Opin Microbiol 2016; 30:30-35. [DOI: 10.1016/j.mib.2015.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023]
|
109
|
Chao Y, Vogel J. A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. Mol Cell 2016; 61:352-363. [PMID: 26805574 DOI: 10.1016/j.molcel.2015.12.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/19/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) from conserved noncoding genes are crucial regulators in bacterial signaling pathways but have remained elusive in the Cpx response to inner membrane stress. Here we report that an alternative biogenesis pathway releasing the conserved mRNA 3' UTR of stress chaperone CpxP as an ∼60-nt sRNA provides the noncoding arm of the Cpx response. This so-called CpxQ sRNA, generated by general mRNA decay through RNase E, acts as an Hfq-dependent repressor of multiple mRNAs encoding extracytoplasmic proteins. Both CpxQ and the Cpx pathway are required for cell survival under conditions of dissipation of membrane potential. Our discovery of CpxQ illustrates how the conversion of a transcribed 3' UTR into an sRNA doubles the output of a single mRNA to produce two factors with spatially segregated functions during inner membrane stress: a chaperone that targets problematic proteins in the periplasm and a regulatory RNA that dampens their synthesis in the cytosol.
Collapse
Affiliation(s)
- Yanjie Chao
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| |
Collapse
|
110
|
Kwenda S, Gorshkov V, Ramesh AM, Naidoo S, Rubagotti E, Birch PRJ, Moleleki LN. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics 2016; 17:47. [PMID: 26753530 PMCID: PMC4710047 DOI: 10.1186/s12864-016-2376-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. Results In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. Conclusions Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia. .,Department of Botany and Plant Physiology, Kazan Federal University, Kazan, Russia.
| | - Aadi Moolam Ramesh
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology (FABI), University of Pretoria, Pretoria, South Africa.
| | - Enrico Rubagotti
- Genomics Research Institute, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa.
| | - Paul R J Birch
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at The James Hutton Institute), Errol Road, Invergowrie, Dundee, DD25DA, Scotland, UK.
| | - Lucy N Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
111
|
Rau MH, Bojanovič K, Nielsen AT, Long KS. Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli. BMC Genomics 2015; 16:1051. [PMID: 26653712 PMCID: PMC4676190 DOI: 10.1186/s12864-015-2231-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023] Open
Abstract
Background Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential roles in stress tolerance. Results RNA sequencing libraries were prepared from RNA isolated from E. coli K-12 MG1655 cells grown under high cell density fermentation conditions or subjected to chemical stress with twelve compounds including four organic solvent-like compounds, four organic acids, two amino acids, geraniol and decanoic acid. We have discovered 253 novel intergenic transcripts with this approach, adding to the roughly 200 intergenic sRNAs previously reported in E. coli. There are eighty-four differentially expressed sRNAs during fermentation, of which the majority are novel, supporting possible regulatory roles for these transcripts in adaptation during different fermentation stages. There are a total of 139 differentially expressed sRNAs under chemical stress conditions, where twenty-nine exhibit significant expression changes in multiple tested conditions, suggesting that they may be involved in a more general chemical stress response. Among those with known functions are sRNAs involved in regulation of outer membrane proteins, iron availability, maintaining envelope homeostasis, as well as sRNAs incorporated into complex networks controlling motility and biofilm formation. Conclusions This study has used deep sequencing to reveal a wealth of hitherto undescribed sRNAs in E. coli and provides an atlas of sRNA expression during seventeen different growth and stress conditions. Although the number of novel sRNAs with regulatory functions is unknown, several exhibit specific expression patterns during high cell density fermentation and are differentially expressed in the presence of multiple chemicals, suggesting they may play regulatory roles during these stress conditions. These novel sRNAs, together with specific known sRNAs, are candidates for improving stress tolerance and our understanding of the E. coli regulatory network during fed-batch fermentation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2231-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Holm Rau
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Klara Bojanovič
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Katherine S Long
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
112
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
113
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
114
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
115
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
116
|
Azam MS, Vanderpool CK. Talk among yourselves: RNA sponges mediate cross talk between functionally related messenger RNAs. EMBO J 2015; 34:1436-8. [PMID: 25916829 DOI: 10.15252/embj.201591492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|