101
|
Hampsey M, Singh BN, Ansari A, Lainé JP, Krishnamurthy S. Control of eukaryotic gene expression: gene loops and transcriptional memory. ACTA ACUST UNITED AC 2010; 51:118-25. [PMID: 21036187 DOI: 10.1016/j.advenzreg.2010.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 01/08/2023]
Abstract
Gene loops are dynamic structures that juxtapose promoter–terminator regions of Pol II-transcribed genes. Although first described in yeast, gene loops have now been identified in yeast and mammalian cells. Looping requires components of the transcription preinitiation complex, the pre-mRNA 30-end processing machinery, and subunits of the nuclear pore complex. Loop formation is transcription-dependent, but neither basal nor activated transcription requires looping. Rather, looping appears to affect cellular memory of recent transcriptional activity, enabling a more rapid response to subsequent stimuli. The nuclear pore has been implicated in both memory and looping. Our working model is that loops are formed and/or maintained at the nuclear pore to facilitate hand-off of Pol II form the terminator to the promoter, thereby bypassing Pol II recruitment as the rate-limiting step in reactivation of transcription. Involvement of the nuclear pore also suggests that looping might facilitate mRNA export to the cytoplasm. The technology now exists to test these ideas.
Collapse
Affiliation(s)
- Michael Hampsey
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854-0009, United States.
| | | | | | | | | |
Collapse
|
102
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
103
|
Tran K, Gralla JD. The TFIIB tip domain couples transcription initiation to events involved in RNA processing. J Biol Chem 2010; 285:39580-7. [PMID: 20880846 DOI: 10.1074/jbc.m110.171850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TFIIB is the only factor within the multimegadalton transcription complex that is obligatorily required to undergo dissociation and re-association with each round of mRNA transcription. Here we show that a six-amino acid human TFIIB tip region is needed for appropriate levels of serine 5 C-terminal domain phosphorylation and mRNA capping and for retention of the required elongation factor TFIIF. We suggest that the broad functions of this tiny region are used to suppress transcription noise by restricting functional RNA synthesis from non-promoter sites on the genome, which will not contain TFIIB.
Collapse
Affiliation(s)
- Khiem Tran
- Department of Chemistry and Biochemistry and The Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
104
|
Wang Y, Roberts SG. New insights into the role of TFIIB in transcription initiation. Transcription 2010; 1:126-129. [PMID: 21326885 DOI: 10.4161/trns.1.3.12900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 01/24/2023] Open
Abstract
The general transcription factor TFIIB plays essential, but as yet unclear, roles in transcription initiation by RNA polymerase II. We recently found that phosphorylation of TFIIB is required for productive transcription. We discuss the implications of this work for the functions of TFIIB in promoter escape and gene loop formation.
Collapse
Affiliation(s)
- Yuming Wang
- Faculty of Life Sciences; The Michael Smith Building; University of Manchester; Manchester, UK
| | | |
Collapse
|
105
|
Do chromatin loops provide epigenetic gene expression states? Curr Opin Genet Dev 2010; 20:548-54. [PMID: 20598523 DOI: 10.1016/j.gde.2010.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
Control of gene expression involves the concerted action of multiple regulatory elements some of which can act over large genomic distances. Physical interaction among these elements can lead to looping of the chromatin fiber. Although posttranslational modifications of chromatin are thought to play a role in the conveyance of epigenetic information, it is largely unknown whether higher order chromatin organization such as looping contributes to epigenetic memory. A related unresolved question is whether chromatin loops are the cause or the effect of transcriptional regulation. Recent work on diverse organisms suggests a memory function for long-range chromatin interactions. It is proposed that higher order folding of the chromatin fiber can serve to maintain active and repressed states of gene expression.
Collapse
|
106
|
Luo C, Lam E. ANCORP: a high-resolution approach that generates distinct chromatin state models from multiple genome-wide datasets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:339-351. [PMID: 20444227 DOI: 10.1111/j.1365-313x.2010.04236.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chromatin components can be extensively modified and dynamically regulated by a plethora of catalytic complexes. The numerous modifications may form a type of molecular pattern that defines particular local and global 'chromatin states' through extensive cross-talk. Analyses that can integrate multiple genome-wide datasets are essential to determine the interactions and biological function of chromatin modifications in various contexts. Through a combination of hierarchical clustering and pattern visualization, we categorized all annotated Arabidopsis genes into 16 chromatin state clusters using combinations of four chromatin marks (H3K4me3, H3K36me2, H3K27me3 and cytosine methylation) using publicly available data. Our results suggest that gene length may be an important factor in shaping chromatin states across transcription units. By analysis of two rare chromatin states, we found that the enrichment of H3K36me2 around the transcription start site is negatively correlated with transcriptional activities. High-resolution association analyses in the context of chromatin states have identified inter-correlations between chromatin modifications. H3K4me3 were found to be under-represented in actively transcribed regions that are modified by DNA methylation and the H3K36me2 mark, concomitant with increased nucleosome occupancy in these regions. Lastly, quantitative data from transcriptome analyses and gene ontology partitioning were integrated to determine the possible functional relevance of the corresponding chromatin states. We show that modelling the plant epigenome in terms of chromatin states and combining correlative visualization methods can be a productive approach to unravel complex relationships between epigenomic features and the functional output of the genome.
Collapse
Affiliation(s)
- Chongyuan Luo
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
- Graduate Program of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Eric Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
- Graduate Program of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
107
|
Dieppois G, Stutz F. Connecting the transcription site to the nuclear pore: a multi-tether process that regulates gene expression. J Cell Sci 2010; 123:1989-99. [DOI: 10.1242/jcs.053694] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now well established that the position of a gene within the nucleus can influence the level of its activity. So far, special emphasis has been placed on the nuclear envelope (NE) as a transcriptionally silent nuclear sub-domain. Recent work, however, indicates that peripheral localization is not always associated with repression, but rather fulfills a dual function in gene expression. In particular, in the yeast Saccharomyces cerevisiae, a large number of highly expressed genes and activated inducible genes preferentially associate with nuclear pore complexes (NPCs), a process that is mediated by transient interactions between the transcribed locus and the NPC. Recent studies aimed at unraveling the molecular basis of this mechanism have revealed that maintenance of genes at the NPC involves multiple tethers at different steps of gene expression. These observations are consistent with tight interconnections between transcription, mRNA processing and export into the cytoplasm, and highlight a role for the NPC in promoting and orchestrating the gene expression process. In this Commentary, we discuss the factors involved in active gene anchoring to the NPC and the diverse emerging roles of the NPC environment in promoting gene expression, focusing on yeast as a model organism.
Collapse
Affiliation(s)
- Guennaëlle Dieppois
- Department of Cell Biology and Frontiers in Genetics, University of Geneva, Sciences III, 30 Quai E. Ansermet, Geneva 4, 1211, Switzerland
| | - Françoise Stutz
- Department of Cell Biology and Frontiers in Genetics, University of Geneva, Sciences III, 30 Quai E. Ansermet, Geneva 4, 1211, Switzerland
| |
Collapse
|
108
|
Abstract
Actively transcribed genes are organized into loops in which the 5' and 3' ends of the gene physically associate. Two new papers show that gene looping can persist after genes are repressed, promoting rapid reactivation of transcription, a phenomenon known as transcriptional memory.
Collapse
|
109
|
Yeast chromosomal interactions and nuclear architecture. Curr Opin Cell Biol 2010; 22:298-304. [PMID: 20392621 DOI: 10.1016/j.ceb.2010.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/09/2010] [Accepted: 03/18/2010] [Indexed: 02/04/2023]
Abstract
Biology is essentially the study of networks of interactions within or between organisms. The study of chromosomal interactions, while still in its infancy, is providing insights that enable us to study genome biology as a network of inter-linked systems and not simply as the isolated loci we were previously restricted to. Recent work has highlighted how chromosomal interactions, nuclear position and genomic function are inter-linked. This review will start by outlining how chromosomal interactions are determined. It will continue to discuss recent observations of intra-chromosomal and inter-chromosomal interactions in yeast, interactions involving foreign DNA and the formation of chromosomal interactions. The review will then conclude with a model to explain the formation of yeast chromosomal interactions and consequently yeast interphase nuclear structure.
Collapse
|
110
|
Papantonis A, Cook PR. Genome architecture and the role of transcription. Curr Opin Cell Biol 2010; 22:271-6. [PMID: 20356724 PMCID: PMC2884177 DOI: 10.1016/j.ceb.2010.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/15/2010] [Accepted: 03/03/2010] [Indexed: 02/03/2023]
Abstract
During development or in response to environmental stimuli, eukaryotic genes change both their expression and position in 3D nuclear space. Then, is a gene transcribed because of its position, or is position determined by transcription? Are genes stochastically or deterministically engaged in transcription cycles? Recent results confirm that RNA polymerases and their transcription factors play central roles in genome organization, and that stochastic events can give rise to apparently deterministic expression. As is so often the case in biology, structure both determines function and is influenced by it.
Collapse
Affiliation(s)
- Argyris Papantonis
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
111
|
Albert TK, Grote K, Boeing S, Meisterernst M. Basal core promoters control the equilibrium between negative cofactor 2 and preinitiation complexes in human cells. Genome Biol 2010; 11:R33. [PMID: 20230619 PMCID: PMC2864573 DOI: 10.1186/gb-2010-11-3-r33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/22/2010] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The general transcription factor TFIIB and its antagonist negative cofactor 2 (NC2) are hallmarks of RNA polymerase II (RNAPII) transcription. Both factors bind TATA box-binding protein (TBP) at promoters in a mutually exclusive manner. Dissociation of NC2 is thought to be followed by TFIIB association and subsequent preinitiation complex formation. TFIIB dissociates upon RNAPII promoter clearance, thereby providing a specific measure for steady-state preinitiation complex levels. As yet, genome-scale promoter mapping of human TFIIB has not been reported. It thus remains elusive how human core promoters contribute to preinitiation complex formation in vivo. RESULTS We compare target genes of TFIIB and NC2 in human B cells and analyze associated core promoter architectures. TFIIB occupancy is positively correlated with gene expression, with the vast majority of promoters being GC-rich and lacking defined core promoter elements. TATA elements, but not the previously in vitro defined TFIIB recognition elements, are enriched in some 4 to 5% of the genes. NC2 binds to a highly related target gene set. Nonetheless, subpopulations show strong variations in factor ratios: whereas high TFIIB/NC2 ratios select for promoters with focused start sites and conserved core elements, high NC2/TFIIB ratios correlate to multiple start-site promoters lacking defined core elements. CONCLUSIONS TFIIB and NC2 are global players that occupy active genes. Preinitiation complex formation is independent of core elements at the majority of genes. TATA and TATA-like elements dictate TFIIB occupancy at a subset of genes. Biochemical data support a model in which preinitiation complex but not TBP-NC2 complex formation is regulated.
Collapse
Affiliation(s)
- Thomas K Albert
- Institute of Molecular Tumor Biology (IMTB), University of Muenster, Robert-Koch-Str. 43, 48149 Muenster, Germany
| | - Korbinian Grote
- Genomatix Software GmbH, Bayerstr. 85a, 80335 Munich, Germany
| | - Stefan Boeing
- Institute of Molecular Tumor Biology (IMTB), University of Muenster, Robert-Koch-Str. 43, 48149 Muenster, Germany
| | - Michael Meisterernst
- Institute of Molecular Tumor Biology (IMTB), University of Muenster, Robert-Koch-Str. 43, 48149 Muenster, Germany
| |
Collapse
|
112
|
Wang Y, Fairley JA, Roberts SGE. Phosphorylation of TFIIB links transcription initiation and termination. Curr Biol 2010; 20:548-53. [PMID: 20226668 PMCID: PMC2849011 DOI: 10.1016/j.cub.2010.01.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/18/2010] [Accepted: 01/27/2010] [Indexed: 12/05/2022]
Abstract
The general transcription factor TFIIB plays a central role in preinitiation complex (PIC) assembly and the recruitment of RNA polymerase II (RNA pol II) to the promoter [1]. Recent studies have revealed that TFIIB engages in contact with the transcription termination region and also with complexes that are involved in 3′ end processing and/or termination [2–9]. Here we report that TFIIB can be phosphorylated within the N terminus at serine 65 in vivo and that the phosphorylated form of TFIIB is present within (PICs). Surprisingly, TFIIB serine 65 phosphorylation is required after the phosphorylation of serine 5 of RNA pol II C-terminal domain (CTD) has occurred, but before productive transcription initiation begins. We show that phosphorylation of TFIIB at serine 65 regulates the interaction between TFIIB and the CstF-64 component of the CstF 3′ cleavage and polyadenylation complex. This directs the recruitment of CstF (cleavage stimulatory factor) to the terminator and also the recruitment of the CstF and CPSF (cleavage and polyadenylation specific factor) complexes to the promoter. Our results reveal that phosphorylation of TFIIB is a critical event in transcription that links the gene promoter and terminator and triggers initiation by RNA pol II.
Collapse
Affiliation(s)
- Yuming Wang
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK
| | | | | |
Collapse
|
113
|
Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:379-88. [PMID: 20060942 DOI: 10.1016/j.bbagrm.2010.01.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end-processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a "platform" on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription.
Collapse
Affiliation(s)
- Judith A Jaehning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
114
|
Ansari KI, Kasiri S, Hussain I, Mandal SS. Mixed lineage leukemia histone methylases play critical roles in estrogen-mediated regulation of HOXC13. FEBS J 2010; 276:7400-11. [PMID: 19922474 DOI: 10.1111/j.1742-4658.2009.07453.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HOXC13, a homeobox-containing gene, is involved in hair development and human leukemia. The regulatory mechanism that drives HOXC13 expression is mostly unknown. Our studies have demonstrated that HOXC13 is transcriptionally activated by the steroid hormone estrogen (17beta-estradiol; E2). The HOXC13 promoter contains several estrogen-response elements (EREs), including ERE1 and ERE2, which are close to the transcription start site, and are associated with E2-mediated activation of HOXC13. Knockdown of the estrogen receptors (ERs) ERalpha and ERbeta suppressed E2-mediated activation of HOXC13. Similarly, knockdown of mixed lineage leukemia histone methylase (MLL)3 suppressed E2-induced activation of HOXC13. MLLs (MLL1-MLL4) were bound to the HOXC13 promoter in an E2-dependent manner. Knockdown of either ERalpha or ERbeta affected the E2-dependent binding of MLLs (MLL1-MLL4) into HOXC13 EREs, suggesting critical roles of ERs in recruiting MLLs in the HOXC13 promoter. Overall, our studies have demonstrated that HOXC13 is transcriptionally regulated by E2 and MLLs, which, in coordination with ERalpha and ERbeta, play critical roles in this process. Although MLLs are known to regulate HOX genes, the roles of MLLs in hormone-mediated regulation of HOX genes are unknown. Herein, we have demonstrated that MLLs are critical players in E2-dependent regulation of the HOX gene.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | |
Collapse
|
115
|
Tan-Wong SM, Wijayatilake HD, Proudfoot NJ. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 2009; 23:2610-24. [PMID: 19933151 DOI: 10.1101/gad.1823209] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inducible genes in yeast retain a "memory" of recent transcriptional activity during periods of short-term repression, allowing them to be reactivated faster when reinduced. This confers a rapid and versatile gene expression response to the environment. We demonstrate that this memory mechanism is associated with gene loop interactions between the promoter and 3' end of the responsive genes HXK1 and GAL1FMP27. The maintenance of these memory gene loops (MGLs) during intervening periods of transcriptional repression is required for faster RNA polymerase II (Pol II) recruitment to the genes upon reinduction, thereby facilitating faster mRNA accumulation. Notably, a sua7-1 mutant or the endogenous INO1 gene that lacks this MGL does not display such faster reinduction. Furthermore, these MGLs interact with the nuclear pore complex through association with myosin-like protein 1 (Mlp1). An mlp1Delta strain does not maintain MGLs, and concomitantly loses transcriptional memory. We predict that gene loop conformations enhance gene expression by facilitating rapid transcriptional response to changing environmental conditions.
Collapse
Affiliation(s)
- Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
116
|
Lainé JP, Singh BN, Krishnamurthy S, Hampsey M. A physiological role for gene loops in yeast. Genes Dev 2009; 23:2604-9. [PMID: 19933150 DOI: 10.1101/gad.1823609] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA loops that juxtapose the promoter and terminator regions of RNA polymerase II-transcribed genes have been identified in yeast and mammalian cells. Loop formation is transcription-dependent and requires components of the pre-mRNA 3'-end processing machinery. Here we report that looping at the yeast GAL10 gene persists following a cycle of transcriptional activation and repression. Moreover, GAL10 and a GAL1p-SEN1 reporter undergo rapid reactivation kinetics following a cycle of activation and repression-a phenomenon defined as "transcriptional memory"-and this effect correlates with the persistence of looping. We propose that gene loops facilitate transcriptional memory in yeast.
Collapse
Affiliation(s)
- Jean-Philippe Lainé
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
117
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
118
|
Yun K, So JS, Jash A, Im SH. Lymphoid Enhancer Binding Factor 1 Regulates Transcription through Gene Looping. THE JOURNAL OF IMMUNOLOGY 2009; 183:5129-37. [DOI: 10.4049/jimmunol.0802744] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
119
|
Kremer SB, Gross DS. SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression. J Biol Chem 2009; 284:32914-31. [PMID: 19759026 DOI: 10.1074/jbc.m109.058610] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The chromatin structure of heat shock protein (HSP)-encoding genes undergoes dramatic alterations upon transcriptional induction, including, in extreme cases, domain-wide nucleosome disassembly. Here, we use a combination of gene knock-out, in situ mutagenesis, chromatin immunoprecipitation, and expression assays to investigate the role of histone modification complexes in regulating heat shock gene structure and expression in Saccharomyces cerevisiae. Two histone acetyltransferases, Gcn5 and Esa1, were found to stimulate HSP gene transcription. A detailed chromatin immunoprecipitation analysis of the Gcn5-containing SAGA complex (signified by Spt3) revealed its presence within the promoter of every heat shock factor 1-regulated gene examined. The occupancy of SAGA increased substantially upon heat shock, peaking at several HSP promoters within 30-45 s of temperature upshift. SAGA was also efficiently recruited to the coding regions of certain HSP genes (where its presence mirrored that of pol II), although not at others. Robust and rapid recruitment of repressive, Rpd3-containing histone deacetylase complexes was also seen and at all HSP genes examined. A detailed analysis of HSP82 revealed that both Rpd3(L) and Rpd3(S) complexes (signified by Sap30 and Rco1, respectively) were recruited to the gene promoter, yet only Rpd3(S) was recruited to its open reading frame. A consensus URS1 cis-element facilitated the recruitment of each Rpd3 complex to the HSP82 promoter, and this correlated with targeted deacetylation of promoter nucleosomes. Collectively, our observations reveal that SAGA and Rpd3 complexes are rapidly and synchronously recruited to heat shock factor 1-activated genes and suggest that their opposing activities modulate heat shock gene chromatin structure and fine-tune transcriptional output.
Collapse
Affiliation(s)
- Selena B Kremer
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
120
|
El Kaderi B, Medler S, Raghunayakula S, Ansari A. Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. J Biol Chem 2009; 284:25015-25. [PMID: 19602510 DOI: 10.1074/jbc.m109.007948] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene looping juxtaposes the promoter and terminator regions of RNA polymerase II-transcribed genes in yeast and mammalian cells. Here we report an activator-dependent interaction of transcription initiation and termination factors during gene looping in budding yeast. Chromatin analysis revealed that MET16, INO1, and GAL1p-BUD3 are in a stable looped configuration during activated transcription. Looping was nearly abolished in the absence of transcription activators Met28, Ino2, and Gal4 of MET16, INO1, and GAL1p-BUD3 genes, respectively. The activator-independent increase in transcription was not accompanied by loop formation, thereby suggesting an essential role for activators in gene looping. The activators did not facilitate loop formation directly because they did not exhibit an interaction with the 3' end of the genes. Instead, activators physically interacted with the general transcription factor TFIIB when the genes were activated and in a looped configuration. TFIIB cross-linked to both the promoter and the terminator regions during the transcriptionally activated state of a gene. The presence of TFIIB on the terminator was dependent on the Rna15 component of CF1 3' end processing complex. Coimmunoprecipitation revealed a physical interaction of Rna15 with TFIIB. We propose that the activators facilitate gene looping through their interaction with TFIIB during transcriptional activation of genes.
Collapse
Affiliation(s)
- Belal El Kaderi
- Department of Biological Science, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
121
|
Palstra RJTS. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:297-309. [PMID: 19535505 DOI: 10.1093/bfgp/elp016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional output of genes in higher eukaryotes is frequently modulated by cis-regulatory DNA elements like enhancers. On the linear chromatin template these elements can be located hundreds of kilobases away from their target gene and for a long time it was a mystery how these elements communicate. For example, in the beta-globin locus the main regulatory element, the Locus Control Region (LCR), is located up to 40-60 kb away from the beta-globin genes. Recently it was demonstrated that the LCR resides in close proximity to the active beta-globin genes while the intervening inactive chromatin loops out. Thus the chromatin fibre of the beta-globin locus adopts an erythroid-specific spatial organization referred to as the Active Chromatin Hub (ACH). This observation for the first time demonstrated a role for chromatin folding in transcriptional regulation. Since this first observation in the beta-globin locus, similar chromatin interactions between regulatory elements in several other gene loci have been observed. Chromatin loops also appear to be formed between promoters and 3'UTRs of genes and even trans-interactions between loci on different chromosomes have been reported. Although the occurrence of long-range chromatin contacts between regulatory elements is now firmly established it is still not clear how these long-range contacts are set up and how the transcriptional output of genes is modified by the proximity of cis-regulatory DNA elements. In this review I will discuss the relevance of interactions between cis-regulatory DNA elements in relation to transcription while using the beta-globin locus as a guideline.
Collapse
|
122
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
123
|
Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol Cell Biol 2009; 29:2925-34. [PMID: 19332564 DOI: 10.1128/mcb.01655-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a reiterated heptad sequence (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) that plays a key role in the transcription cycle, coordinating the exchange of transcription and RNA processing factors. The structure of the CTD is flexible and undergoes conformational changes in response to serine phosphorylation and proline isomerization. Here we report that the Ess1 peptidyl prolyl isomerase functionally interacts with the transcription initiation factor TFIIB and with the Ssu72 CTD phosphatase and Pta1 components of the CPF 3'-end processing complex. The ess1(A144T) and ess1(H164R) mutants, initially described by Hanes and coworkers (Yeast 5:55-72, 1989), accumulate the pSer5 phosphorylated form of Pol II; confer phosphate, galactose, and inositol auxotrophies; and fail to activate PHO5, GAL10, and INO1 reporter genes. These mutants are also defective for transcription termination, but in vitro experiments indicate that this defect is not caused by altering the processing efficiency of the cleavage/polyadenylation machinery. Consistent with a role in initiation and termination, Ess1 associates with the promoter and terminator regions of the PMA1 and PHO5 genes. We propose that Ess1 facilitates pSer5-Pro6 dephosphorylation by generating the CTD structural conformation recognized by the Ssu72 phosphatase and that pSer5 dephosphorylation affects both early and late stages of the transcription cycle.
Collapse
|
124
|
Singh BN, Ansari A, Hampsey M. Detection of gene loops by 3C in yeast. Methods 2009; 48:361-7. [PMID: 19269325 DOI: 10.1016/j.ymeth.2009.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/23/2009] [Accepted: 02/25/2009] [Indexed: 12/19/2022] Open
Abstract
"Chromosome conformation capture" (3C) is a powerful method to detect physical interaction between any two genomic loci. 3C involves formaldehyde crosslinking to stabilize transient interactions, followed by restriction digestion, ligation and locus-specific PCR. Accordingly, 3C reveals complex three-dimensional interactions between distal genetic elements within intact cells at high resolution. Here, we describe a modified 3C protocol designed for detection of transient chromatin interactions in the yeast Saccharomyces cerevisiae. Using this protocol, we are able to detect juxtaposition of promoter and terminator regions of genes with ORFs as short as 1kb in length. We anticipate that this method will be generally applicable to detect dynamic, short-range chromatin interactions and will facilitate the characterization of gene loops and their functional consequences.
Collapse
Affiliation(s)
- Badri Nath Singh
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
125
|
Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009; 136:688-700. [PMID: 19239889 DOI: 10.1016/j.cell.2009.02.001] [Citation(s) in RCA: 648] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pathway from gene activation in the nucleus to mRNA translation and decay at specific locations in the cytoplasm is both streamlined and highly interconnected. This review discusses how pre-mRNA processing, including 5' cap addition, splicing, and polyadenylation, contributes to both the efficiency and fidelity of gene expression. The connections of pre-mRNA processing to upstream events in transcription and downstream events, including translation and mRNA decay, are elaborate, extensive, and remarkably interwoven.
Collapse
Affiliation(s)
- Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
126
|
Ahn SH, Keogh MC, Buratowski S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 2009; 28:205-12. [PMID: 19131970 PMCID: PMC2632940 DOI: 10.1038/emboj.2008.280] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 12/04/2008] [Indexed: 02/02/2023] Open
Abstract
As RNA polymerase II (RNApII) transitions from initiation to elongation, Mediator and the basal transcription factors TFIID, TFIIA, TFIIH, and TFIIE remain at the promoter as part of a scaffold complex, whereas TFIIB and TFIIF dissociate. The yeast Ctk1 kinase associates with elongation complexes and phosphorylates serine 2 in the YSPTSPS repeats of the Rpb1 C-terminal domain, a modification that couples transcription to mRNA 3'-end processing. The higher eukaryotic kinase Cdk9 not only performs a similar function, but also functions at the 5'-end of genes in the transition from initiation to elongation. In strains lacking Ctk1, many basal transcription factors cross-link throughout transcribed regions, apparently remaining associated with RNApII until it terminates. Consistent with this observation, preinitiation complexes formed on immobilized templates with transcription extracts lacking Ctk1 leave lower levels of the scaffold complex behind after escape. Taken together, these results suggest that Ctk1 is necessary for the release of RNApII from basal transcription factors. Interestingly, this function of Ctk1 is independent of its kinase activity, suggesting a structural function of the protein.
Collapse
Affiliation(s)
- Seong Hoon Ahn
- Division of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| | | | | |
Collapse
|
127
|
The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3'-end processing. Mol Cell Biol 2009; 29:2296-307. [PMID: 19188448 DOI: 10.1128/mcb.01514-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae Pta1 is a component of the cleavage/polyadenylation factor (CPF) 3'-end processing complex and functions in pre-mRNA cleavage, poly(A) addition, and transcription termination. In this study, we investigated the role of the N-terminal region of Pta1 in transcription and processing. We report that a deletion of the first 75 amino acids (pta1-Delta75) causes thermosensitive growth, while the deletion of an additional 25 amino acids is lethal. The pta1-Delta75 mutant is defective for snoRNA termination, RNA polymerase II C-terminal domain Ser5-P dephosphorylation, and gene looping but is fully functional for mRNA 3'-end processing. Furthermore, different regions of Pta1 interact with the CPF subunits Ssu72, Pti1, and Ysh1, supporting the idea that Pta1 acts as a scaffold to organize CPF. The first 300 amino acids of Pta1 are sufficient for interactions with Ssu72, which is needed for pre-mRNA cleavage. By the degron-mediated depletion of Pta1, we show that the removal of this essential region leads to a loss of Ssu72, yet surprisingly, in vitro cleavage and polyadenylation remain efficient. In addition, a fragment containing amino acids 1 to 300 suppresses 3'-end processing in wild-type extracts. These findings suggest that the amino terminus of Pta1 has an inhibitory effect and that this effect can be neutralized through the interaction with Ssu72.
Collapse
|
128
|
Affiliation(s)
- Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
129
|
Abstract
Although pathways for assembly of RNA polymerase (Pol) II transcription preinitiation complexes (PICs) have been well established in vitro, relatively little is known about the dynamic behavior of Pol II general transcription factors in vivo. In vitro, a subset of Pol II factors facilitates reinitiation by remaining very stably bound to the promoter. This behavior contrasts markedly with the highly dynamic behavior of RNA Pol I transcription complexes in vivo, which undergo cycles of disassembly/reassembly at the promoter for each round of transcription. To determine whether the dynamic behavior of the Pol II machinery in vivo is fundamentally different from that of Pol I and whether the static behavior of Pol II factors in vitro fully recapitulates their behavior in vivo, we used fluorescence recovery after photobleaching (FRAP). Surprisingly, we found that all or nearly all of the TATA-binding protein (TBP) population is highly mobile in vivo, displaying FRAP recovery rates of <15 s. These high rates require the activity of the TBP-associated factor Mot1, suggesting that TBP/chromatin interactions are destabilized by active cellular processes. Furthermore, the distinguishable FRAP behavior of TBP and TBP-associated factor 1 indicates that there are populations of these molecules that are independent of one another. The distinct FRAP behavior of most Pol II factors that we tested suggests that transcription complexes assemble via stochastic multistep pathways. Our data indicate that active Pol II PICs can be much more dynamic than previously considered.
Collapse
|
130
|
Protein modifications in transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:26-36. [PMID: 18718879 DOI: 10.1016/j.bbagrm.2008.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 11/23/2022]
Abstract
Posttranslational modifications (PTMs) of proteins play essential roles in regulating signaling, protein-protein modifications and subcellular localization. In this review, we focus on posttranslational modification of histones and RNA polymerase II (RNAPII) and their roles in gene transcription. A survey of the basic features of PTMs is provided followed by a more detailed account of how PTMs on histones and RNAPII regulate transcription in the model organism Saccharomyces cerevisiae. We emphasize the interconnections between histone and RNAPII PTMs and speculate upon the larger role PTMs have in regulating protein function in the cell.
Collapse
|
131
|
Chromatin loops in gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:17-25. [PMID: 18675948 DOI: 10.1016/j.bbagrm.2008.07.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/02/2008] [Accepted: 07/06/2008] [Indexed: 12/26/2022]
Abstract
The control of gene expression involves regulatory elements that can be very far from the genes they control. Several recent technological advances have allowed the direct detection of chromatin loops that juxtapose distant genomic sites in the nucleus. Here we review recent studies from various model organisms that have provided new insights into the functions of chromatin loops and the mechanisms that form them. We discuss the widespread impact of chromatin loops on gene activation, repression, genomic imprinting and the function of enhancers and insulators.
Collapse
|
132
|
Hahn S. Transcriptional regulation. Meeting on regulatory mechanisms in eukaryotic transcription. EMBO Rep 2008; 9:612-6. [PMID: 18535623 PMCID: PMC2530034 DOI: 10.1038/embor.2008.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/30/2008] [Indexed: 11/08/2022] Open
Affiliation(s)
- Steven Hahn
- Fred Hutchinson Cancer Research Centre, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| |
Collapse
|
133
|
Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 2008; 18:1073-83. [PMID: 18550805 DOI: 10.1101/gr.078261.108] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Most nucleosomes are well-organized at the 5' ends of S. cerevisiae genes where "-1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the -1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3' NFR that is present at >95% of all genes. 3' NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3' NFRs in gene looping.
Collapse
Affiliation(s)
- Travis N Mavrich
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
135
|
Tran K, Gralla JD. Control of the timing of promoter escape and RNA catalysis by the transcription factor IIb fingertip. J Biol Chem 2008; 283:15665-71. [PMID: 18411280 DOI: 10.1074/jbc.m801439200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIB (TFIIB) recruits RNA polymerase II to promoters and inserts a finger domain into its active site, with unknown consequences. Here we show that that the tip of this finger is important for two transcription initiation functions. First, TFIIB acts as a catalytic cofactor for initial RNA bond formation. It does so via a pair of fingertip aspartates that can bind magnesium, placing TFIIB within a family of proteins that insert finger domains to alter the catalytic functions of RNA polymerase. Second, the TFIIB fingertip mediates the timing of the release of TFIIB that is associated with appropriate promoter escape. These initiation requirements may assist in RNA quality control by minimizing functional synthesis when RNA polymerase becomes inappropriately associated with the genome without having been recruited there by TFIIB.
Collapse
Affiliation(s)
- Khiem Tran
- Department of Chemistry and Biochemistry and The Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
136
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
137
|
Perkins KJ, Lusic M, Mitar I, Giacca M, Proudfoot NJ. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol Cell 2008; 29:56-68. [PMID: 18206969 PMCID: PMC2225447 DOI: 10.1016/j.molcel.2007.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/03/2007] [Accepted: 11/16/2007] [Indexed: 11/29/2022]
Abstract
HIV-1 provirus, either as a chromosomal integrant or as an episomal plasmid in HeLa cells, forms a transcription-dependent gene loop structure between the 5′LTR promoter and 3′LTR poly(A) signal. Flavopiridol-mediated inhibition of RNA polymerase II elongation blocks 5′ to 3′LTR juxtaposition, indicating that this structure is maintained during transcription. Analysis of mutant or hybrid HIV-1 plasmids demonstrates that replacement of the 5′LTR promoter with CMV or the 3′LTR poly(A) signal with a synthetic element (SPA) permits gene loop formation, suggesting that these interactions are not retroviral specific. In addition, activation of the 5′LTR poly(A) signal or inactivation of the 3′LTR poly(A) signal abolishes gene loop formation. Overall, we demonstrate that both ongoing transcription and pre-mRNA processing are essential for gene loop formation, and predict that these structures represent a defining feature of active gene transcription.
Collapse
Affiliation(s)
- Kelly J Perkins
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
138
|
Yochum GS, Rajaraman V, Cleland R, McWeeney S. Localization of TFIIB binding regions using serial analysis of chromatin occupancy. BMC Mol Biol 2007; 8:102. [PMID: 17997859 PMCID: PMC2211499 DOI: 10.1186/1471-2199-8-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 11/12/2007] [Indexed: 12/30/2022] Open
Abstract
Background: RNA Polymerase II (RNAP II) is recruited to core promoters by the pre-initiation complex (PIC) of general transcription factors. Within the PIC, transcription factor for RNA polymerase IIB (TFIIB) determines the start site of transcription. TFIIB binding has not been localized, genome-wide, in metazoans. Serial analysis of chromatin occupancy (SACO) is an unbiased methodology used to empirically identify transcription factor binding regions. In this report, we use TFIIB and SACO to localize TFIIB binding regions across the rat genome. Results: A sample of the TFIIB SACO library was sequenced and 12,968 TFIIB genomic signature tags (GSTs) were assigned to the rat genome. GSTs are 20–22 base pair fragments that are derived from TFIIB bound chromatin. TFIIB localized to both non-protein coding and protein-coding loci. For 21% of the 1783 protein-coding genes in this sample of the SACO library, TFIIB binding mapped near the characterized 5' promoter that is upstream of the transcription start site (TSS). However, internal TFIIB binding positions were identified in 57% of the 1783 protein-coding genes. Internal positions are defined as those within an inclusive region greater than 2.5 kb downstream from the 5' TSS and 2.5 kb upstream from the transcription stop. We demonstrate that both TFIIB and TFIID (an additional component of PICs) bound to internal regions using chromatin immunoprecipitation (ChIP). The 5' cap of transcripts associated with internal TFIIB binding positions were identified using a cap-trapping assay. The 5' TSSs for internal transcripts were confirmed by primer extension. Additionally, an analysis of the functional annotation of mouse 3 (FANTOM3) databases indicates that internally initiated transcripts identified by TFIIB SACO in rat are conserved in mouse. Conclusion: Our findings that TFIIB binding is not restricted to the 5' upstream region indicates that the propensity for PIC to contribute to transcript diversity is far greater than previously appreciated.
Collapse
Affiliation(s)
- Gregory S Yochum
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|