101
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|
102
|
Locke MN, Thorner J. Regulation of TORC2 function and localization by Rab5 GTPases in Saccharomyces cerevisiae. Cell Cycle 2019; 18:1084-1094. [PMID: 31068077 DOI: 10.1080/15384101.2019.1616999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The evolutionarily conserved Target of Rapamycin (TOR) complex-2 (TORC2) is an essential regulator of plasma membrane homeostasis in budding yeast (Saccharomyces cerevisiae). In this yeast, TORC2 phosphorylates and activates the effector protein kinase Ypk1 and its paralog Ypk2. These protein kinases, in turn, carry out all the crucial functions of TORC2 by phosphorylating and thereby controlling the activity of at least a dozen downstream substrates. A previously uncharacterized interplay between the Rab5 GTPases and TORC2 signaling was uncovered through analysis of a newly suspected Ypk1 target. Muk1, one of two guanine nucleotide exchange factors for the Rab5 GTPases, was found to be a physiologically relevant Ypk1 substrate; and, genetic analysis indicates that Ypk1-mediated phosphorylation activates the guanine nucleotide exchange activity of Muk1. Second, it was demonstrated both in vivo and in vitro that the GTP-bound state of the Rab5 GTPase Vps21/Ypt51 physically associates with TORC2 and acts as a direct positive effector required for full TORC2 activity. These interrelationships provide a self-reinforcing control circuit for sustained up-regulation of TORC2-Ypk1 signaling. In this overview, we summarize the experimental basis of these findings, their implications, and speculate as to the molecular basis for Rab5-mediated TORC2 activation.
Collapse
Affiliation(s)
- Melissa N Locke
- a Division of Biochemistry, Biophysics & Structural Biology, and Division of Cell & Developmental Biology, Department of Molecular and Cell Biology , University of California at Berkeley , Berkeley , CA , USA
| | - Jeremy Thorner
- a Division of Biochemistry, Biophysics & Structural Biology, and Division of Cell & Developmental Biology, Department of Molecular and Cell Biology , University of California at Berkeley , Berkeley , CA , USA
| |
Collapse
|
103
|
Hwang Y, Kim LC, Song W, Edwards DN, Cook RS, Chen J. Disruption of the Scaffolding Function of mLST8 Selectively Inhibits mTORC2 Assembly and Function and Suppresses mTORC2-Dependent Tumor Growth In Vivo. Cancer Res 2019; 79:3178-3184. [PMID: 31085701 DOI: 10.1158/0008-5472.can-18-3658] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022]
Abstract
mTOR is a serine/threonine kinase that acts in two distinct complexes, mTORC1 and mTORC2, and is dysregulated in many diseases including cancer. mLST8 is a shared component of both mTORC1 and mTORC2, yet little is known regarding how mLST8 contributes to assembly and activity of the mTOR complexes. Here we assessed mLST8 loss in a panel of normal and cancer cells and observed little to no impact on assembly or activity of mTORC1. However, mLST8 loss blocked mTOR association with mTORC2 cofactors RICTOR and SIN1, thus abrogating mTORC2 activity. Similarly, a single pair of mutations on mLST8 with a corresponding mutation on mTOR interfered with mTORC2 assembly and activity without affecting mTORC1. We also discovered a direct interaction between mLST8 and the NH2-terminal domain of the mTORC2 cofactor SIN1. In PTEN-null prostate cancer xenografts, mLST8 mutations disrupting the mTOR interaction motif inhibited AKT S473 phosphorylation and decreased tumor cell proliferation and tumor growth in vivo. Together, these data suggest that the scaffolding function of mLST8 is critical for assembly and activity of mTORC2, but not mTORC1, an observation that could enable therapeutic mTORC2-selective inhibition as a therapeutic strategy. SIGNIFICANCE: These findings show that mLST8 functions as a scaffold to maintain mTORC2 integrity and kinase activity, unveiling a new avenue for development of mTORC2-specific inhibitors.
Collapse
Affiliation(s)
- Yoonha Hwang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura C Kim
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Wenqiang Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Deanna N Edwards
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca S Cook
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Deparment of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|