101
|
Morales-Martinez M, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Huerta-Yepez S, Vega MI. MicroRNA-7 Regulates Migration and Chemoresistance in Non-Hodgkin Lymphoma Cells Through Regulation of KLF4 and YY1. Front Oncol 2020; 10:588893. [PMID: 33194748 PMCID: PMC7654286 DOI: 10.3389/fonc.2020.588893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery and description of the role of microRNAs has become very important, specifically due to their participation in the regulation of proteins and transcription factors involved in the development of cancer. microRNA-7 (miR-7) has been described as a negative regulator of several proteins involved in cancer, such as YY1 and KLF4. We have recently reported that YY1 and KLF4 play a role in non-Hodgkin lymphoma (NHL) and that the expression of KLF4 is regulated by YY1. Therefore, in this study we analyzed the role of miR-7 in NHL through the negative regulation of YY1 and KLF4. qRT-PCR showed that there is an inverse expression of miR-7 in relation to the expression of YY1 and KLF4 in B-NHL cell lines. The possible regulation of YY1 and KLF4 by miR-7 was analyzed using the constitutive expression or inhibition of miR-7, as well as using reporter plasmids containing the 3 'UTR region of YY1 or KLF4. The role of miR-7 in NHL, through the negative regulation of YY1 and KLF4 was determined by chemoresistance and migration assays. We corroborated our results in cell lines, in a TMA from NHL patients including DLBCL and follicular lymphoma subtypes, in where we analyzed miR-7 by ISH and YY1 and KLF4 using IHC. All tumors expressing miR-7 showed a negative correlation with YY1 and KLF4 expression. In addition, expression of miR-7 was analyzed using the GEO Database; miR-7 downregulated expression was associated with pour overall-survival. Our results show for the first time that miR-7 is implicate in the cell migration and chemoresistance in NHL, through the negative regulation of YY1 and KLF4. That also support the evidence that YY1 and KLF4 can be a potential therapeutic target in NHL.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel G. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natividad Neri
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - M. J Nambo
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Isabel Alvarado
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ivonne Cuadra
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - M. A. Duran-Padilla
- Servicio de Patología, Hospital General de México “Eduardo Liceaga”, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez S.S.A, Mexico City, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, Unidad de Investigación Medica en Enfermedades Oncologicas (UIMEO), Oncology Hospital, Siglo XXI National Medical Center, Instituto Méxicano del Seguro Social (IMSS), Mexico City, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
102
|
Li S, Wang Q. Hsa_circ_0081534 increases the proliferation and invasion of nasopharyngeal carcinoma cells through regulating the miR-508-5p/FN1 axis. Aging (Albany NY) 2020; 12:20645-20657. [PMID: 33082297 PMCID: PMC7655192 DOI: 10.18632/aging.103963] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 04/27/2023]
Abstract
Accumulating lines of evidence indicate that circular RNAs (circRNAs) are involved in the pathogenesis of human cancers, including nasopharyngeal carcinoma (NPC). However, the influences of hsa_circ_0081534 upon the pathogenesis and dynamics of NPC are undescribed. In this study, we identified a circRNA hsa_circ_0081534 was significantly upregulated in NPC tissues and cell lines. Inhibition of hsa_circ_0081534 induced a decrease in NPC cells proliferation and invasion in vitro, and repressed tumor growth in vivo. In mechanism, hsa_circ_0081534 promoted NPC progression by sponging miR-508-5p. Fibronectin 1 (FN1) is a target gene of miR-508-5p. In addition, rescue assays showed that FN1 overexpression (or miR-508-5p inhibitors) abolished the roles of hsa_circ_0081534 inhibition on NPC cells proliferation and invasion. Therefore, hsa_circ_0081534 promoted the proliferation, and invasion of NPC cells via regulating the miR-508-5p/FN1 axis. Our findings suggested that hsa_circ_0081534 could be a novel therapeutic target for the treatment of NPC patients.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qingshan Wang
- Department of Otorhinolaryngology, Weihai Central Hospital, Weihai 264400, Shandong, China
| |
Collapse
|
103
|
Liu S, Hu Y, Wu S, He Y, Deng L. MicroRNA-663 Regulates Melanoma Progression by Inhibiting FHL3. Technol Cancer Res Treat 2020; 19:1533033820957000. [PMID: 33000682 PMCID: PMC7533922 DOI: 10.1177/1533033820957000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
microRNA-663a (miR-663a) was reported to be highly expressed in cancers. However, its roles in melanoma progression remain unclear. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to measure miR-663a expression level in melanoma cell lines and normal cells. Cell counting kit-8 assay, wound-healing assay, and transwell invasion assay were conducted to analyze biological roles of miR-663a in melanoma. Luciferase activity reporter assay was conducted to validate the connection of miR-663a and Four and a half LIM domain (FHL) protein 3 (FHL3) in melanoma. Our results showed miR-663a expression level was significantly increased in melanoma cells compared with normal cells. Silencing miR-663a expression suppresses melanoma cell proliferation, migration, and invasion in vitro. Moreover, FHL3 was validated as a functional target of miR-663a. Knockdown of FHL3 partially rescued the inhibitory effects of miR-663a inhibitor on melanoma cell behaviors. Together, our work provided evidence that miR-663a functions as an oncogenic miRNA in melanoma.
Collapse
Affiliation(s)
- Saijun Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong He
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
104
|
Cao D, Zhu H, Zhao Q, Huang J, Zhou C, He J, Liang Y. MiR-128 suppresses metastatic capacity by targeting metadherin in breast cancer cells. Biol Res 2020; 53:43. [PMID: 32993809 PMCID: PMC7526227 DOI: 10.1186/s40659-020-00311-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. Results Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. Conclusions Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.
Collapse
Affiliation(s)
- Danxia Cao
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianrong He
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China.
| |
Collapse
|
105
|
Hao B, Shi A, Li X, Li J, Liu Z, Yuan H. miR-4516 inhibits the apoptosis of RB tumor cells by targeting the PTEN/AKT signaling pathway. Exp Eye Res 2020; 200:108224. [PMID: 32919989 DOI: 10.1016/j.exer.2020.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jia Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
106
|
Sharma PC, Gupta A. MicroRNAs: potential biomarkers for diagnosis and prognosis of different cancers. Transl Cancer Res 2020; 9:5798-5818. [PMID: 35117940 PMCID: PMC8798648 DOI: 10.21037/tcr-20-1294] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A thorough understanding of the tumor environment and underlying genetic factors helps in the better formulation of cancer management strategies. Availability of efficient diagnostic and prognostic biomarkers facilitates early detection and progression of the disease. MicroRNAs affect different biological processes participating in tumorigenesis through regulation of their target genes. An expanding list of unique RNAs and understanding of their regulatory role has opened up a new field in cancer research. Based on a comprehensive literature search, we identified 728 miRNAs dysregulated in sixteen cancer types namely bladder cancer (BC), breast cancer (BrC), cervical cancer (CC), colorectal cancer (CRC), esophageal cancer (EC), endometrial cancer (EnC), gastric cancer (GC), hepatocellular cancer (HCC), head and neck squamous cell cancer (HNSCC), lung cancer (LC), ovarian cancer (OC), pancreatic cancer (PC), prostate cancer (PrC), renal cell cancer (RCC), skin cancer (SC), and thyroid cancer (TC). Expression of 43 miRNAs was either upregulated or downregulated in six or more of these cancers. Finally, seven miRNAs namely mir-18a, mir-21, mir-143/145, mir-210, mir-218, mir-221, showing maximum dysregulation, either up- or down-regulation in the majority of cancers, were selected for a detailed presentation of their expression and evaluation of their potential as biomarkers in the diagnosis and prognosis of different cancers.
Collapse
Affiliation(s)
- Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Alisha Gupta
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
107
|
Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G, Zhang G. PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis 2020; 11:710. [PMID: 32855383 PMCID: PMC7453026 DOI: 10.1038/s41419-020-02900-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023]
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a recently identified key catalytic enzyme in aerobic glycolysis. Recent literature has documented that dysregulated PGAM1 expression is associated with tumorigenesis in various cancers. However, the expression status and biological function of PGAM1 in non-small-cell lung cancer (NSCLC) are poorly elucidated. In this study, we found that PGAM1 was overexpressed in NSCLC tissues and that high expression of PGAM1 was associated with poor prognosis in NSCLC patients. Functionally, gain- and loss-of-function analysis showed that PGAM1 promoted proliferation and invasion in vitro, and facilitated tumor growth in vivo. Mechanistically, the transforming growth factor-β (TGF-β) signaling pathway was also markedly impaired in response to PGAM1 silencing. Additionally, we verified that PGAM1 was inhibited by miR-3614-5p via direct targeting of its 3’-untranslated regions in a hypoxia-independent manner. Furthermore, overexpression of miR-3614-5p attenuated NSCLC cell proliferation and invasion, and these effects could be partially reversed by reintroduction of PGAM1. Conclusively, our results suggest that the miR-3614-5p/PGAM1 axis plays a critical role during the progression of NSCLC, and these findings may provide a potential target for the development of therapeutic strategies for NSCLC patients.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiandong Kong
- Department of Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Chen
- Department of Oncology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
108
|
Gajda E, Godlewska M, Mariak Z, Nazaruk E, Gawel D. Combinatory Treatment with miR-7-5p and Drug-Loaded Cubosomes Effectively Impairs Cancer Cells. Int J Mol Sci 2020; 21:E5039. [PMID: 32708846 PMCID: PMC7404280 DOI: 10.3390/ijms21145039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is an emerging problem in the treatment of cancer. Therefore, there is a necessity for novel strategies that would sensitize tumor cells to the administered chemotherapeutics. One of the innovative approaches in fighting drug-resistant tumors is the treatment of cancer with microRNA (miRNA), or the use of cubosomes (lipid nanoparticles) loaded with drugs. Here, we present a study on a novel approach, which combines both tools. METHODS Cubosomes loaded with miR-7-5p and chemotherapeutics were developed. The effects of drug- and miRNA-loaded vehicles on glioma- (A172, T98G), papillary thyroid- (TPC-1) and cervical carcinoma-derived (HeLa) cells were analyzed using molecular biology techniques, including quantitative real-time PCR, MTS-based cell proliferation test, flow cytometry and spheroids formation assay. RESULTS The obtained data indicate that miR-7-5p increases the sensitivity of the tested cells to the drug, and that nanoparticles loaded with both miRNA and the drug produce a greater anti-tumor effect in comparison to the free drug treatment. It was found that an increased level of apoptosis in the drug/miRNA co-treated cells is accompanied by an alternation in the expression of the genes encoding for key MDR proteins of the ABC family. CONCLUSIONS Overall, co-administration of miR-7-5p with a chemotherapeutic can be considered a promising strategy, leading to reduced MDR and the induction of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Damian Gawel
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
109
|
Eshghifar N, Badrlou E, Pouresmaeili F. The roles of miRNAs' clinical efficiencies in the colorectal cancer pathobiology: A review article. Hum Antibodies 2020; 28:273-285. [PMID: 32623393 DOI: 10.3233/hab-200417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MiRNAs (microRNAs) are defined as micro directors and regulators of gene expression. Since altered miRNA expression is signified in the pathobiology of diverse cancers such as colorectal cancers (CRCs), these molecules are described as therapeutic targets, either. Manipulation of miRNAs could lead to further therapy for chemo and radio-resistant CRCs. The usage of microRNAs has indicated prominent promise in the prognosis and diagnosis of CRC, because of their unique expression pattern associated with cancer types and malignancies. Nowadays, many researchers are analyzing the correlation between miRNA polymorphisms and cancer risk. With continuous incompatibility in colorectal cancer (CRC) miRNAs expression data, it is critical to move toward the content of a "pre-laboratory" analysis to speed up efficient accuracy medicine and translational study. Pathway study for the highest expressed miRNAs- regulated target genes resulted in the identification of a considerable number of genes associated with CRC pathway including PI3K, TGFβ, and APC. In this review, we aimed to collect fruitful information about miRNAs and their potential roles in CRC, and provide a meta-analysis of the most frequently studied miRNAs in association with the disease.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Badrlou
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
110
|
Peperstraete E, Lecerf C, Collette J, Vennin C, Raby L, Völkel P, Angrand PO, Winter M, Bertucci F, Finetti P, Lagadec C, Meignan S, Bourette RP, Bourhis XL, Adriaenssens E. Enhancement of Breast Cancer Cell Aggressiveness by lncRNA H19 and its Mir-675 Derivative: Insight into Shared and Different Actions. Cancers (Basel) 2020; 12:cancers12071730. [PMID: 32610610 PMCID: PMC7407157 DOI: 10.3390/cancers12071730] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.
Collapse
Affiliation(s)
- Evodie Peperstraete
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Clément Lecerf
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Jordan Collette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Constance Vennin
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Ludivine Raby
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pamela Völkel
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pierre-Olivier Angrand
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Marie Winter
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Chann Lagadec
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Samuel Meignan
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Roland P. Bourette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Xuefen Le Bourhis
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Eric Adriaenssens
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Correspondence: ; Tel.: +33-(0)3-20-33-64-06
| |
Collapse
|
111
|
Wong WK, Wong SHD, Bian L. Long-Term Detection of Oncogenic MicroRNA in Living Human Cancer Cells by Gold@ Polydopamine-Shell Nanoprobe. ACS Biomater Sci Eng 2020; 6:3778-3783. [PMID: 33463320 DOI: 10.1021/acsbiomaterials.0c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncogenic microRNAs (miRNA), for example, miR-155, are key tumor biomarkers in cancer cells that drive tumorigenesis, and the miRNA profile signature can predict cancer development and aggressiveness. Hence, timely detection of oncogenic miRNA in living cells is highly attractive to the diagnosis of cancer at an early stage. Herein, we report a highly sequence-specific gold@polydopamine-based nanoprobe for long-term detection of miRNA in human cancer cell lines in vitro. A single administration of the nanoprobe enables continuous detection of the miR-155 expression level in living cancer cells for up to 5 days. We believe that our nanoprobe is highly promising for both oncology research and translational applications.
Collapse
Affiliation(s)
- Wai Ki Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172 China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| |
Collapse
|
112
|
Wang Y, Xin D, Zhou L. LncRNA LINC00152 Increases the Aggressiveness of Human Retinoblastoma and Enhances Carboplatin and Adriamycin Resistance by Regulating MiR-613/Yes-Associated Protein 1 (YAP1) Axis. Med Sci Monit 2020; 26:e920886. [PMID: 32541644 PMCID: PMC7315805 DOI: 10.12659/msm.920886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) acts as key regulator in human cancers, including retinoblastoma. However, the function of LINC00152 remains largely unknown in retinoblastoma. Thus, this study aimed to explore the role and molecular mechanisms of LINC00152 in retinoblastoma. MATERIAL AND METHODS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify the expression levels of LINC00152, miR-613 and yes-associated protein 1 (YAP1). The target genes of LINC00152 and miR-613 were identified by dual-luciferase reporter analysis, RNA immunoprecipitation (RIP) and RNA pulldown assays. The viability, apoptosis, and invasion of retinoblastoma cells were assessed by Cell Counting Kit-8, flow cytometry, and Transwell assays, respectively. In addition, western blot was used to test the protein expression in retinoblastoma cells or tissues. Cell sensitivity to carboplatin and adriamycin was analyzed by computing IC₅₀ value. The effects of LINC00152 silencing in vivo were measured by a xenograft experiment. RESULTS LINC00152 was obviously upregulated, while miR-613 was decreased in retinoblastoma tissues and cells. MiR-613, a target of LINC00152, was negatively regulated by LINC00152. Functional experiment further illustrated that silencing of LINC00152 evidently repressed proliferation, invasion, and autophagy while reinforced apoptosis of retinoblastoma cells, besides, retinoblastoma cells were more sensitive to carboplatin and adriamycin after knockdown of LINC00152. Importantly, knockdown of LINC00152-induced effects on retinoblastoma cells could be overturned by introducing miR-613 inhibitor. Downregulation of miR-613 abolished silencing of YAP1-effects on proliferation, apoptosis, invasion, autophagy, and chemoresistance of retinoblastoma cells. The results of the xenograft experiment indicated that LINC00152 silencing impeded tumor growth in vivo. CONCLUSIONS Mechanistically, LINC00152 enhanced the aggressiveness of retinoblastoma and boosted carboplatin and adriamycin resistance by regulating YAP1 by sponging miR-613 in human retinoblastoma.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China (mainland)
| | - Danli Xin
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China (mainland)
| | - Lei Zhou
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
113
|
Tömböl Z, Turai PI, Decmann Á, Igaz P. MicroRNAs and Adrenocortical Tumors: Where do we Stand on Primary Aldosteronism? Horm Metab Res 2020; 52:394-403. [PMID: 32168526 DOI: 10.1055/a-1116-2366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
MicroRNAs, the endogenous mediators of RNA interference, interact with the renin-angiotensin-aldosterone system, regulate aldosterone secretion and aldosterone effects. Some novel data show that the expression of some microRNAs is altered in primary aldosteronism, and some of these appear to have pathogenic relevance, as well. Differences in the circulating microRNA expression profiles between the two major forms of primary aldosteronism, unilateral aldosterone-producing adenoma and bilateral adrenal hyperplasia have also been shown. Here, we present a brief synopsis of these findings focusing on the potential relevance of microRNA in primary aldosteronism.
Collapse
Affiliation(s)
- Zsófia Tömböl
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter István Turai
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ábel Decmann
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
114
|
Ma ZY, Gong YF, Zhuang HK, Zhou ZX, Huang SZ, Zou YP, Huang BW, Sun ZH, Zhang CZ, Tang YQ, Hou BH. Pancreatic neuroendocrine tumors: A review of serum biomarkers, staging, and management. World J Gastroenterol 2020; 26:2305-2322. [PMID: 32476795 PMCID: PMC7243647 DOI: 10.3748/wjg.v26.i19.2305] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a heterogeneous group of tumors with complicated treatment options that depend on pathological grading, clinical staging, and presence of symptoms related to hormonal secretion. With regard to diagnosis, remarkable advances have been made: Chromogranin A is recommended as a general marker for pNETs. But other new biomarker modalities, like circulating tumor cells, multiple transcript analysis, microRNA profile, and cytokines, should be clarified in future investigations before clinical application. Therefore, the currently available serum biomarkers are insufficient for diagnosis, but reasonably acceptable in evaluating the prognosis of and response to treatments during follow-up of pNETs. Surgical resection is still the only curative therapeutic option for localized pNETs. However, a debulking operation has also been proven to be effective for controlling the disease. As for drug therapy, steroids and somatostatin analogues are the first-line therapy for those with positive expression of somatostatin receptor, while everolimus and sunitinib represent important progress for the treatment of patients with advanced pNETs. Great progress has been achieved in the combination of systematic therapy with local control treatments. The optimal timing of local control intervention, planning of sequential therapies, and implementation of multidisciplinary care remain pending.
Collapse
Affiliation(s)
- Zu-Yi Ma
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Shantou University of Medical College, Shantou 515000, Guangdong Province, China
| | - Yuan-Feng Gong
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Hong-Kai Zhuang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Shantou University of Medical College, Shantou 515000, Guangdong Province, China
| | - Zi-Xuan Zhou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Shan-Zhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Yi-Ping Zou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Shantou University of Medical College, Shantou 515000, Guangdong Province, China
| | - Bo-Wen Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Zhong-Hai Sun
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
- Shantou University of Medical College, Shantou 515000, Guangdong Province, China
| | - Chuan-Zhao Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Yun-Qiang Tang
- Department of Hepatobiliary Surgery, the Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| | - Bao-Hua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
115
|
Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol 2020; 235:8812-8825. [PMID: 32394436 DOI: 10.1002/jcp.29724] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
Abstract
Oxidative stress refers to elevated levels of intracellular reactive oxygen species (ROS). ROS homeostasis functions as a signaling pathway for normal cell survival and appropriate cell signaling. Chronic inflammation induced by imbalanced levels of ROS contributes to many diseases and different types of cancer. ROS can alter the expression of oncogenes and tumor suppressor genes through epigenetic modifications, transcription factors, and non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a key role in most biological pathways. Each miRNA regulates hundreds of target genes by inhibiting protein translation and/or promoting messenger RNA degradation. In normal conditions, miRNAs play a physiological role in cell proliferation, differentiation, and apoptosis. However, different factors that can dysregulate cell signaling and cellular homeostasis can also affect miRNA expression. The alteration of miRNA expression can work against disturbing factors or mediate their effects. Oxidative stress is one of these factors. Considering the complex interplay between ROS level and miRNA regulation and both of these with cancer development, we review the role of miRNAs in cancer, focusing on their function in oxidative stress.
Collapse
Affiliation(s)
- Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| |
Collapse
|
116
|
Liu X, Zhou Y, Luo Y, Chen Y. Effects of gE/gI deletions on the miRNA expression of PRV-infected PK-15 cells. Virus Genes 2020; 56:461-471. [PMID: 32385550 PMCID: PMC7329775 DOI: 10.1007/s11262-020-01760-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Pseudorabies virus (PRV) belongs to the Alphaherpesvirinae subfamily of Herpesviridae. PRV-induced pseudorabies is a highly contagious disease that has caused huge economic losses to the global swine industry. The PRV gE/gI gene deletion vaccine strain (Fa ΔgE/gI strain) constructed from the PRV Fa wild-type strain was shown to have a protective effect against infection. However, the interaction between PRV gE/gI genes and host miRNA needs further exploration, and little is known about the regulatory mechanisms of non-coding RNAs during PRV infection. miRNAs play a key regulatory role in viral infection and immune responses, so we analyzed the differential expression of miRNAs induced by the PRV Fa ΔgE/gI strain and Fa wild-type strain in the PK15 cell line. High-throughput sequencing reads were aligned to known Sus scrofa pre-miRNAs in the miRBase database. Target genes of differentially expressed miRNAs were predicted using the miRGen 3.0 database, then filtered miRNA target genes were subjected to Gene Ontology (GO) analysis and Search Tool for the Retrieval of Interacting Genes/ Proteins (STRING) analysis. Stem-loop quantitative real-time PCR was performed to confirm the accuracy of high-throughput sequencing data. In total, 387, 472, and 490 annotated and novel mature miRNAs were identified from PRV Fa ΔgE/gI strain-infected, Fa wild-type strain-infected, and non-infected PK-15 cells, respectively. Five PRV-encoded miRNAs were also identified. GO analysis showed that target genes of differentially expressed miRNAs in PRV Fa ΔgE/gI strain-infected and Fa wild-type strain-infected PK-15 cells were mainly involved in biological regulation and metabolic processes. STRING analysis showed that immune-related target genes of differentially expressed miRNAs in the Toll-like receptor signaling pathway, B cell receptor signaling pathway, T cell receptor signaling pathway, nuclear factor-κB signaling pathway, and transforming growth factor-β signaling pathway were interrelated. This is the first report of the small RNA transcriptome in PRV mutant wild-type strain-infected and Fa ΔgE/gI strain-infected porcine cell lines. Our findings will contribute to the prevention and treatment of PRV mutant strains.
Collapse
Affiliation(s)
- Xiao Liu
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China. .,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China.
| | - Yuancheng Zhou
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| | - Yuan Luo
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| | - Yanxi Chen
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| |
Collapse
|
117
|
Yan X, Gao M, Zhang P, Ouyang G, Mu Q, Xu K. MiR-181a functions as an oncogene by regulating CCND1 in multiple myeloma. Oncol Lett 2020; 20:758-764. [PMID: 32566002 PMCID: PMC7286114 DOI: 10.3892/ol.2020.11579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
MicroRNA-181a (miR-181a) has been demonstrated to be upregulated in patients with multiple myeloma (MM). In several studies, miR-181a has been demonstrated to be significantly overexpressed in MM; however, its potential role in development and progression of MM remains unknown. In the present study, the functions of miR-181a and the potential underlying molecular mechanisms in the pathogenesis of MM were examined. Increased expression of miR-181a was observed in bone marrow samples from patients with MM and the MM RPMI8226 cell line. The role of miR-181a was examined and it was demonstrated that it participated in the proliferation and migration processes of the MM cell line. Furthermore, it was demonstrated that the downregulation of miR-181a inhibited the expression of CCND1, a cell cycle regulatory gene, and caused cell cycle arrest in MM cells. The results of the present study suggested that miR-181a functions as an onco-miRNA in MM, which serves regulatory roles by upregulating expression of CCND1 and may therefore serve as a potential target in patients with MM.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Minjie Gao
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Stem Cell Laboratory, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
118
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
119
|
Fujii T, Itami H, Uchiyama T, Morita K, Nakai T, Hatakeyama K, Sugimoto A, Shimada K, Tsuji S, Ohbayashi C. HEG1-responsive microRNA-23b regulates cell proliferation in malignant mesothelioma cells. Biochem Biophys Res Commun 2020; 526:927-933. [PMID: 32284171 DOI: 10.1016/j.bbrc.2020.03.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 12/27/2022]
Abstract
Malignant mesothelioma (MM) is a fatal tumor, and the absence of a specific diagnostic marker and/or a pathogenic molecule-targeting drug is a major issue for its pathological diagnosis and for targeting therapy. The molecular target of MM has not been elucidated because of unknown survival, death, and cytotoxic signals in MM. HEG homolog 1 (HEG1) is a mucin-like membrane protein that contains epidermal growth factor-like domains, and it plays an important role in cancers through aberrant signaling, including that during cell adhesion, as well as through protection from invasion of tumor cells. HEG1 expression supports the survival and proliferation of MM cells. In this study, functional analysis of HEG1 and microRNAs using MM cell lines (H226, MESO4, H2052) was performed. The MTS assay revealed that cell proliferation was significantly reduced upon transient transfection with microRNA-23b (miR-23b) inhibitor and/or HEG1 siRNA. The Annexin V assay revealed that apoptosis was induced upon suppression of miR-23b and/or HEG1. Western blotting showed that the autophagy-related protein LC3-II was induced upon suppression of miR-23b and/or HEG1. These results revealed that miR-23b contributes to HEG1-dependent cell proliferation through evasion of cytotoxicity induced by apoptosis and autophagy in MM cells. HEG1-dependent/mediated miR-23b signaling may therefore be a potential target for MM diagnosis and therapy.
Collapse
Affiliation(s)
- Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Hiroe Itami
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Tomoko Uchiyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kohei Morita
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Tokiko Nakai
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Aya Sugimoto
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Keiji Shimada
- Department of Diagnostic Pathology, Nara City Hospital, Nara, Japan.
| | - Shoutaro Tsuji
- Kanagawa Cancer Center Research Institute, Yokohama, Japan.
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| |
Collapse
|
120
|
Smerekanych S, Johnson TS, Huang K, Zhang Y. Pseudogene-gene functional networks are prognostic of patient survival in breast cancer. BMC Med Genomics 2020; 13:51. [PMID: 32241256 PMCID: PMC7118805 DOI: 10.1186/s12920-020-0687-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Given the vast range of molecular mechanisms giving rise to breast cancer, it is unlikely universal cures exist. However, by providing a more precise prognosis for breast cancer patients through integrative models, treatments can become more individualized, resulting in more successful outcomes. Specifically, we combine gene expression, pseudogene expression, miRNA expression, clinical factors, and pseudogene-gene functional networks to generate these models for breast cancer prognostics. Establishing a LASSO-generated molecular gene signature revealed that the increased expression of genes STXBP5, GALP and LOC387646 indicate a poor prognosis for a breast cancer patient. We also found that increased CTSLP8 and RPS10P20 and decreased HLA-K pseudogene expression indicate poor prognosis for a patient. Perhaps most importantly we identified a pseudogene-gene interaction, GPS2-GPS2P1 (improved prognosis) that is prognostic where neither the gene nor pseudogene alone is prognostic of survival. Besides, miR-3923 was predicted to target GPS2 using miRanda, PicTar, and TargetScan, which imply modules of gene-pseudogene-miRNAs that are potentially functionally related to patient survival. RESULTS In our LASSO-based model, we take into account features including pseudogenes, genes and candidate pseudogene-gene interactions. Key biomarkers were identified from the features. The identification of key biomarkers in combination with significant clinical factors (such as stage and radiation therapy status) should be considered as well, enabling a specific prognostic prediction and future treatment plan for an individual patient. Here we used our PseudoFuN web application to identify the candidate pseudogene-gene interactions as candidate features in our integrative models. We further identified potential miRNAs targeting those features in our models using PseudoFuN as well. From this study, we present an interpretable survival model based on LASSO and decision trees, we also provide a novel feature set which includes pseudogene-gene interaction terms that have been ignored by previous prognostic models. We find that some interaction terms for pseudogenes and genes are significantly prognostic of survival. These interactions are cross-over interactions, where the impact of the gene expression on survival changes with pseudogene expression and vice versa. These may imply more complicated regulation mechanisms than previously understood. CONCLUSIONS We recommend these novel feature sets be considered when training other types of prognostic models as well, which may provide more comprehensive insights into personalized treatment decisions.
Collapse
Affiliation(s)
- Sasha Smerekanych
- Kenyon College, Gambier, OH, 43022, USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Travis S Johnson
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Kun Huang
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Regenstrief Institute, Indiana University, Indianapolis, IN, 46202, USA
| | - Yan Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, 43210, USA.
| |
Collapse
|
121
|
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J, Chen C. Tumor Suppressor microRNA-138 Suppresses Low-Grade Glioma Development and Metastasis via Regulating IGF2BP2. Onco Targets Ther 2020; 13:2247-2260. [PMID: 32214825 PMCID: PMC7082711 DOI: 10.2147/ott.s232795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background Low-grade gliomas (LGG), approximately constitute one-third of all types of gliomas, are prone to relapse and metastasis. MicroRNA-138 (miR-138) is reported to be dysregulated in diverse human tumors and mainly function as a tumor suppressor. In this study, we analyzed the expression profile and function of miR-138 in LGG. Methods Quantitative PCR (qPCR) and public database bioinformatics analysis were performed to determine the miR-138 levels in LGG. MiR-138 overexpression in LGG cells was achieved by miR-138 mimics transfection. Cell proliferation was assessed by CCK8, EdU and colony formation assays. Cell invasion and migration were analyzed by transwell and wound-healing assays. Xenograft model was employed to study the role of miR-138 in LGG growth in vivo. The target of miR-138 was validated by multiple methods, such as luciferase reporter assay, RT-qPCR and Western blot. Bioinformatics analysis was conducted to explore the molecular mechanisms by which miR-138 contributed to LGG progression. Results miR-138 was significantly downregulated in LGG tumor tissues and low expression of miR-138 was significantly associated with poor prognosis as well as relapse and metastasis in LGG patients. Functional analysis indicated that ectopic miR-138 expression suppressed LGG cell growth and invasive phenotype in vitro, and inhibited tumor development in vivo. Moreover, miR-138 directly targeted and repressed insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) by targeting the 3ʹ-UTR of IGF2BP2, inhibiting epithelial to mesenchymal transition (EMT) to attenuate LGG aggressiveness. In addition, we found that elevated IGF2BP2 expression correlates with poor survival of LGG patients. Conclusion miR-138 may function as a tumor inhibitor by directly inhibiting IGF2BP2 and suppressing EMT in the progression of LGG.
Collapse
Affiliation(s)
- Yang Yang
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xinyu Liu
- School of Intelligent Manufacturing, The Huanghuai University, Zhumadian 463000, People's Republic of China
| | - Lulu Cheng
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Li Li
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zhenyu Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, People's Republic of China
| | - Zong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Gang Han
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xuefeng Wan
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zaizhong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Chuanliang Chen
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
122
|
Koehler J, Sandey M, Prasad N, Levy SA, Wang X, Wang X. Differential Expression of miRNAs in Hypoxia ("HypoxamiRs") in Three Canine High-Grade Glioma Cell Lines. Front Vet Sci 2020; 7:104. [PMID: 32258065 PMCID: PMC7093022 DOI: 10.3389/fvets.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Dogs with spontaneous high-grade gliomas increasingly are being proposed as useful large animal pre-clinical models for the human disease. Hypoxia is a critical microenvironmental condition that is common in both canine and human high-grade gliomas and drives increased angiogenesis, chemo- and radioresistance, and acquisition of a stem-like phenotype. Some of this effect is mediated by the hypoxia-induced expression of microRNAs, small (~22 nucleotides long), non-coding RNAs that can modulate gene expression through interference with mRNA translation. Using an in vitro model with three canine high-grade glioma cell lines (J3T, SDT3G, and G06A) exposed to 72 h of 1.5% oxygen vs. standard 20% oxygen, we examined the global “hypoxamiR” profile using small RNA-Seq and performed pathway analysis for targeted genes using both Panther and NetworkAnalyst. Important pathways include many that are well-established as being important in glioma biology, general cancer biology, hypoxia, angiogenesis, immunology, and stem-ness, among others. This work provides the first examination of the effect of hypoxia on miRNA expression in the context of canine glioma, and highlights important similarities with the human disease.
Collapse
Affiliation(s)
- Jennifer Koehler
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Maninder Sandey
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Shawn A Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xiaozhu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States.,Alabama Agricultural Experimental Station, Auburn University, Auburn, AL, United States
| |
Collapse
|
123
|
Wang S, Cai L, Zhang F, Shang X, Xiao R, Zhou H. Inhibition of EZH2 Attenuates Sorafenib Resistance by Targeting NOTCH1 Activation-Dependent Liver Cancer Stem Cells via NOTCH1-Related MicroRNAs in Hepatocellular Carcinoma. Transl Oncol 2020; 13:100741. [PMID: 32092673 PMCID: PMC7036423 DOI: 10.1016/j.tranon.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Acquired resistance and intrinsic to sorafenib therapy represents a major hurdle in improving the management of advanced hepatocellular carcinoma (HCC), which has been recently shown to be associated with the emergence of liver cancer stem cells (CSCs). However, it remains largely unknown whether and how histone posttranslational modifications, especially H3K27me3, are causally linked to the maintenance of self-renewal ability in sorafenib-resistant HCC. Here, we found that NOTCH1 signaling was activated in sorafenib-resistant HCC cells and NOTCH1 activation conferred hepatoma cells sorafenib resistance through enhanced self-renewal and tumorigenecity. Besides, the overexpression of EZH2 was required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, modulating EZH2 expression or activity suppressed activation of NOTCH1 pathway by elevating the expression of NOTCH1-related microRNAs, hsa-miR-21-5p and has-miR-26a-1-5p, via H3K27me3, and consequently weakened self-renewal ability and tumorigenecity and restored the anti-tumor effects of sorafenib. Overall, our results highlight the role of EZH2/NICD1 axis, and also suggest that EZH2 and NOTCH1 pathway are rational targets for therapeutic intervention in sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| | - Long Cai
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Fengwei Zhang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Xuechai Shang
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Rong Xiao
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Hongjuan Zhou
- Central Laboratory, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital (Hangzhou Red Cross Hospital), 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
124
|
Wang H, Jiang F, Liu W, Tian W. miR-595 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting NF-κB signalling pathway. Pathol Res Pract 2020; 216:152899. [PMID: 32107085 DOI: 10.1016/j.prp.2020.152899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) have been proven to be critical regulators of cancer development. To date, many of them are still in urgent need of characterisation, and role of miR-595 in hepatocellular carcinoma (HCC) remains unknown. To better understand the mechanism of miR-595 in HCC development, a series of experiments were carried out to explore the effects of miR-595 on malignant behaviour in HCC. First, we found that miR-595 was downregulated in HCC tissues and cells and tightly associated with poor overall survival in HCC patients. Then, we further demonstrated that miR-595 inhibited cell proliferation, migration and invasion in vitro. Additionally, animal experimental results demonstrated that miR-595 inhibited HCC carcinogenesis in vivo. Moreover, we demonstrated that upregulation of miR-595 expression inhibited the NF-κB signalling pathway in HCC cells. To further uncover the molecular mechanism of miR-595 action on the NF-κB signalling pathway, we identified ABCB1 as a direct target of miR-595 through bioinformatics prediction and supported our results with luciferase assays. Finally, we showed that miR-595 inhibited the NF-κB pathway by suppressing ABCB1 expression in HCC cells. Taken together, our findings uncover a pivotal role for the miR-595/ABCB1/NF-κB axis in HCC development, and this novel axis may be a suitable target for diagnostic or therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Fang Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiying Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
125
|
Xu C, Liu J, Yao X, Bai Y, Zhao Q, Zhao R, Kou B, Li H, Han P, Wang X, Guo L, Zheng Z, Zhang S. Downregulation of microR-147b represses the proliferation and invasion of thyroid carcinoma cells by inhibiting Wnt/β-catenin signaling via targeting SOX15. Mol Cell Endocrinol 2020; 501:110662. [PMID: 31760045 DOI: 10.1016/j.mce.2019.110662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
microRNA-147b (miR-147b) is a newly identified tumor-related miRNA that is dysregulated in multiple cancer types. Yet, the role of miR-147b in thyroid carcinoma remains unknown. Herein, we found that miR-147b expression was upregulated in thyroid carcinoma tissues and cell lines. miR-147b inhibition decreased the proliferation, colony formation, and invasion of thyroid carcinoma cells. The tumor suppressive gene SRY-related high-mobility-group box gene 15 (SOX15) was predicted as a miR-147b target gene. SOX15 expression was markedly decreased in thyroid carcinoma tissues and inversely correlated with the miR-147b expression. SOX15 overexpression repressed the proliferation and invasion of thyroid carcinoma cells associated with downregulation of Wnt/β-catenin signaling. SOX15 knockdown abolished the miR-147b-inhibition-mediated antitumor effect. miR-147b inhibition or SOX15 overexpression retarded the tumor growth of thyroid carcinoma cells in vivo. Overall, our study suggests that miR-147b inhibition restrains the proliferation and invasion of thyroid carcinoma cells through upregulation of SOX15 and inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qian Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Ruimin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Bo Kou
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Honghui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Peng Han
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xuan Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Longwei Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhiwei Zheng
- The Third Ward of Department of General Surgery, Rizhao People's Hospital, Rizhao City, 276800, Shandong Province, China.
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
126
|
Wei F, Yang L, Jiang D, Pan M, Tang G, Huang M, Zhang J. Long noncoding RNA DUXAP8 contributes to the progression of hepatocellular carcinoma via regulating miR-422a/PDK2 axis. Cancer Med 2020; 9:2480-2490. [PMID: 32022476 PMCID: PMC7131864 DOI: 10.1002/cam4.2861] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most deadly cancer worldwide. Multiple long noncoding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumor suppressors. In this study, we explored the functon and mechanism of lncRNA double homeobox A pseudogene 8 (DUXAP8) in the progression of HCC. Methods Expression levels of DUXAP8 in HCC tissue samples were measured using qRT‐PCR. The association between pathological indexes and the expression of DUXAP8 was also analyzed. Human HCC cell lines SMMC‐7721 and QSG‐7701 were used in in vitro studies. CCK‐8 assay was used to assess the effect of DUXAP8 on HCC cell line proliferation. Scratch healing assay and Transwell assay were conducted to detect the effect of DUXAP8 on migration and invasion. Furthermore, dual‐luciferase reporter assay was used to confirm targeting relationship between miR‐422a and DUXAP8. Additionally, Western blot was used to detect the regulatory function of DUXAP8 on pyruvate dehydrogenase kinase 2 (PDK2). Results DUXAP8 expression HCC clinical samples was significantly increased and this was correlated with unfavorable pathological indexes. High expression of DUXAP8 was associated with shorter overall survival time of patients. Its overexpression remarkably facilitated the proliferation, metastasis, and epithelial‐mesenchymal transition of HCC cells. Accordingly, knockdown of it suppressed the malignant phenotypes of HCC cells. Overexpression of DUXAP8 significantly reduced the expression of miR‐422a by sponging it, but enhanced the expression of PDK2. Conclusions DUXAP8 was a sponge of tumor suppressor miR‐422a in HCC, enhanced the expression of PDK2 indirectly, and functioned as an oncogenic lncRNA.
Collapse
Affiliation(s)
- Feifei Wei
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Liang Yang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Dandan Jiang
- Department of Oncology, Jining NO.1 People's Hospital; Affiliated Jining NO.1 People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Min Pan
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Guiyan Tang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Mingyue Huang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| | - Jing Zhang
- Department of Oncology, Fifth Clinical Medical College, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
127
|
Wang S, Talukder A, Cha M, Li X, Hu H. Computational annotation of miRNA transcription start sites. Brief Bioinform 2020; 22:380-392. [PMID: 32003428 PMCID: PMC7820843 DOI: 10.1093/bib/bbz178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022] Open
Abstract
Motivation MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in gene regulation and phenotype development. The identification of miRNA transcription start sites (TSSs) is critical to understand the functional roles of miRNA genes and their transcriptional regulation. Unlike protein-coding genes, miRNA TSSs are not directly detectable from conventional RNA-Seq experiments due to miRNA-specific process of biogenesis. In the past decade, large-scale genome-wide TSS-Seq and transcription activation marker profiling data have become available, based on which, many computational methods have been developed. These methods have greatly advanced genome-wide miRNA TSS annotation. Results In this study, we summarized recent computational methods and their results on miRNA TSS annotation. We collected and performed a comparative analysis of miRNA TSS annotations from 14 representative studies. We further compiled a robust set of miRNA TSSs (RSmirT) that are supported by multiple studies. Integrative genomic and epigenomic data analysis on RSmirT revealed the genomic and epigenomic features of miRNA TSSs as well as their relations to protein-coding and long non-coding genes. Contact xiaoman@mail.ucf.edu, haihu@cs.ucf.edu
Collapse
Affiliation(s)
- Saidi Wang
- Computer Science, University of Central Florida, Orlando, FL-32816, US
| | - Amlan Talukder
- Computer Science, University of Central Florida, Orlando, FL-32816, US
| | - Mingyu Cha
- Computer Science, University of Central Florida, Orlando, FL-32816, US
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL-32816, US
| | - Haiyan Hu
- Computer Science, University of Central Florida, Orlando, FL-32816, US
| |
Collapse
|
128
|
Yang C, Yan Z, Hu F, Wei W, Sun Z, Xu W. Silencing of microRNA-517a induces oxidative stress injury in melanoma cells via inactivation of the JNK signaling pathway by upregulating CDKN1C. Cancer Cell Int 2020; 20:32. [PMID: 32015692 PMCID: PMC6990552 DOI: 10.1186/s12935-019-1064-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Melanoma is notoriously resistant to current treatments, and less than 25% of metastatic melanoma cases respond to existing therapies. Growing evidence has shown that microRNAs (miRNAs) play a vital role in the prognosis of melanoma. MiR-517a has been implicated in many types of cancer; however, its expressional features and potential biological functions in melanoma remain unclear. The present study aimed to investigate the possible effects of miR-517a on oxidative stress (OS) in melanoma cells. Methods miR-517a expression in melanoma was determined using RT-qPCR. After treatment with different concentrations of H2O2, cell viability was determined in order to identify the most appropriate H2O2 concentration. Through loss and gain of function experiments, the interactions between miR-517a, the cyclin dependent kinase inhibitor 1C (CDKN1C) and the c-Jun NH2-terminal kinase (JNK) signaling pathway, as well as their roles in OS of melanoma cells were identified. Moreover, the expression of Cleaved Caspase-3, extent of ERK1/2 phosphorylation, Bax/Bcl-2 ratio, levels of T-AOC, ROS and MDA, and SOD activity were also tested. Finally, melanoma cell viability and apoptosis were detected. Results MiR-517a was upregulated, while CDKN1C was downregulated in melanoma tissues and cells. MiR-517a targets CDKN1C and consequently reduced its expression. Inhibition of miR-517a was shown to increase Cleaved Caspase-3 expression, Bax/Bcl-2 ratio, levels of ROS and MDA, as well as cell apoptosis but decrease extent of ERK1/2 phosphorylation, T-AOC levels, SOD activity, along with cell proliferation and mitochondrial membrane potential. Conclusions Overall, silencing miR-517a results in upregulated CDKN1C expression, and inhibited JNK signaling pathway activation, consequently promoting OS in melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zeqiang Yan
- 2Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Fen Hu
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Wei
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zhihua Sun
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Xu
- 3Department of Dermatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| |
Collapse
|
129
|
Mondal P, Natesh J, Kamal MA, Meeran SM. Non-coding RNAs in Lung Cancer Chemoresistance. Curr Drug Metab 2020; 20:1023-1032. [DOI: 10.2174/1389200221666200106105201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lung cancer is the leading cause of cancer-associated death worldwide with limited
treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations
of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics
used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the
treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the
prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs
(ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various
tumor-suppressor genes and oncogenes.
Result:
The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with
the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs
(lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to
regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma
progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers
and therapeutic targets for lung cancer.
Conclusion:
Targeting ncRNAs could be an effective approach for the development of novel therapeutics against
lung cancer and to overcome the chemoresistance.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
130
|
Qin K, Tian G, Chen G, Zhou D, Tang K. miR-647 inhibits glioma cell proliferation, colony formation and invasion by regulating HOXA9. J Gene Med 2020; 22:e3153. [PMID: 31881106 DOI: 10.1002/jgm.3153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNA-647 (miR-647) has been reported to regulate tumor development, although its role in glioma remains unclear. METHODS miR-647 expression in glioma cells and normal cells was measured using a quantitative real-time polymerase chain reaction. The effects of miR-647 expression on glioma cell proliferation, cell apoptosis, colony formation and cell invasion were measured using a cell counting kit-8 assay, flow cytometry, a colony formation assay and a transwell invasion assay. Luciferase activity reporter and western blot assays were conducted to explore whether homeobox A9 (HOXA9) was a direct target of miR-647. RESULTS We found that miR-647 expression was downregulated in glioma cell lines compared to the normal cell line. Overexpression of miR-647 inhibits glioma cell proliferation, colony formation and cell invasion, although it promotes apoptosis in vitro. HOXA9 was validated a direct target of miR-647 and the overexpression of HOXA9 reversed the effects of miR-647 on glioma cell behavior. CONCLUSIONS The identification of the miR-647/HOXA9 axis will advance our understanding underlying glioma progression and provide novel therapeutic targets for glioma treatment.
Collapse
Affiliation(s)
- Kun Qin
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ge Tian
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Kai Tang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
131
|
Ribatti D, Tamma R. Epigenetic control of tumor angiogenesis. Microcirculation 2020; 27:e12602. [PMID: 31863494 DOI: 10.1111/micc.12602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
The term "epigenetic" is used to refer to heritable alterations in chromatin that are not due to changes in DNA sequence. Different growth factors and vascular genes mediate the angiogenic process, which is regulated by epigenetic states of genes. The aim of this article is to analyze the role of epigenetic mechanisms in the control and regulation of tumor angiogenetic processes. The reversibility of epigenetic events in contrast to genetic aberrations makes them potentially suitable for therapeutic intervention. In this context, DNA methyltransferase (DNMT) and HDAC inhibitors indirectly-via the tumor cells-exhibit angiostatic effects in vivo, and inhibition of miRNAs can contribute to the development of novel anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
132
|
Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim YB, Salomon C, Shiddiky MJA. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020; 145:2038-2057. [DOI: 10.1039/c9an02263e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most aggressive of all gynaecological malignancies and is the leading cause of cancer-associated mortality worldwide.
Collapse
Affiliation(s)
- Nahian Binte Aziz
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- School of Chemistry & Molecular Biosciences
| | - Rabbee G. Mahmudunnabi
- Department of Molecular Science Technology and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Muhammad Umer
- Queensland Micro and nanotechnology Centre
- Griffith University
- Nathan Campus
- Australia
| | - Shayna Sharma
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Md Abdur Rashid
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yahya Alhamhoom
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Carlos Salomon
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Muhammad J. A. Shiddiky
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro and nanotechnology Centre
| |
Collapse
|
133
|
Lin YX, Wang Y, Blake S, Yu M, Mei L, Wang H, Shi J. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020; 10:281-299. [PMID: 31903120 PMCID: PMC6929632 DOI: 10.7150/thno.35568] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
RNA molecules (e.g., siRNA, microRNA, and mRNA) have shown tremendous potential for immunomodulation and cancer immunotherapy. They can activate both innate and adaptive immune system responses by silencing or upregulating immune-relevant genes. In addition, mRNA-based vaccines have recently been actively pursued and tested in cancer patients, as a form of treatment. Meanwhile, various nanomaterials have been developed to enhance RNA delivery to the tumor and immune cells. In this review article, we summarize recent advances in the development of RNA-based therapeutics and their applications in cancer immunotherapy. We also highlight the variety of nanoparticle platforms that have been used for RNA delivery to elicit anti-tumor immune responses. Finally, we provide our perspectives of potential challenges and opportunities of RNA-based nanotherapeutics in clinical translation towards cancer immunotherapy.
Collapse
Affiliation(s)
- Yao-Xin Lin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sara Blake
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Tufts University, Medford, MA 02155, USA
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
134
|
Gao D, Zhou Z, Huang H. miR-30b-3p Inhibits Proliferation and Invasion of Hepatocellular Carcinoma Cells via Suppressing PI3K/Akt Pathway. Front Genet 2019; 10:1274. [PMID: 31921311 PMCID: PMC6923265 DOI: 10.3389/fgene.2019.01274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The micro-RNA miR-30b-3p has been reported to play a crucial role in several cancers. However, the biological function of miR-30b-3p in hepatocellular carcinoma (HCC) is still unknown. Methods: RT-qPCR was employed to determine the expression of miR-30b-3p in HCC tissues and cells. The MTT assay, colony formation assay, and cell migration and invasion assay were employed to evaluate the role of miR-30b-3p in HCC cells. A dual-luciferase reporter assay was employed to verify the target of miR-30b-3p. Western blotting was employed to determine the expression of key molecular signal transducers along TRIM27-PI3K/Akt axis. Results: Expression of miR-30b-3p was markedly decreased in HCC tissues and cells and positively correlated with higher overall survival. Moreover, miR-30b-3p overexpression significantly repressed cell viability, proliferation, migration, and invasion of HCC cells in vitro. Notably, we demonstrated that miR-30b-3p directly bound to the 3′-untranslated region of tripartite motif containing 27 (TRIM27) mRNA by downregulating the expression of TRIM27, which was demonstrated to be negatively correlated with miR-30b-3p expression. TRIM27 was demonstrated to have an oncogenic role in HCC cells by enhancing cell viability, proliferation, migration, and invasion. Finally, the miR-30-3p-TRIM27-PI3K/Akt axis was shown to play a crucial role in HCC cells in vitro. Conclusion: Our results indicated that miR-30-3p might act as a new biomarker for the future diagnosis and treatment HCC.
Collapse
Affiliation(s)
- Dongkai Gao
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Zumo Zhou
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Heqing Huang
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| |
Collapse
|
135
|
A fluorescence/colorimetric dual-mode sensing strategy for miRNA based on graphene oxide. Anal Bioanal Chem 2019; 412:233-242. [PMID: 31828375 DOI: 10.1007/s00216-019-02269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which are involved in RNA silencing and post-transcriptional regulation of gene expression. Numerous studies have determined the expression of certain miRNAs in specific tissues and cell types, and their aberrant expression is associated with a variety of serious diseases such as cancers, immune-related diseases, and many infectious diseases. This suggests that miRNAs may be attractive and promising non-invasive biomarkers of diseases. In this study, we established a graphene oxide (GO)-based fluorescence/colorimetric dual sensing platform for miRNA by using a newly designed probe. The probe was designed to form a hairpin-like configuration with a fluorescent dye-labeled long tail, possessing a guanine (G)-rich DNAzyme domain in the loop region and target binding domain over the stem region and tail. By introducing this new hairpin-like probe in a conventional GO-based fluorescence platform, we observed both the miRNA-responsive color change by direct observation and sensitive fluorescence increase even below the nanomolar levels in a single solution without an additional separation step.
Collapse
|
136
|
Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int J Mol Sci 2019; 20:ijms20246141. [PMID: 31817512 PMCID: PMC6940932 DOI: 10.3390/ijms20246141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.
Collapse
|
137
|
microRNAs Are Key Regulators in Chronic Lung Disease: Exploring the Vital Link between Disease Progression and Lung Cancer. J Clin Med 2019; 8:jcm8111986. [PMID: 31731655 PMCID: PMC6912590 DOI: 10.3390/jcm8111986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) bind to mRNAs and inhibit their expression through post-transcriptionally regulating gene expression. Here, we elaborate upon the concise summary of the role of miRNAs in carcinogenesis with specific attention to precursor respiratory pathogenesis caused by cigarette smoke modulation of these miRNAs. We review how miRNAs are implicated in cigarette-smoke-driven mechanisms, such as epithelial to mesenchymal transition, autophagy modulation, and lung ageing, which are important in the development of chronic obstructive pulmonary disease and potential progression to lung cancer. Extracellular vesicles are key to inter-cellular communication and sharing of miRNAs. A deeper understanding of the role of miRNAs in chronic respiratory disease and their use as clinical biomarkers has great potential. Therapeutic targeting of miRNAs may significantly benefit the prevention of cancer progression.
Collapse
|
138
|
Li H, Cui X, Hu Q, Chen X, Zhou P. CLK3 Is A Direct Target Of miR-144 And Contributes To Aggressive Progression In Hepatocellular Carcinoma. Onco Targets Ther 2019; 12:9201-9213. [PMID: 31807004 PMCID: PMC6842301 DOI: 10.2147/ott.s224527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with high incidence. The underlying molecular mechanisms of HCC development have been intensively studied. CLK3 (CDC Like Kinase 3) is a nuclear dual-specificity kinase and regulates gene splicing. We investigated the expression profile and functional role of CLK3 in HCC. Methods Immunohistochemistry (IHC) and Western blot were performed to determine CLK3 expression in HCC tissues. Bioinformatics analysis using TCGA and GEO database was conducted to evaluate the relationship between CLK3 expression and HCC prognosis. Cell proliferation was assessed by CCK8, EdU and colony formation assays, while transwell and wound-healing assays were performed to investigate the cell migration and invasion in vitro. Xenograft nude mouse model was used to test the function of CLK3 on tumor growth in vivo. Luciferase reporter assay, Western blot and RT-qPCR were conducted to verify the miRNA that directly targeted CLK3. Results CLK3 was markedly upregulated in HCC tissues, and the expression levels of CLK3 were closely associated with TNM stages and HCC prognosis. Functional analysis indicated that knockdown of CLK3 could suppress HCC cell growth, invasion and migration in vitro, and inhibit tumor development in vivo. Moreover, CLK3 was demonstrated as a direct target of miR-144 and miR-144 expression was inversely correlated with CLK3 expression in HCC. Enforced overexpression of miR-144 markedly inhibited the CLK3 expression while overexpression of CLK3 partially reversed the inhibitory function of miR-144 on HCC cell growth and metastasis. Mechanistically, we found that miR-144 overexpression inhibited Wnt/β-catenin signaling and the inhibition could be partly abolished by overexpression of CLK3. Conclusion In summary, we demonstrate tumor suppressor miR-144 suppresses hepatocellular carcinoma development and metastasis via regulating CLK3 and Wnt/β-catenin signaling, indicating that miR-144/CLK3 could be used for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xichun Cui
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qiuyue Hu
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiaolong Chen
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Pengli Zhou
- Department of Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, People's Republic of China
| |
Collapse
|
139
|
Bao C, Lu Y, Chen J, Chen D, Lou W, Ding B, Xu L, Fan W. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death Dis 2019; 10:807. [PMID: 31649243 PMCID: PMC6813359 DOI: 10.1038/s41419-019-2043-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Lacking of both prognostic biomarkers and therapeutic targets, triple-negative breast cancer (TNBC) underscores pivotal needs to uncover novel biomarkers and viable therapies. MicroRNAs have broad biological functions in cancers and may serve as ideal biomarkers. In this study, by data mining of the Cancer Genome Atlas database, we screened out 4 differentially-expressed microRNAs (DEmiRNAs) between TNBC and normal samples: miR-135b-5p, miR-9-3p, miR-135b-3p and miR-455-5p. They were specially correlated with the prognosis of TNBC but not non-TNBC. The weighted correlation network analysis (WGCNA) for potential target genes of 3 good prognosis-related DEmiRNAs (miR-135b-5p, miR-9-3p, miR-135b-3p) identified 4 hub genes with highly positive correlation with TNBC subtype: FOXC1, BCL11A, FAM171A1 and RGMA. The targeting relationships between miR-9-3p and FOXC1/FAM171A1, miR-135b-3p and RGMA were validated by dual-luciferase reporter assays. Importantly, the regulatory functions of 4 DEmiRNAs and 3 verified target genes on cell proliferation and migration were explored in TNBC cell lines. In conclusion, we shed lights on these 4 DEmiRNAs (miR-135b-5p, miR-9-3p, miR-135b-3p, miR-455-5p) and 3 hub genes (FOXC1, FAM171A1, RGMA) as specific prognostic biomarkers and promising therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China
| | - Yunkun Lu
- Department of Cell Biology and Program in Molecular Cell Biology, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jishun Chen
- Department of Cell Biology and Program in Molecular Cell Biology, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China
| | - Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.,Clinical Research Center, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Key Laboratory of Organ Transplantation, Hangzhou, 310003, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China. .,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
140
|
Abstract
Deregulation of microRNA expression has been shown to play an important role in human malignancies. The identification of circulating-free miRNAs in biofluids a decade ago led to great enthusiasm and motivation to develop non-invasive tests based on the expression of these small non-coding RNAs. Herein, we review the progress within the field of research for identifying circulating miRNA cancer biomarkers and discuss the advantages and challenges associated with this. We also discuss the methodological and analytical variables, which may influence the final miRNA quantification and the importance of standardizing pre-analytical, analytical, and post-analytical processes in order to enable a successful translation of the results from basic research into the clinics.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, The Bartholin Building, Bartholin Allé 6, 8000, Aarhus C, Denmark.,Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
141
|
Li Q, Wu X, Guo L, Shi J, Li J. MicroRNA-7-5p induces cell growth inhibition, cell cycle arrest and apoptosis by targeting PAK2 in non-small cell lung cancer. FEBS Open Bio 2019; 9:1983-1993. [PMID: 31587474 PMCID: PMC6823280 DOI: 10.1002/2211-5463.12738] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miR) are known to be critical regulators in tumor progression. miR-7-5p was reported to be involved in several cancers, including glioblastoma, cervical cancer, and melanoma, but its prognostic value and biological function in non-small-cell lung cancer (NSCLC) remain unclear. In this study, using quantitative real-time PCR analysis, we found that miR-7-5p was significantly downregulated in NSCLC tissues and cell lines. Lower miR-7-5p expression was associated with tumor-node-metastasis stage and tumor size by chi-squared test. Deceased miR-7-5p expression was associated with a worse prognosis in patients with NSCLC using Kaplan-Meier survival analysis and multivariate Cox regression analysis. Experiments in NSCLC cell lines (A549 and H1299) demonstrated that upregulation of miR-7-5p significantly suppressed cell proliferation, but induced cell cycle G0/G1 phase arrest and apoptosis using Cell Counting Kit-8, colony formation, and flow cytometry analysis. Through loss-of-function assays, we further demonstrated that downregulation of miR-7-5p promoted cell proliferation and cell cycle G1/S transition, but decreased cell apoptosis in SPC-A1 cells. Furthermore, P21-activated kinase 2 (PAK2) was predicted and confirmed as a direct target gene of miR-7-5p in NSCLC cells by luciferase reporter assay. In addition, we found PAK2 overexpression could partially reverse the effects of miR-7-5p on cell proliferation, cell cycle distribution, and apoptosis. We thus concluded that lower expression of miR-7-5p was associated with poor prognosis and NSCLC progression by directly targeting PAK2.
Collapse
Affiliation(s)
- Qin Li
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Xingping Wu
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Lin Guo
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Jiaxin Shi
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Jiashu Li
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| |
Collapse
|
142
|
Mo JS, Park WC, Choi SC, Yun KJ, Chae SC. MicroRNA 452 Regulates Cell Proliferation, Cell Migration, and Angiogenesis in Colorectal Cancer by Suppressing VEGFA Expression. Cancers (Basel) 2019; 11:1613. [PMID: 31652600 PMCID: PMC6826374 DOI: 10.3390/cancers11101613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
The human microRNA 452 (MIR452) was identified as a colorectal cancer (CRC)-associated micro RNA (miRNA) by miRNA expression profiling of human CRC tissues versus normal colorectal tissues. It was significantly up-regulated in human CRC tissues. However, the functional mechanisms of MIR452 and its target genes in CRC remain unclear. We identified 27 putative MIR452 target genes, and found that the vascular endothelial growth factor A (VEGFA) was a direct target gene of MIR452. Both cellular and extracellular VEGFA levels were significantly downregulated in CRC cells upon their transfection with MIR452 or siVEGFA. VEGFA expression was frequently downregulated in human CRC tissues in comparison with that in their healthy counterparts. We showed that MIR452 regulated the expression of genes in the VEGFA-mediated signal transduction pathways vascular endothelial growth factor receptor 1 (VEGFR2)-mitogen-activated protein kinase (MAPK) and VEGFR2-SRC proto-oncogene non-receptor tyrosine kinase (SRC) in CRC cells. Immunohistological analyses of xenografted MIR452-overexpressing CRC cells in mice showed that MIR452 regulated cell proliferation and angiogenesis. Furthermore, aortic ring angiogenesis assay in rats clearly showed that the number of microvessels formed was significantly reduced by MIR452 transfection. Our findings suggest that MIR452 regulates cell proliferation, cell migration, and angiogenesis by suppressing VEGFA expression in early CRC progression; therefore, MIR452 may have therapeutic value in relation to human CRC.
Collapse
Affiliation(s)
- Ji Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Won Cheol Park
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Suck-Chei Choi
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Ki Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| |
Collapse
|
143
|
He J, Jin S, Zhang W, Wu D, Li J, Xu J, Gao W. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019; 10:6003-6013. [PMID: 31762810 PMCID: PMC6856583 DOI: 10.7150/jca.35097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation inevitably have a relapse due to the occurrence of acquired resistance, resulting in treatment failure. However, little is known about the mechanisms of acquired resistance of NSCLC patients. Here, we elucidated the expression pattern of LOC554202 and miR-31, and their biological functions and mechanisms in NSCLC with acquired EGFR TKI resistance to gefitinib. In the present study, we observed that LOC554202 and miR-31 promoted proliferation and clonogenic growth of gefitinib-resistant NSCLC cells in vitro. LOC554202 upregulated miR-31 expression and they both reduced sensitivity of NSCLC cells to gefitinib. In a xenograft mice model, we found that knockdown of miR-31 significantly repressed gefitinib-resistant NSCLC cells growth in vivo. Furthermore, both LOC554202 and miR-31 levels were significantly increased in NSCLC patients acquiring resistance to gefitinib, and the expression of LOC554202 was positively correlated with the expression of miR-31. By luciferase reporter assays, we identified RAS P21 Protein Activator 1 (RASA1) and Hypoxia Inducible Factor 1 Subunit Alpha Inhibitor (FIH-1) as direct targets of miR-31 in NSCLC cells. Mechanistically, miR-31 directly repressed RASA1 and FIH-1 expression, and thus, at least partially activated the RAF-MEK-ERK and PI3K-AKT signaling pathways in NSCLC with acquired resistance to gefitinib. In conclusion, these data will help us develop potential therapeutic targets for the diagnosis and treatment of acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
144
|
Liu Y, Gu S, Li H, Wang J, Wei C, Liu Q. SNHG16 promotes osteosarcoma progression and enhances cisplatin resistance by sponging miR-16 to upregulate ATG4B expression. Biochem Biophys Res Commun 2019; 518:127-133. [DOI: 10.1016/j.bbrc.2019.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
|
145
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
146
|
Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM. Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci 2019; 20:926-934. [PMID: 31244421 DOI: 10.2174/1389203720666190618101441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of oncoprotein which has been poorly taken into account in the cellular communication. Among them, E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with the cervical cancer.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sepideh Jahangiri
- Genetics department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Hassan Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
147
|
Wang Y, Li H, Lu H, Qin Y. Circular RNA SMARCA5 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by miR-19b-3p/HOXA9 axis. Onco Targets Ther 2019; 12:7055-7065. [PMID: 31564891 PMCID: PMC6722457 DOI: 10.2147/ott.s216320] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the main type of lung cancer, remaining a leading cause of cancer-related mortality around the world. Circular RNA SMARCA5 (circSMARCA5) is a novel circular RNA associated with the pathogenesis of several cancers. However, the role of circSMARCA5 in NSCLC remains unknown. In the present study, we aimed to evaluate the functions of circSMARCA5 in NSCLC and the underlying mechanism. Methods The expression pattern of circSMARCA5 was determined using qRT-PCR in NSCLC samples and cell lines. The correlation between miR-19b-3p and circSMARCA5 in NSCLC tissues was detected by qRT-PCR. Cell proliferation was examined utilizing CCK-8 assay. Cell migration and invasion was evaluated using Transwell assay. We used the bioinformatics software TargetScan and miRanda to predict circRNA-miRNA and miRNAi-mRNA interactions. Further, the regulatory role of circSMARCA5 in the malignant development of NSCLC in vivo was examined. Results The results showed that circSMARCA5 was down-regulated in NSCLC tissues as compared to the adjacent normal tissues. Overexpression of circSMARCA5 in NSCLC cell lines significantly inhibited the proliferation, migration, and invasion. Furthermore, circSMARCA5 exerted its tumor-suppressive activity through acting as a sponge for microRNA (miR)-19b-3p. Suppression of miR-19b-3p exhibited inhibitory effects on proliferation, migration, and invasion of NSCLC cell lines, which could be attributed to the regulation of homeobox A9 expression. Finally, overexpression of circSMARCA5 inhibited tumor growth in vivo. Conclusion Collectively, circSMARCA5 executed its inhibitory effects on NSCLC cell lines through miR-19b-3p/HOXA9 axis. The results indicated that circSMARCA5 might be a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yaqiu Wang
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Huiping Li
- Respiratory Medicine, the First Affiliated Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| | - Yaguang Qin
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng 475000, People's Republic of China
| |
Collapse
|
148
|
Nan P, Niu Y, Wang X, Li Q. MiR-29a function as tumor suppressor in cervical cancer by targeting SIRT1 and predict patient prognosis. Onco Targets Ther 2019; 12:6917-6925. [PMID: 31692593 PMCID: PMC6717154 DOI: 10.2147/ott.s218043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Cervical cancer is the second most frequently malignant tumors in females and metastasis is a challenge of the treatment of cervical cancer. MiR-29a is usually low expressed in several tumors and its functions in cervical cancer remain unclear. PATIENTS AND METHODS The quantitative real-time polymerase chain reaction was employed to assess the expression of miR-29a and the Sirtuin-1 (SIRT1). Cell metastatic ability was assessed using Transwell and Western blot assays. The dual-luciferase reporter assay was performed to verify that miR-29a targeted to the 3'-untranslated region (UTR) of SIRT1 mRNA. RESULTS MiR-29a was low expressed in cervical cancer and downregulation of miR-29a was associated with poor outcome. MiR-29a regulated the expression of SIRT1 by targeting to its 3'-UTR of mRNA in HeLa cells. SIRT1 was upregulated in cervical cancer tissues and cells in comparison with the non-tumor tissues and normal cells. Upregulation of SIRT1 predicted worse outcome of cervical cancer patients. MiR-29a was participated in the migration, invasion and epithelial-mesenchymal transition (EMT) in cervical cancer through directly targeting to the 3'-UTR of SIRT1 mRNA. SIRT1 reversed partial roles of miR-29a on metastasis in cervical cancer. CONCLUSION miR-29a suppressed migration, invasion and EMT by directly targeting to SIRT1 in cervical cancer. The newly identified miR-29a/SIRT1 axis provides novel insight into the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Ping Nan
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| | - Yugui Niu
- Department of Joint Surgery, Shengli Oil Center Hospital, Dongying, People’s Republic of China
| | - Xiuhua Wang
- Department of Gynecology, Dongying District People’s Hospital, Dongying, People’s Republic of China
| | - Qiang Li
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| |
Collapse
|
149
|
Go H, Jang JY, Kim CW, Huh J, Kim PJ, Jeon YK. Identification of microRNAs modulated by DNA hypomethylating drugs in extranodal NK/T-cell lymphoma. Leuk Lymphoma 2019; 61:66-74. [PMID: 31441360 DOI: 10.1080/10428194.2019.1654096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To identify epigenetically silenced miRNAs and to investigate their influences on predictive target oncogenes in extranodal natural killer/T-cell lymphoma (NKTCL). Decitabine treatment was performed to evaluate methylated miRNAs in NKTCL cells. The relationship between a given miRNA and its target mRNA was validated using 24 tumor tissues. miR-379, miR-134, miR-20b, miR-376a, miR-654-3p, miR-143, miR-181c, miR-1225-5p, miR-1246, and miR-1275 were epigenetically silenced in SNK6 cells. miR-134, miR-376a, miR-143 and miR-181c significantly affected cellular viability. PDGFRα was regulated by miR-34a and miR-181c. miR-143, miR-20b and miR34a regulated STAT3 expression. miR-20b and miR-143 expression showed inverse correlations with STAT3 mRNA expression in NKTCL tissues. K-RAS was regulated by miR-181c. Downregulation of cell viability by salirasib treatment was identified. miRNAs were downregulated by DNA methylation, and several microRNAs affected the viability of NKTCL cells. miR-34a and miR-181c may be involved in the oncogenic progression of NKTCL through the regulation of PDGFRα, STAT3, and K-RAS.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Jang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Chul-Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University College of Dental Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
150
|
Kim EA, Jang JH, Sung EG, Song IH, Kim JY, Lee TJ. MiR-1208 Increases the Sensitivity to Cisplatin by Targeting TBCK in Renal Cancer Cells. Int J Mol Sci 2019; 20:ijms20143540. [PMID: 31331056 PMCID: PMC6679220 DOI: 10.3390/ijms20143540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) can be used to target a variety of human malignancies by targeting their oncogenes or tumor suppressor genes. Recent evidence has shown that miRNA-1208 (miR-1208) was rarely expressed in a variety of cancer cells, suggesting the possibility that miR-1208 functions as a tumor suppressor gene. Herein, ectopic expression of miR-1208 induced the accumulation of sub-G1 populations and the cleavage of procaspase-3 and PARP, which could be prevented by pre-treatment with the pan-caspase inhibitor, Z-VAD. In addition, miR-1208 increased the susceptibility to cisplatin and TRAIL in Caki-1 cells. Luciferase reporter assay results showed that miR-1208 negatively regulates TBC1 domain containing kinase (TBCK) expression by binding to the miR-1208 binding sites in the 3′-untranslated region of TBCK. In addition, miR-1208 specifically repressed TBCK expression at the transcriptional level. In contrast, inhibition of endogenous miR-1208 by anti-miRs resulted in an increase in TBCK expression. Downregulation of TBCK induced by TBCK-specific siRNAs increased susceptibility to cisplatin and TRAIL. These findings suggest that miR-1208 acts as a tumor suppressor and targets TBCK directly, thus possessing great potential for use in renal cancer therapy.
Collapse
Affiliation(s)
- Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Ji-Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-Ro, Nam-Gu, Daegu 42415, Korea.
| |
Collapse
|