101
|
Yu XB, Zhang HN, Dai Y, Zhou ZY, Xu RA, Hu LF, Zhang CH, Xu HQ, An YQ, Tang CR, Lin GY. Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord 2019; 245:939-949. [PMID: 30699879 DOI: 10.1016/j.jad.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Statins play a beneficial role in the treatment of coronary artery disease and are widely prescribed to prevent hypercholesterolemia. Previous studies have demonstrated that statins also have anti-inflammatory and immunomodulatory properties, and these are being explored for potential benefits in depression. However, the role of statins in the treatment of depression has not been well examined. METHODS We investigated the effects of simvastatin on depressive behaviors and neuroinflammation in lipopolysaccharide (LPS) and chronic mild stress (CMS) induced depression model in mice. Sucrose preference test (SPT), forced swimming test (FST), novelty-suppressed feeding test (NSFT) were used to detect the depressive behaviors. The microglial activation was detected by immunohistochemistry analysis and the pro-inflammatory cytokines expressions including IL-1β, TNF-α and IL-6 were examined by Western blot analysis. RESULTS Our data indicated that oral administration of simvastatin at 20 mg/kg significantly prevented and ameliorated depressive behaviors reflected by better performance in the SPT, FST and NSFT. Moreover, simvastatin markedly prevented and ameliorated LPS and CMS-induced neuroinflammation, as shown by the suppressed activation of microglia in hippocampus and decreased hippocampal pro-inflammatory cytokines expressions including IL-1β, TNF-α, IL-6, which might be mediated via the inhibition of NF-κB pathway, as shown by the decreased nuclear NF-κB p65 expression. LIMITATIONS The interpretation of the evidence of a positive treatment effect of simvastatin on the depressive manifestations, multifaceted etiology of depression, and confirmation of this finding from animal models to humans is needed. CONCLUSION These results suggest that simvastatin has the potential to be employed as a therapy for depression associated with neuroinflammation.
Collapse
Affiliation(s)
- Xu-Ben Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Hai-Na Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Ying Dai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Zi-Ye Zhou
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Ren-Ai Xu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Lu-Feng Hu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Chun-Hong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China; Department of Pharmacy, University of Pittsburgh, PA 15260, United States
| | - Hui-Qin Xu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Yun-Qi An
- Department of Pharmacy, University of Pittsburgh, PA 15260, United States
| | - Cong-Rong Tang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China.
| | - Guan-Yang Lin
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, 325000, China.
| |
Collapse
|
102
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Mamoshina MV, Zakharova NV, Ushakov VL, Velichkovsky BM, Didkovsky NA. [A role of the immune system in the pathogenesis of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:72-80. [PMID: 30698566 DOI: 10.17116/jnevro201811812172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review addresses immunological aspects of schizophrenia, a multifactor disease caused by genetic factors, innate disorders of the central nervous system (CNS), including the consequences of perinatal hypoxia and infections, and adverse environmental influences. Neuroinflammation as a part of the pathophysiology of schizophrenia is characterized by the higher transcription of CNS inflammatory mediators, excessive activation of microglia, inhibition of glutamatergic receptors that leads to the decrease in the number of cortical synapses and neuronal apoptosis. The authors discuss a role of genetic polymorphisms of cytokine genes, complement system components etc. The literature data on the changes in systemic immune response and imbalance in Th1/Th2 adaptive immune responses are analyzed as well. Some papers showed higher levels of proinflammatory mediators in CSF and blood of patients with schizophrenia that indicated the involvement of blood brain barrier (BBB) dysfunction. The authors present the recent data on BBB dysfunction in schizophrenia and its role in the pathogenesis of the disease, autoimmunity in patients comparing it with immune activation and genetic predisposition. An important and arguable issues about a role of parasite and viral infections in the pathogenesis of schizophrenia, initiation of immune responses and direct impacts on the brain, an influence of antipsychotic treatment on immunity are discussed. In author's opinion, conflicting results of genetic and immunological studies of schizophrenia may be explained by different methodological approaches to selection of patients and healthy controls and the differences in schizophrenia classification.
Collapse
Affiliation(s)
- I K Malashenkova
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - S A Krynskiy
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - D P Ogurtsov
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - M V Mamoshina
- Research Center 'Kurchatov Institute', Moscow, Russia
| | - N V Zakharova
- Russia; Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia ,Pirogov Russian National Research Medical University, Moscow, Russia
| | - V L Ushakov
- Research Center 'Kurchatov Institute', Moscow, Russia
| | | | - N A Didkovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| |
Collapse
|
103
|
Adeyemi OS, Uloko RA, Awakan OJ, Adeyanju AA, Otohinoyi DA. The oral administration of silver nanoparticles activates the kynurenine pathway in rat brain independently of oxidative stress. Chem Biol Interact 2019; 302:22-27. [PMID: 30707977 DOI: 10.1016/j.cbi.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 01/15/2023]
Abstract
In this work, we determined whether oxidative stress contributed to the activation of the kynurenine pathway by AgNPs. Male Wistar rats weighing between 130 and 146 g were randomly assigned into six groups. Animals in the negative control group were orally administered distilled water while, the other treatment groups were respectively given AgNPs (25 and 50 mg/kg bw) alone or in combination with Trolox (100 mg/kg bw). Results showed that treatments with AgNPs significantly raised protein carbonyl level in rat liver, but the co-treatment with Trolox attenuated the elevation. Conversely, AgNPs raised the level of reduced glutathione (GSH) in rat plasma and tissues compared to the negative control. Further, oral exposure to AgNPs (50 mg/kg bw) significantly elevated rat plasma and brain kynurenine levels compared to the negative control. Meantime, the co-treatment with Trolox appreciably restored kynurenine level in rat plasma, but not in the rat brain. Taken together, findings indicate that the oral administration of AgNPs alone at the doses used in this study, might not have caused oxidative stress. However, the co-treatment with Trolox appears to potentiate oxidative stress in rats following exposure to AgNPs. Furthermore, data support that the activation of the kynurenine pathway in the rat brain by AgNPs might be independent of oxidative stress. The findings are new and contribute to deepen our understanding of the cellular interaction by nanoparticles.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- Medicinal Biochemistry, Nanomedicine and Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran, 251101, Nigeria.
| | - Rhoda Ananu Uloko
- Medicinal Biochemistry, Nanomedicine and Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran, 251101, Nigeria
| | - Oluwakemi Josephine Awakan
- Medicinal Biochemistry, Nanomedicine and Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran, 251101, Nigeria
| | | | | |
Collapse
|
104
|
Zhang F, Yang J, Ji Y, Sun M, Shen J, Sun J, Wang J, Liu L, Shen Y, Zhang R, Chen J, Lu H. Gut Microbiota Dysbiosis Is Not Independently Associated With Neurocognitive Impairment in People Living With HIV. Front Microbiol 2019; 9:3352. [PMID: 30761121 PMCID: PMC6362426 DOI: 10.3389/fmicb.2018.03352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota dysbiosis, which has been linked to many neurological diseases, is common in HIV infection. However, its role in the pathogenesis of neurocognitive impairment is still not established. In this study, a total of 85 HIV infected subjects, naïve to antiretroviral therapy, were classified into two groups—those with HIV-associated neurological diseases (HAND) and those without, using the Montreal Cognitive Assessment (MoCA) test. Fecal samples were collected from all subjects and microbiota were analyzed by 16S rRNA amplicon sequencing. Subjects with HAND were older (P < 0.001), with lower levels of education (P = 0.002), lower CD4 T-cell counts (P = 0.032), and greater heterosexual preference (P < 0.001), than those without HAND. Gut microbiota from subjects with HAND showed significantly lower α-diversity compared to gut microbiota from subjects without HAND (Shannon index, P = 0.003). To exclude confounding bias, 25 subjects from each group, with comparable age, gender, CD4 T-cell count, educational level and sexual preference were further analyzed. The two groups showed comparable α-diversity (for SOB index, Shannon index, Simpson index, ACE index, and Chao index, all with P-value > 0.05) and β-diversity (ANOSIM statistic = 0.010, P = 0.231). There were no significant differences in microbiota composition between the two groups after the correction for a false discovery rate. Consistently, microbiota from the two groups presented similar predictive functional profiles. Gut microbiota dysbiosis is not independently associated with neurocognitive impairment in people living with HIV.
Collapse
Affiliation(s)
- Fengdi Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyang Yang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yongjia Ji
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiayin Shen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianjun Sun
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
105
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
106
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
107
|
Jia S, Guo P, Ge X, Wu H, Lu J, Fan X. Overexpression of indoleamine 2, 3-dioxygenase contributes to the repair of human airway epithelial cells inhibited by dexamethasone via affecting the MAPK/ERK signaling pathway. Exp Ther Med 2018; 16:282-290. [PMID: 29896251 PMCID: PMC5995046 DOI: 10.3892/etm.2018.6163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) catalyzes the degradation of trytophan, which serves a key role in immune suppression via regulating the production of several metabolites. The present study aimed to explore the effects and mechanisms of IDO in the repair of human airway epithelium suppressed by dexamethasone (DEX). Cell viability, proliferation and migration were evaluated using a Cell Counting Kit-8 (CCK-8), 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, and wound-healing assay, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and ELISA were performed to assess the levels of IDO, the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK) pathway-related factors and epidermal growth factor (EGF) expression, respectively. The results revealed that overexpression of IDO enhanced the cell viability, and promoted the proliferation and migration of 16HBE cells which repair was inhibited by DEX. Furthermore, it was indicated that overexpression of IDO affected the MAPK/ERK pathway. In conclusion, overexpression of IDO promoted the human airway epithelium repair inhibited by DEX through affecting MAPK/ERK pathway. The present study implied that IDO may be a potential genetic therapeutic agent and supported the utilization of IDO in asthma.
Collapse
Affiliation(s)
- Shanshan Jia
- Department of Respiration, Hengdian Wenrong's Hospital, Dongyang, Zhejiang 322118, P.R. China
| | - Pin Guo
- Department of Urology, Dong Yang Red Cross Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Xiangjin Ge
- Department of Respiration, Hengdian Wenrong's Hospital, Dongyang, Zhejiang 322118, P.R. China
| | - Huanhuan Wu
- Department of Respiration, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Junhua Lu
- Department of Respiration, Hengdian Wenrong's Hospital, Dongyang, Zhejiang 322118, P.R. China
| | - Xiaofang Fan
- Cor Pulmonale Research Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
108
|
Mazza MG, Lucchi S, Tringali AGM, Rossetti A, Botti ER, Clerici M. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29535038 DOI: 10.1016/j.pnpbp.2018.03.012] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p < 0.001; I2 = 82.4% and SMD = 0.425; p = 0.048; I2 = 86.53%). Heterogeneity-based sensitivity analyses confirmed these findings. Subgroup analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I2 = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy.
| | - Sara Lucchi
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| | | | - Aurora Rossetti
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| | - Eugenia Rossana Botti
- Servizio Psichiatrico di Diagnosi e Cura, Ospedale di Desio, Azienda Socio Sanitaria Territoriale di Monza, Italy
| | - Massimo Clerici
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, MB, Italy
| |
Collapse
|
109
|
Pereira C, Chavarria V, Vian J, Ashton MM, Berk M, Marx W, Dean OM. Mitochondrial Agents for Bipolar Disorder. Int J Neuropsychopharmacol 2018; 21:550-569. [PMID: 29596661 PMCID: PMC6007750 DOI: 10.1093/ijnp/pyy018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. Methods This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Results Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. Conclusions The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.
Collapse
Affiliation(s)
- Círia Pereira
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - João Vian
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Melanie Maree Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wolfgang Marx
- Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Olivia May Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
110
|
Duan KM, Ma JH, Wang SY, Huang Z, Zhou Y, Yu H. The role of tryptophan metabolism in postpartum depression. Metab Brain Dis 2018; 33:647-660. [PMID: 29307018 DOI: 10.1007/s11011-017-0178-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/26/2017] [Indexed: 01/01/2023]
Abstract
The Postpartum depression (PPD) is the most common postpartum psychiatric disorder, afflicting approximately 10%-20% of new mothers. Clinical symptoms of the PPD include depressive disorder, agitation, insomnia, anxiety and confusion, resulting in an increase in suicidal tendencies, thereby having significant impacts on the puerpera, newborn and their family. A growing body of data indicate a role for alterations in tryptophan metabolism in the PPD. The metabolism of tryptophan produces an array of crucial factors that can differentially regulate key physiological processes linked to the PPD. Importantly, an increase in stress hormones and immune-inflammatory activity drives tryptophan to the production of neuroregulatory kynurenine pathway products and away from the serotonin and melatonin pathways. This links the PPD to other disorders of depressed mood, which are classically associated with decreased serotonin and melatonin, coupled to increases in kynurenine pathway products. Several kynurenine pathway products, such as kynurenic acid and quinolinic acid, can have neuroregulatory effects, with consequences pathological underpinnings of the PPD. The current article reviews the role of alterations in tryptophan metabolism in the PPD.
Collapse
Affiliation(s)
- Kai-Ming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Jia-Hui Ma
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Sai-Ying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| | - ZhengDong Huang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - YingYong Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - HeYa Yu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| |
Collapse
|
111
|
Halaris A. Neuroinflammation and neurotoxicity contribute to neuroprogression in neurological and psychiatric disorders. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The immune system and inflammatory processes contribute to brain-related pathologies in most, if not all, neurological and psychiatric disorders. Stress is a key factor in inducing immune system dysregulation in conjunction with genetic, epigenetic and environmental factors. Activation of the immune response can alter neurotransmission leading, among others, to serotonin deficiency, and increased production of neurotoxic substances contributing to disease progression. The concept of neuroprogression is gaining acceptance among clinicians and researches as it seeks to explain the mechanism(s) responsible for disease chronicity, recurrence and treatment resistance. Therefore, measurement of neuroinflammatory biomarkers along with assessment of neurotoxic metabolites, oxidative stress and neuroplasticity impairment, will ultimately be useful tools to predict and possibly prevent the development and progression of neuropsychiatric disorders as well as to identify the most efficacious treatments.
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry & Behavioral Neuroscience, Loyola University Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
112
|
Hlavacova N, Li Y, Pehrson A, Sanchez C, Bermudez I, Csanova A, Jezova D, Franklin M. Effects of vortioxetine on biomarkers associated with glutamatergic activity in an SSRI insensitive model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:332-338. [PMID: 29269186 DOI: 10.1016/j.pnpbp.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the antidepressant activity of vortioxetine in a tryptophan (TRP) depletion female rat model of depression and compare it to that of paroxetine using doses that fully occupy the serotonin transporter (SERT). We evaluated the effects of vortioxetine on potential biomarkers associated with TRP depletion including serum aldosterone, corticosterone and IL-6 levels together with indirect indicators of glutamate neurotransmission. Female Sprague-Dawley rats were randomized to control, low TRP, low TRP/paroxetine or low TRP/vortioxetine groups. Vortioxetine and paroxetine were administered via diet (10mg/kg/day) and drinking water (10mg/kg/day) respectively for 14days. Vortioxetine but not paroxetine reversed TRP depletion-induced depressive-like behavior. Vortioxetine reduced TRP depletion-induced increases of serum corticosterone, aldosterone, IL-6 and N-methyl-d-aspartate and α7-nicotinic acetylcholine receptor expression in the amygdala and hippocampus, respectively. Paroxetine demonstrated little effect except a reduction of aldosterone. Vortioxetine but not paroxetine reversed TRP depletion-induced reductions of serum and brain kynurenic acid. In conclusion, vortioxetine, but not paroxetine, enabled reversals of TRP depletion-induced changes of depression-like behavior and markers of glutamatergic activity. These observations support the hypothesis that vortioxetine's antidepressant activity may involve mechanisms beyond SERT inhibition.
Collapse
Affiliation(s)
- N Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Y Li
- Department of Neuroscience, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - A Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - C Sanchez
- Department of Neuroscience, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - I Bermudez
- School of Life Sciences, Oxford Brookes University, Oxford, UK
| | - A Csanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - D Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Franklin
- School of Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
113
|
Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268:157-168. [PMID: 27619930 DOI: 10.1007/s00406-016-0731-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Decreased availability of serotonin in the central nervous system has been suggested to be a central factor in the pathogenesis of depression. Activation of indoleamine 2-3 dioxygenase following a pro-inflammatory state could reduce the amount of tryptophan converted to serotonin and increase the production of tryptophan catabolites such as kynurenic acid, an antagonist of ionotropic excitatory aminoacid receptors, whose levels are reduced in bipolar disorder. Abnormalities in white matter (WM) integrity have been widely reported in BD. We then hypothesized that metabolites involved in serotoninergic turnover in BD could influence DTI measures of WM microstructure. Peripheral levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxy-kynurenine, and 5-HIAA were analysed in 22 patients affected by BD and 15 healthy controls. WM microstructure was evaluated using diffusion tensor imaging and tract-based spatial statistics with threshold-free cluster enhancement only in bipolar patients. We observed that kynurenic acid and 5-HIAA were reduced in BD and associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, cingulum bundle, corpus callosum, uncus, anterior thalamic radiation and corona radiata. Our results seem to suggest that higher levels of 5-HIAA, a measure of serotonin levels, and higher levels of kynurenic acid, which protects from glutamate excitotoxicity, could exert a protective effect on WM microstructure. Reduced levels of these metabolites in BD thus seem to confirm a crucial role of serotonin turnover in BD pathophysiology.
Collapse
|
114
|
Zhang H, Liu W, Liu Z, Ju Y, Xu M, Zhang Y, Wu X, Gu Q, Wang Z, Xu J. Discovery of indoleamine 2,3-dioxygenase inhibitors using machine learning based virtual screening. MEDCHEMCOMM 2018; 9:937-945. [PMID: 30108982 DOI: 10.1039/c7md00642j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO), an immune checkpoint, is a promising target for cancer immunotherapy. However, current IDO inhibitors are not approved for clinical use yet; therefore, new IDO inhibitors are still demanded. To identify new IDO inhibitors, we have built naive Bayesian (NB) and recursive partitioning (RP) models from a library of known IDO inhibitors derived from recent publications. Thirteen molecular fingerprints were used as descriptors for the models to predict IDO inhibitors. An in-house compound library was virtually screened using the best machine learning model, which resulted in 50 hits for further enzyme-based IDO inhibitory assays. Consequently, we identified three new IDO inhibitors with IC50 values of 1.30, 4.10, and 4.68 μM. These active compounds also showed IDO inhibitory activities in cell-based assays. The compounds belong to the tanshinone family, a typical scaffold family derived from Danshen (a Chinese herb), the dried root of Salvia miltiorrhiza, which has been widely used in China, Japan, the United States, and other European countries for the treatment of cardiovascular and cerebrovascular diseases. Thus, we discovered a new use for Danshen using machine learning methods. Surface plasmon resonance (SPR) experiments proved that the inhibitors interacted with the IDO target. Molecular dynamic simulations demonstrated the binding modes of the IDO inhibitors.
Collapse
Affiliation(s)
- Hongao Zhang
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Wei Liu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Zhihong Liu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Yingchen Ju
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Mengyang Xu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Yue Zhang
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Xinyu Wu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Qiong Gu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Zhong Wang
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| | - Jun Xu
- Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . ; ;
| |
Collapse
|
115
|
Misiak B, Beszłej JA, Kotowicz K, Szewczuk-Bogusławska M, Samochowiec J, Kucharska-Mazur J, Frydecka D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:177-188. [PMID: 28433456 DOI: 10.1016/j.pnpbp.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022]
Abstract
Overwhelming evidence indicates the involvement of immune-inflammatory processes in the pathophysiology of major depressive disorder (MDD). Peripheral cytokine alterations serve as one of most consistently reported indices of subthreshold inflammatory state observed in MDD. Although cytokines cannot pass directly through the blood-brain barrier, a number of transport mechanisms have been reported. In addition, peripheral cytokines may impact central nervous system via downstream effectors of their biological activity. Animal model studies have provided evidence that cytokines might impact cognitive performance through direct and indirect effects on long-term potentiation, neurogenesis and synaptic plasticity. Therefore, it has been hypothesized that cytokine alterations might contribute to cognitive impairment that is widely observed in MDD and persists beyond episodes of acute relapse in the majority of patients. Although several studies have provided that peripheral cytokine alterations might be related to cognitive deficits in patients with MDD, the quality of evidence still leaves much to be desired due to methodological heterogeneity and limitations. In this article, we provide an overview of studies investigating the association between peripheral cytokine alterations and cognitive performance in MDD, discuss underlying mechanisms and neural substrates. Finally, we propose possible treatment targets related to cytokine alterations taking into account existing evidence for antidepressant efficacy of anti-inflammatory pharmacological treatment modalities.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
116
|
Wang AK, Miller BJ. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr Bull 2018; 44:75-83. [PMID: 28338954 PMCID: PMC5768046 DOI: 10.1093/schbul/sbx035] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Schizophrenia, bipolar disorder, and major depressive disorder (MDD) have all been associated with immune system dysfunction, including aberrant cerebrospinal fluid (CSF) levels of cytokines and tryptophan catabolites; however, the pattern of alterations has not been compared across disorders. We performed a meta-analysis of CSF cytokine and tryptophan catabolites in patients with these major psychiatric disorders. METHODS Articles were identified by searching Pub Med, PsycInfo, and Web of Science, and the reference lists of these studies. RESULTS Twenty-eight studies met the inclusion criteria (16 schizophrenia, 4 bipolar disorder, and 9 MDD). CSF levels of IL-1β and kynurenic acid were significantly increased in patients with schizophrenia and bipolar disorder compared to healthy controls (P < .001). CSF levels of IL-6 and IL-8 were significantly increased in patients with schizophrenia and MDD compared to healthy controls (P ≤ .013). DISCUSSION There is preliminary evidence for similarities in the pattern of CSF cytokine and tryptophan catabolite alterations across major psychiatric disorders, although findings must be interpreted with caution in light of small numbers of studies/subjects. Many CSF alterations are also concordant with those in the peripheral blood, particularly for schizophrenia. Findings have important implications for our understanding of the pathophysiology and treatment of major psychiatric disorders.
Collapse
Affiliation(s)
| | - Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA,To whom correspondence should be addressed; Department of Psychiatry and Health Behavior, Augusta University, 997 Saint Sebastian Way, Augusta, GA 30912, US; tel: +1-706-721-4445, fax: +1-706-721-1793, e-mail:
| |
Collapse
|
117
|
Kim YK, Jeon SW. Neuroinflammation and the Immune-Kynurenine Pathway in Anxiety Disorders. Curr Neuropharmacol 2018; 16:574-582. [PMID: 28901278 PMCID: PMC5997870 DOI: 10.2174/1570159x15666170913110426] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/10/2017] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recently, neuroinflammation and the immune-kynurenine pathway have received increased attention in the psychoimmunology field of major depressive disorder (MDD), while studies related to anxiety disorders have been very limited. OBJECTIVE This study reviewed possible mechanisms by which stress or inflammation modulate anxiety through tryptophan metabolism and the kynurenine pathway. METHODS Relevant literature was identified through a search of MEDLINE via PubMed. RESULTS Accumulating evidence has indicated the modulatory effects of the immune-kynurenine pathway on anxiety. The tryptophan catabolites (TRYCATs) in the kynurenine pathway imbalanced by stress or inflammation induce serotonin and melatonin deficiency, making anxiety reactions more sensitive. In addition, TRYCATs cause or sustain anxiety by acting as endogenous anxiogens or anxiolytics, an NMDA agonist or antagonist, or a free radical generator. CONCLUSION We hope that our understanding of the psychoimmunological mechanisms of anxiety will be expanded and anxiety-related studies will receive greater attention.
Collapse
Affiliation(s)
| | - Sang Won Jeon
- Address correspondence to this author at the Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea; Tel: +82-2-2001-2073; Fax: +82-2-2001-2211; E-mail:
| |
Collapse
|
118
|
van den Ameele S, Fuchs D, Coppens V, de Boer P, Timmers M, Sabbe B, Morrens M. Markers of Inflammation and Monoamine Metabolism Indicate Accelerated Aging in Bipolar Disorder. Front Psychiatry 2018; 9:250. [PMID: 29962973 PMCID: PMC6010913 DOI: 10.3389/fpsyt.2018.00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background: A mild pro-inflammatory status accompanies bipolar disorder (BD). Inflammation can cause a shift in monoamine metabolism, thereby activating more cytotoxic pathways. The extent to which low-grade inflammation in BD interacts with monoamine metabolism and how this accords to aging and clinical course is unknown. Objectives: We evaluated the presence of alterations in inflammation and monoamine metabolism in BD throughout different mood states and the role of aging therein. Methods: Sixty-seven patients with BD were included during an acute mood episode, either depressive (n = 29), (hypo)manic (n = 29), or mixed (n = 9). Plasma levels of inflammatory markers [tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-y), interleukin-6 (IL-6), and C-reactive protein (CRP)] and markers of monoamine metabolism (neopterin, tryptophan, kynurenine, phenylalanine, and tyrosine) were measured repeatedly during a follow-up of 8 months. Levels in patients were compared to controls (n = 35) and correlated to HDRS-17 and YMRS scores. Spearman correlations and linear mixed model analysis were used for statistical analysis. Results: Forty-nine patients and 30 controls (age range: 22-62 years) completed the study. No significant differences in inflammatory markers were found between patients and controls overall. Tryptophan, tyrosine, and phenylalanine levels were lower in patients. In both patients and controls, markers of inflammation correlated only weakly with markers of monoamine metabolism, but correlations representative for activity of cytotoxic pathways in monoamine metabolism were more pronounced in patients. In patients, but not in controls, older age was associated with increases in inflammatory markers (IL-6, CRP, neopterin) and the kynurenine/tryptophan ratio. None of the biological markers correlated significantly with mood symptom severity. Conclusion: Our data suggest an increased susceptibility of patients with BD to develop a pro-inflammatory state and to shift monoamine metabolism toward more cytotoxic pathways. These findings are in support of the theory of neuroprogression and accelerated aging in BD. Since associations between biological markers and clinical characteristics are limited, it remains to be determined if alterations in biological markers are due to a disease effect or rather are a consequence of confounding factors.
Collapse
Affiliation(s)
- Seline van den Ameele
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Violette Coppens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Peter de Boer
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| |
Collapse
|
119
|
Infliximab ameliorating depression-like behavior through inhibiting the activation of the IDO-HAAO pathway mediated by tumor necrosis factor-α in a rat model. Neuroreport 2017; 27:953-9. [PMID: 27366867 DOI: 10.1097/wnr.0000000000000637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, some studies have suggested that the activation of inflammatory system plays a role in the occurrence of depression. Tumor necrosis factor-α (TNF-α), as one of the preinflammatory cytokines, has been reported to be involved in the occurrence of various diseases including depression. Infliximab, an antagonist of TNF-α, is usually used to treat some autoimmune diseases such as Crohn's disease and can perhaps be used to treat other diseases. In this study, the antidepressant effect and a possible mechanism of infliximab were investigated by studying the depression-like behavior and expression of TNF-α, indoleamine 2, 3-dioxygenase (IDO), and 3-hydroxyl amino acid oxygenase (HAAO) from the cortex and hippocampus in rat exposed to chronic unpredicted stress. Forty male Sprague-Dawley rats were divided into a control group (CG), an infliximab-treated control group, a model group (MG), and an infliximab-treated model group (IFXM). Infliximab (5 mg/kg once week) was administered to the infliximab-treated control group and IFXM rats by an intraperitoneal injection, whereas an equivalent volume of vehicle was administered to CG and MG rats. Rat behaviors and the expression of TNF-α, IDO, and HAAO in the cortex and hippocampus were determined. It was found that a significant relief in depression-like behaviors was observed with a downregulation of TNF-α, IDO, and HAAO expression in the IFXM rats compared with MG rats. The results show the antidepressant effect of infliximab and suggest that its mechanism is partly related to inhibition of IDO-HAAO pathway activation mediated by TNF-α in rat brain.
Collapse
|
120
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
121
|
Crotti S, D’Angelo E, Bedin C, Fassan M, Pucciarelli S, Nitti D, Bertazzo A, Agostini M. Tryptophan metabolism along the kynurenine and serotonin pathways reveals substantial differences in colon and rectal cancer. Metabolomics 2017; 13:148. [DOI: 10.1007/s11306-017-1288-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
122
|
Jeon SW, Kim YK. Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol 2017; 313:92-98. [PMID: 29153615 DOI: 10.1016/j.jneuroim.2017.10.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/15/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is not the only cause of depression and cannot explain its entire pathophysiology, but it is an important pathogenic factor that explains one possible mechanism of depression, with the kynurenine (KYN) pathway of tryptophan at its center. In particular, greater impairment seems to exist in the KYN pathway in inflammation-induced depression related to immunotherapy, autoimmune disease, and infection. In patients with these conditions, immunopharmacology is likely to be an important therapy. To develop this therapy, clear evidence of the immune-KYN pathway must be established via multiple types of experiments. This paper reviews the body of evidence, not only for the action of tryptophan (TRY) and consequent serotonin depletion, but also for the detrimental effects of TRY catabolites and the key enzymes in the KYN pathway that play important roles in the pathophysiology of inflammation-induced depression. In addition, this paper explores a potential treatment strategy for inflammation-induced depression using KYN metabolism.
Collapse
Affiliation(s)
- Sang Won Jeon
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
123
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
124
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
125
|
Kim YK, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 2017; 329:6-11. [DOI: 10.1016/j.bbr.2017.04.020] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
|
126
|
Manchia M, Carpiniello B, Valtorta F, Comai S. Serotonin Dysfunction, Aggressive Behavior, and Mental Illness: Exploring the Link Using a Dimensional Approach. ACS Chem Neurosci 2017; 8:961-972. [PMID: 28378993 DOI: 10.1021/acschemneuro.6b00427] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aggressive individuals have higher rates of mental illness compared to non-aggressive individuals. Multiple factors, including psychosocial, genetic, and neurobiological determinants modulate the liability to both aggressive behavior and mental illness. Concerning the latter factors, multiple lines of evidence have shown a dysfunction in the serotonin (5-HT) system occurring in aggressive and in mentally ill individuals. In particular, reduced 5-HT activity has been associated with depression as well as with aggressive behavior, especially with impulsive aggression. Consistently, psychopharmacological interventions aimed at boosting the 5-HT system (e.g., with selective serotonin reuptake inhibitors) have demonstrated therapeutic efficacy in a high percentage of patients with either or both pathological conditions. Current knowledge does not yet allow to clearly disentangle whether 5-HT dysfunction, most often a 5-HT deficiency, is the cause or the consequence of the aggressive/violent behavior, of the underlying mental disease/s, or the expression of the comorbidity. Future studies are thus needed to clarify the association between changes in 5-HT levels, altered activity of 5-HT receptors and their intracellular signaling cascades, and modifications of 5-HT genes, and in particular the neurobiological link between the altered 5-HT machinery and aggressive behavior in the context or in the absence of mental illness. In this Review, we employ a dimensional approach to discuss the trivariate relationship among the 5-HT system, aggressive behavior, and mental illness, focusing our attention on 5-HT levels, 5-HT receptors, metabolic enzymes, and their genes. Emphasis is given to controversial findings, still unanswered questions, and future perspectives.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry,
Department of Medical Sciences and Public Health, University of Cagliari, 09121 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Bernardo Carpiniello
- Section of Psychiatry,
Department of Medical Sciences and Public Health, University of Cagliari, 09121 Cagliari, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Stefano Comai
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
127
|
Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, Cinosi E, Davies S, Domschke K, Fineberg N, Grünblatt E, Jarema M, Kim YK, Maron E, Masdrakis V, Mikova O, Nutt D, Pallanti S, Pini S, Ströhle A, Thibaut F, Vaghix MM, Won E, Wedekind D, Wichniak A, Woolley J, Zwanzger P, Riederer P. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry 2017; 18:162-214. [PMID: 27419272 PMCID: PMC5341771 DOI: 10.1080/15622975.2016.1190867] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - David Baldwin
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marianna Abelli
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Blanca Bolea-Alamanac
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France
| | - Samuel R. Chamberlain
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eduardo Cinosi
- Department of Neuroscience Imaging and Clinical Sciences, Gabriele D’Annunzio University, Chieti, Italy
| | - Simon Davies
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, University of Toronto, Toronto, Canada
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Katharina Domschke
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Naomi Fineberg
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
| | - Edna Grünblatt
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marek Jarema
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Yong-Ku Kim
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eduard Maron
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia
- Department of Psychiatry, University of Tartu, Estonia
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Vasileios Masdrakis
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Olya Mikova
- Foundation Biological Psychiatry, Sofia, Bulgaria
| | - David Nutt
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Stefano Pallanti
- UC Davis Department of Psychiatry and Behavioural Sciences, Sacramento, CA, USA
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – University Medica Center Berlin, Berlin, Germany
| | - Florence Thibaut
- Faculty of Medicine Paris Descartes, University Hospital Cochin, Paris, France
| | - Matilde M. Vaghix
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Eunsoo Won
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Jade Woolley
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter Zwanzger
- kbo-Inn-Salzach-Klinikum Wasserburg am Inn, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Peter Riederer
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
128
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
129
|
Won E, Kim YK. Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol 2017; 14:665-73. [PMID: 27640517 PMCID: PMC5050399 DOI: 10.2174/1570159x14666151208113006] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/17/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
The autonomic nervous system is one of the major neural pathways activated by stress. In situations that are often associated with chronic stress, such as major depressive disorder, the sympathetic nervous system can be continuously activated without the normal counteraction of the parasympathetic nervous system. As a result, the immune system can be activated with increased levels of pro-inflammatory cytokines. These inflammatory conditions have been repeatedly observed in depression. In the search for the mechanism by which the immune system might contribute to depression, the enhanced activity of indoleamine 2,3-dioxygenase by pro-inflammatory cytokines has been suggested to play an important role. Indoleamine 2,3-dioxygenase is the first enzyme in the kynurenine pathway that converts tryptophan to kynurenine. Elevated activity of this enzyme can cause imbalances in downstream kynurenine metabolites. This imbalance can induce neurotoxic changes in the brain and create a vulnerable glial-neuronal network, which may render the brain susceptible to depression. This review focuses on the interaction between stress, the autonomic nervous system and the immune system which can cause imbalances in the kynurenine pathway, which may ultimately lead to major depressive disorder.
Collapse
Affiliation(s)
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 425-021, Republic of Korea
| |
Collapse
|
130
|
TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder. Brain Behav Immun 2017; 59:265-272. [PMID: 27640899 DOI: 10.1016/j.bbi.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/21/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and abnormalities in Toll-like receptor (TLR) expression and activation have been linked to major depressive disorder (MDD). However, negative regulators of TLR pathways have not been previously investigated in this context. Here, we sought to investigate the association of depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17), with mRNA expression levels of negative regulators of the TLR pathway, including SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2 and TNFAIP3, in peripheral blood mononuclear cells (PBMCs) from 100 patients with MDD and 53 healthy controls, before and after treatment with antidepressants. Positive regulators of the TLR4 pathway, including Pellino 1, TRAF6 and IRAK1, were also investigated. Among all patients, MyD88s, and TNFAIP3 mRNAs were expressed at lower levels in PBMCs from patients with MDD. Multiple linear regression analyses revealed that TNFAIP3 mRNA expression before treatment was inversely correlated with severity of depression and effectively predicted improvement in HAMD-17 scores. Among 79 treatment-completers, only TNFAIP3 mRNA was significantly increased by treatment with antidepressants for 4 weeks. Treatment of human monocytes (THP-1) and mouse microglia (SIM-A9) cell lines with fluoxetine significantly increased TNFAIP3 mRNA expression and suppressed IL-6 levels. The suppressive effect of fluoxetine on IL-6 was attenuated by knockdown of TNFAIP3 expression. These findings suggest that both dysfunction of the negative regulatory system in patients with MDD and antidepressant treatment exert anti-inflammatory effects, at least in part through increased expression of the TNFAIP3 gene. They also indicate that modulating expression of the TNFAIP3 gene to rebalance TLR-mediated inflammatory signaling may be potential therapeutic strategy for treating MDD.
Collapse
|
131
|
Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin Sci (Lond) 2016; 131:123-138. [DOI: 10.1042/cs20160009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in the central nervous system, promoting synaptic plasticity, neurogenesis and neuroprotection. The BDNF gene structure is very complex and consists of multiple 5′-non-coding exons, which give rise to differently spliced transcripts, and one coding exon at the 3′-end. These multiple transcripts, together with the complex transcriptional regulatory machinery, lead to a complex and fine regulation of BDNF expression that can be tissue and stimulus specific. BDNF effects are mainly mediated by the high-affinity, tropomyosin-related, kinase B receptor and involve the activation of several downstream cascades, including the mitogen-activated protein kinase, phospholipase C-γ and phosphoinositide-3-kinase pathways. BDNF exerts a wide range of effects on neuronal function, including the modulation of activity-dependent synaptic plasticity and neurogenesis. Importantly, alterations in BDNF expression and function are involved in different brain disorders and represent a major downstream mechanism for stress response, which has important implications in psychiatric diseases, such as major depressive disorders and schizophrenia. In the present review, we have summarized the main features of BDNF in relation to neuronal plasticity, stress response and pathological conditions, and discussed the role of BDNF as a possible target for pharmacological and non-pharmacological treatments in the context of psychiatric illnesses.
Collapse
|
132
|
Honório de Melo Martimiano P, de Sa Braga Oliveira A, Ferchaud-Roucher V, Croyal M, Aguesse A, Grit I, Ouguerram K, Lopes de Souza S, Kaeffer B, Bolaños-Jiménez F. Maternal protein restriction during gestation and lactation in the rat results in increased brain levels of kynurenine and kynurenic acid in their adult offspring. J Neurochem 2016; 140:68-81. [PMID: 27778340 DOI: 10.1111/jnc.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022]
Abstract
Early malnutrition is a risk factor for depression and schizophrenia. Since the offspring of malnourished dams exhibit increased brain levels of serotonin (5-HT), a tryptophan-derived neurotransmitter involved in the pathophysiology of these mental disorders, it is believed that the deleterious effects of early malnutrition on brain function are due in large part to altered serotoninergic neurotransmission resulting from impaired tryptophan (Trp) metabolism. However, tryptophan is also metabolized through the kynurenine (KYN) pathway yielding several neuroactive compounds including kynurenic (KA), quinolinic (QA) and xanthurenic (XA) acids. Nevertheless, the impact of perinatal malnutrition on brain kynurenine pathway metabolism has not been examined to date. Here, we used ultra-performance liquid chromatography-tandem mass spectrometry for the simultaneous quantification of tryptophan and a set of seven compounds spanning its metabolism through the serotonin and kynurenine pathways, in the brain of embryos and adult offspring of rat dams fed a protein-restricted (PR) diet. Protein-restricted embryos showed reduced brain levels of Trp, serotonin and KA, but not of KYN, XA, or QA. In contrast, PR adult rats exhibited enhanced levels of Trp in the brainstem and cortex along with increased concentrations of 5-HT, kynurenine and XA. The levels of XA and KA were also increased in the hippocampus of adult PR rats. These results show that early protein deficiency induces selective and long-lasting changes in brain kynurenine metabolism. Given the regulatory role of KYN pathway metabolites on brain development and function, these changes might contribute to the risk of developing psychiatric disorders induced by early malnutrition.
Collapse
Affiliation(s)
- Paula Honório de Melo Martimiano
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - André de Sa Braga Oliveira
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Véronique Ferchaud-Roucher
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Mikaël Croyal
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Audrey Aguesse
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Isabelle Grit
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Khadija Ouguerram
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bertrand Kaeffer
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | | |
Collapse
|
133
|
The G allele in IL-10-1082 G/A may have a role in lowering the susceptibility to panic disorder in female patients. Acta Neuropsychiatr 2016; 28:357-361. [PMID: 27264274 DOI: 10.1017/neu.2016.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Immune system activation is involved in the pathophysiology of panic disorder (PD). We investigated INF-γ+874 A/T, TNF-α-308 G/A, and IL-10-1082 G/A single nucleotide polymorphisms (SNPs) to determine their association with PD. METHOD This study enroled 135 PD patients and 135 healthy controls. INF-γ+874 A/T (rs2430561), TNF-α-308 G/A (rs1800629), and IL-10-1082 G/A (rs1800896) were genotyped. RESULTS There were no differences in genotypes or allele frequencies between the patient and control groups, regardless of accompanying agoraphobia. However, for female patients, the G allele frequency in IL-10 SNP was higher in the control group than in the patient group. Additionally, the female control group had a higher frequency of the A/G and G/G genotype in the IL-10 SNP than the female patient group. CONCLUSION We suggest that the G allele in IL-10-1082 G/A might have a role in reducing the manifestations of PD in female patients. Further studies are needed to extend and confirm our findings.
Collapse
|
134
|
Kim HJ, Jeon SW, Yoon HK. Recurrence of Panic Attacks after Influenza Vaccination: Two Case Reports. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:396-398. [PMID: 27776395 PMCID: PMC5083943 DOI: 10.9758/cpn.2016.14.4.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 11/18/2022]
Abstract
Human influenza is a contagious respiratory illness caused by the influenza virus. The influenza vaccination is recommended annually, but several adverse effects related to allergic reactions have been reported. Panic attacks are also known to occur, but no case of a panic attack adverse effect has been reported in South Korea. We present two cases of panic disorder patients whose symptoms were aggravated by the influenza vaccination. We assumed that dysregulation of T-lymphocytes in panic disorder patients could have a role in activating various kinds of cytokines and chemokines, which then can lead to panic attack aggravation.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Sang-Won Jeon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
135
|
Karu N, McKercher C, Nichols DS, Davies N, Shellie RA, Hilder EF, Jose MD. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study. BMC Nephrol 2016; 17:171. [PMID: 27832762 PMCID: PMC5103367 DOI: 10.1186/s12882-016-0387-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
Background Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Methods Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15–29 mL/min/1.73 m2. Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic–pituitary–adrenal (HPA) axis marker cortisol. Results The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P < 0.0001) and 5 metabolites of tryptophan (R range 0.5–0.7, all P ≤ 0.01), which were all negatively related to eGFR (P < 0.05). Higher levels of kynurenic acid were associated with lower cognitive functioning (Spearman R = −0.39, P < 0.05), while indole-3 acetic acid (IAA) was correlated with anxiety and depression (R = 0.52 and P = 0.005, R = 0.39 and P < 0.05, respectively). Conclusions The results of this preliminary study suggest the involvement of inflammation in tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0387-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naama Karu
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia. .,Present address: The Metabolomics Innovation Centre (TMIC), Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Charlotte McKercher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Noel Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert A Shellie
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria, 3134, Australia
| | - Emily F Hilder
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Future Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Matthew D Jose
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Renal unit, Royal Hobart Hospital, Hobart, Tasmania, Australia
| |
Collapse
|
136
|
Steiner J, Brisch R, Schiltz K, Dobrowolny H, Mawrin C, Krzyżanowska M, Bernstein HG, Jankowski Z, Braun K, Schmitt A, Bogerts B, Gos T. GABAergic system impairment in the hippocampus and superior temporal gyrus of patients with paranoid schizophrenia: A post-mortem study. Schizophr Res 2016; 177:10-17. [PMID: 26922657 DOI: 10.1016/j.schres.2016.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glutamic acid decarboxylase (GAD) is a key enzyme in GABA synthesis and alterations in GABAergic neurotransmission related to glial abnormalities are thought to play a crucial role in the pathophysiology of schizophrenia. This study aimed to identify potential differences regarding the neuropil expression of GAD between paranoid and residual schizophrenia. METHODS GAD65/67 immunostained histological sections were evaluated by quantitative densitometric analysis of GAD-immunoreactive (ir) neuropil. Regions of interest were the hippocampal formation (CA1 field and dentate gyrus [DG]), superior temporal gyrus (STG), and laterodorsal thalamic nucleus (LD). Data from 16 post-mortem schizophrenia patient samples (10 paranoid and 6 residual schizophrenia cases) were compared with those from 16 matched controls. RESULTS Overall, schizophrenia patients showed a lower GAD-ir neuropil density (P=0.014), particularly in the right CA1 (P=0.033). However, the diagnostic subgroups differed significantly (P<0.001), mainly because of lower right CA1 GAD-ir neuropil density in paranoid versus residual patients (P=0.036) and controls (P<0.003). Significant GAD-ir neuropil reduction was also detected in the right STG layer V of paranoid versus residual schizophrenia cases (P=0.042). GAD-ir neuropil density correlated positively with antipsychotic dosage, particularly in CA1 (right: r=0.850, P=0.004; left: r=0.800, P=0.010). CONCLUSION Our finding of decreased relative density of GAD-ir neuropil suggests hypofunction of the GABAergic system, particularly in hippocampal CA1 field and STG layer V of patients with paranoid schizophrenia. The finding that antipsychotic medication seems to counterbalance GABAergic hypofunction in schizophrenia patients suggests the possibility of exploring new treatment avenues which target this system.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katharina Braun
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, University of Magdeburg, Magdeburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland; Department of Zoology/Developmental Neurobiology, Institute of Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
137
|
Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:117-26. [PMID: 27046518 DOI: 10.1016/j.pnpbp.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Treatment-resistant depression (TRD) causes substantial socioeconomic burden. Although a consensus on the definition of TRD has not yet been reached, it is certain that classic monoaminergic antidepressants are ineffective for TRD. One decade ago, many researchers found ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, to be an alternative to classic monoaminergic antidepressants. The major mechanisms of action of ketamine rapidly induce synaptogenesis in the brain-derived neurotrophic factor (BDNF) pathway. Although excessive glutamatergic neurotransmission and consequent excitotoxicity were considered a major cause of TRD, recent evidence suggests that the extrasynaptic glutamatergic receptor signal pathway mainly contributes to the detrimental effects of TRD. Glial cells such as microglia and astrocytes, early life adversity, and glucocorticoid receptor dysfunction participate in complex cross-talk. An appropriate reuptake of glutamate at the astrocyte is crucial for preventing 'spill-over' of synaptic glutamate and binding to the extrasynaptic NMDA receptor. Excessive microglial activation and the inflammatory process cause astrocyte glutamatergic dysfunction, which in turn activates microglial function. Early life adversity and glucocorticoid receptor dysfunction result in vulnerability to stress in adulthood. A maladaptive response to stress leads to increased glutamatergic release and pro-inflammatory cytokines, which then activate microglia. However, since the role of inflammatory mediators such as pro-inflammatory cytokines is not specific for depression, more disease-specific mechanisms should be identified. Last, although much research has focused on ketamine as an alternative antidepressant for TRD, its long-lasting effectiveness and adverse events have not been rigorously demonstrated. Additionally, evidence suggests that substantial brain abnormalities develop in ketamine abusers. Thus, more investigations for ketamine and other novel glutamatergic agents are needed.
Collapse
|
138
|
Comai S, Bertazzo A, Vachon J, Daigle M, Toupin J, Côté G, Turecki G, Gobbi G. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: markers for aggression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:8-16. [PMID: 27117820 DOI: 10.1016/j.pnpbp.2016.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
Aggressive behavior is one of the most challenging symptoms in psychiatry, and biological markers for aggression lack of large sample validations. Serotonin (5-HT) and other neuroactive compounds deriving from Tryptophan (Trp), including kynurenine (Kyn), have not yet been investigated in large cohorts of aggressive individuals to validate their potential as biomarkers of aggression. In 361 male inmates we measured serum levels of Trp, 5-hydroxytryptophan, 5-HT, Kyn, the ratios 5-HT/Trp∗1000 and Kyn/Trp∗1000, and performed Structured Clinical Interview for DSM-IV Axis-I and -II Disorders (SCID-I and -II), global assessment of functioning (GAF), and scales for aggressive behavior, impulsivity, adult attention-deficit/hyperactivity disorder (ADHD), and intelligent quotient (IQ). Aggressive compared to non-aggressive inmates exhibited lower Trp and Kyn serum levels but higher levels of 5-HT and 5-HT/Trp∗1000, higher levels of impulsivity and ADHD indices, lower IQ and GAF, higher prevalence of mood disorders, drug abuse/dependence, and borderline, conduct and antisocial behaviors. Interestingly, Kyn/Trp∗1000 was positively correlated to the number of severe aggressive acts (r=0.593, P<0.001). After adjusting for confounding factors, logistic regression analysis indicated that 5-HT/Trp∗1000, antisocial behavior, and GAF were predictors of aggressive behavior. The model combining these three predictors had an area under the ROC curve of 0.851 (95% CI 0.806-0.895). This study indicates that while circulating Trp is reduced in aggressive individuals, the combination of biological (5-HT/Trp ratio) and psychopathological (antisocial behavior and GAF) markers discriminates between aggressive and non-aggressive behavior suggesting the potential of a multi-marker approach in psychiatry given the heterogenic nature of mental diseases.
Collapse
Affiliation(s)
- Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Marc Daigle
- Institut Philippe-Pinel, Montreal, Qc, Canada; Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean Toupin
- Institut Philippe-Pinel, Montreal, Qc, Canada; Department of Psychoeducation, Sherbrooke University, QC, Canada
| | - Gilles Côté
- Institut Philippe-Pinel, Montreal, Qc, Canada; Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada.
| |
Collapse
|
139
|
Choi KY, Kim YK. Plasticity-augmented psychotherapy for refractory depressive and anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:134-47. [PMID: 27072378 DOI: 10.1016/j.pnpbp.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/28/2022]
Abstract
Psychotherapy and pharmacotherapy have been the mainstays of treatment for depression and anxiety disorders during the last century. However, treatment response has not improved in the last few decades, with only half of all patients responding satisfactorily to typical antidepressants. To fulfill the needs of the remaining patients, new treatments with better efficacy are in demand. The addition of psychotherapy to antidepressant treatment has been shown to be superior to pharmacotherapy alone. However, the time costs of psychotherapy limit its use for clinicians and patients. Advancements in neuroscience have contributed to an improved understanding of the pathogenesis of depressive and anxiety disorders. In particular, recent advances in the field of fear conditioning have provided valuable insight into the treatment of refractory depressive and anxiety disorders. In this review, we studied the reconsolidation-updating paradigm and the concept of epigenetic modification, which has been shown to permanently attenuate remote fear memory. This has implications for drug-augmented, e.g. antidepressant and valproic acid, psychotherapy. Future research on more sophisticated psychotherapy techniques will increase the desirability of this treatment modality for both clinicians and patients.
Collapse
Affiliation(s)
- Kwang-Yeon Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
140
|
Puurunen J, Sulkama S, Tiira K, Araujo C, Lehtonen M, Hanhineva K, Lohi H. A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs. Behav Brain Funct 2016; 12:27. [PMID: 27686065 PMCID: PMC5043524 DOI: 10.1186/s12993-016-0112-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/24/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a prevalent and multifactorial neuropsychiatric disorder in the human population worldwide. Complex etiology and clinical heterogeneity have challenged the research, diagnostics and treatment of the disease. Hyperactive and impulsive behaviour has also been observed in dogs, and they could offer a physiologically relevant model for human ADHD. As a part of our ongoing study to understand the molecular etiology of canine anxiety traits, this study was aimed to pilot an approach to identify metabolic biomarkers in canine ADHD-like behaviours for research, diagnostics and treatment purposes. METHODS We collected fresh plasma samples from 22 German Shepherds with varying ADHD-like behaviours. All dogs were on the same controlled diet for 2 weeks prior to sampling. A liquid chromatography combined with mass spectrometry (LC-MS)-based non-targeted metabolite profiling was performed to identify plasma metabolites correlating with the ADHD-like behaviour of the dogs. RESULTS 649 molecular features correlated with ADHD-like behavioural scores (praw < 0.05), and three of them [sn-1 LysoPC(18:3), PC(18:3/18:2) and sn-1 LysoPE(18:2)] had significant correlations also after FDR correction (pFDR < 0.05). Phospholipids were found to negatively correlate with ADHD-like behavioural scores, whereas tryptophan metabolites 3-indolepropionic acid (IPA) and kynurenic acid (KYNA) had negative and positive correlations with ADHD-like behavioural scores, respectively. CONCLUSIONS Our study identified associations between canine ADHD-like behaviours and metabolites that are involved in lipid and tryptophan metabolisms. The identified metabolites share similarity with earlier findings in human and rodent ADHD models. However, a larger replication study is warranted to validate the discoveries prior to further studies to understand the biological role of the identified metabolites in canine ADHD-like behaviours.
Collapse
Affiliation(s)
- Jenni Puurunen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Sini Sulkama
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Katriina Tiira
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Cesar Araujo
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland. .,The Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
141
|
Jeon SW, Kim YK. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World J Psychiatry 2016; 6:283-293. [PMID: 27679767 PMCID: PMC5031928 DOI: 10.5498/wjp.v6.i3.283] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Depression results from changes in the central nervous system (CNS) that may result from immunological abnormalities. The immune system affects the CNS through cytokines, which regulate brain activities and emotions. Cytokines affect two biological systems that are most associated with the pathophysiology of depression: The hypothalamic-pituitary-adrenal axis and the catecholamine/sympathetic nervous system. Neuroinflammation and cytokines affect the brain signal patterns involved in the psychopathology of depression and the mechanisms of antidepressants, and they are associated with neurogenesis and neural plasticity. These observations suggest that neuroinflammation and cytokines might cause and/or maintain depression, and that they might be useful in the diagnosis and prognosis of depression. This psychoneuroimmunologic perspective might compensate for some of the limitations of the monoamine theory by suggesting that depression is a result of a failure to adapt to stress and that inflammatory responses and cytokines are involved in this process. In this review, the interactions of cytokines with the CNS, neuroendocrine system, neurotransmitters, neurodegeneration/neurogenesis, and antidepressants are discussed. The roles of cytokines in the etiology and psychopathology of depression are examined. The use of cytokine inhibitors or anti-inflammatory drugs in depression treatment is explored. Finally, the significance and limitations of the cytokine hypothesis are discussed.
Collapse
|
142
|
Gualdoni GA, Fuchs D, Zlabinger GJ, Gostner JM. Resveratrol intake enhances indoleamine-2,3-dioxygenase activity in humans. Pharmacol Rep 2016; 68:1065-8. [PMID: 27552061 DOI: 10.1016/j.pharep.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resveratrol is a polyphenol compound found in various nutrients that was shown to have immunomodulatory, anti-cancerogenic, and cardioprotective effects. The regulation of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme in inflammatory tryptophan metabolism, has been proposed to be involved in resveratrol's biological effects. These observations, however, rely on in vitro findings and animal studies. Therefore, we assessed the impact of resveratrol on tryptophan metabolism after oral intake in humans. METHODS Healthy volunteers were orally administrated 5g resveratrol (n=8) or placebo (n=2) in a pilot study. IDO activity was determined by analyzing plasma levels of tryptophan and kynurenine. Determination of the immune activation marker neopterin was included in the analysis. RESULTS Resveratrol administration significantly reduced tryptophan levels 2.5h (p<0.001) and 5h (p<0.001) after treatment. Kynurenine levels were slightly, but not significantly, elevated 2.5h after the intervention, which resulted in an 1.33- and 1.30-fold increase of the kynurenine to tryptophan ratio at 2.5h (p<0.01) and 5h (p<0.01), respectively. Neopterin levels were not affected by resveratrol administration. CONCLUSION This is the first evidence of a modulatory effect of orally administered resveratrol on tryptophan metabolism in humans. Since IDO has been shown to play a crucial role in immunity, cancer development and regulation of vascular tone, the modulation of this enzyme might be involved in resveratrol's diverse biological effects.
Collapse
Affiliation(s)
- Guido A Gualdoni
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| | - Dietmar Fuchs
- Division of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Johanna M Gostner
- Division of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
143
|
Balukova SM, Haarman BCM, Riemersma-van der Lek RF, Schoevers RA. Does CRP predict outcome in bipolar disorder in regular outpatient care? Int J Bipolar Disord 2016; 4:14. [PMID: 27430576 PMCID: PMC4949199 DOI: 10.1186/s40345-016-0055-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The association between inflammation and the course of mood disorders is receiving increased attention. This study aims to investigate whether a sub-group of patients with BD can be identified for which a higher CRP (C-reactive protein) level at baseline is associated with an unfavorable prognosis. METHODS This is a historic cohort study using CRP at baseline, with 15-month follow-up of mood status and medication. Cross-sectional analyses include boxplots, one-way ANOVA, receiver operating characteristics (ROC) curve and Chi square test, and the longitudinal analysis using multivariate Cox-regression. RESULTS Eighty-four bipolar disorder patients were included in the analyses. Cross-sectionally, no statistically significant difference was found in CRP distribution across mood states (p = 0.372) or rapid cycling state (p = 0.656). Also, no CRP cut-off level was distinguished between euthymic and non-euthymic patients according to the ROC curve (p = 0.449, AUC = 0.452, 95 % CI 0.327, 0.576), and a literature-derived cut-off value (3 mg/L) again demonstrated no difference (p = 0.530). Longitudinally, no association was found between CRP and prognosis of disease neither in euthymic [-2 log likelihood = 120.460; CRP: p = 0.866, B = -0.011, OR = 0.989 (95 % CI 0.874-1.120)] nor non-euthymic patients [(-2 log likelihood = 275.028; CRP: p = 0.802, B = 0.010, OR = 1.010 (95 % CI 0.937-1.088)]. Medication use did not affect these associations. CONCLUSIONS We found no statistically significant association between CRP and a more unfavorable BD prognosis, suggesting that the application of CRP as a practical biomarker to predict outcome in a naturalistic outpatient care setting is not as straightforward as it may seem.
Collapse
Affiliation(s)
- Sonya M Balukova
- Department of Psychiatry, CC44, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Bartholomeus C M Haarman
- Department of Psychiatry, CC44, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Rixt F Riemersma-van der Lek
- Department of Psychiatry, CC44, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Robert A Schoevers
- Department of Psychiatry, CC44, University of Groningen, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
144
|
Ma K, Zhang H, Baloch Z. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review. Int J Mol Sci 2016; 17:733. [PMID: 27187381 PMCID: PMC4881555 DOI: 10.3390/ijms17050733] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α), play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies.
Collapse
Affiliation(s)
- Ke Ma
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hongxiu Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
145
|
Strasser B, Fuchs D. Diet Versus Exercise in Weight Loss and Maintenance: Focus on Tryptophan. Int J Tryptophan Res 2016; 9:9-16. [PMID: 27199566 PMCID: PMC4864009 DOI: 10.4137/ijtr.s33385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
An association between mood disturbance, the inability to lose or to stop gaining weight, and a craving for carbohydrates is manifested by many people who are overweight or are becoming so. In a recent study, we observed that low-calorie weight loss diet lowered not only levels of leptin but also levels of essential amino acid tryptophan (TRP) significantly. The disturbed metabolism of TRP might affect biosynthesis of serotonin and could thereby increase the susceptibility for mood disturbances and carbohydrate craving, increasing the cessation probability of weight reduction programs. Alternatively, moderate physical exercise – a potent stimulus to modulate (reduce/normalize) proinflammatory cytokines, which may affect TRP levels – could be helpful in improving mood status and preventing uncontrolled weight gain. In contrast, excessive physical exercise may induce breakdown of TRP when proinflammatory cascades together with TRP-degrading enzyme indoleamine 2,3-dioxygenase-1 are stimulated, which may lead to neuropsychiatric symptoms such as fatigue and low mood.
Collapse
Affiliation(s)
- Barbara Strasser
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
146
|
Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. JOURNAL OF AMINO ACIDS 2016; 2016:8952520. [PMID: 26881063 PMCID: PMC4737446 DOI: 10.1155/2016/8952520] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022]
Abstract
L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.
Collapse
|
147
|
Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:277-84. [PMID: 26111720 DOI: 10.1016/j.pnpbp.2015.06.008] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Brian E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
148
|
Doboszewska U, Szewczyk B, Sowa-Kućma M, Noworyta-Sokołowska K, Misztak P, Gołębiowska J, Młyniec K, Ostachowicz B, Krośniak M, Wojtanowska-Krośniak A, Gołembiowska K, Lankosz M, Piekoszewski W, Nowak G. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotox Res 2016; 29:143-54. [PMID: 26581375 PMCID: PMC4701762 DOI: 10.1007/s12640-015-9571-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Our previous study showed that dietary zinc restriction induces depression-like behavior with concomitant up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Because metal ions, oxidative stress, and inflammation are involved in depression/NMDAR function, in the present study, bio-elements (zinc, copper, iron, magnesium, and calcium), oxidative (thiobarbituric acid-reactive substances; protein carbonyl content), and inflammatory (IL-1α, IL-1β) factors were measured in serum, hippocampus (Hp), and prefrontal cortex (PFC) of male Sprague-Dawley rats subjected to a zinc-adequate (ZnA) (50 mg Zn/kg) or a zinc-deficient (ZnD) (3 mg Zn/kg) diet for 4 or 6 weeks. Both periods of dietary zinc restriction reduced serum zinc and increased serum iron levels. At 4 weeks, lowered zinc level in the PFC and Hp as well as lowered iron level in the PFC of the ZnD rats was observed. At 6 weeks, however, iron level was increased in the PFC of these rats. Although at 6 weeks zinc level in the PFC did not differ between the ZnA and ZnD rats, extracellular zinc concentration after 100 mM KCl stimulation was reduced in the PFC of the ZnD rats and was accompanied by increased extracellular iron and glutamate levels (as measured by the in vivo microdialysis). The examined oxidative and inflammatory parameters were generally enhanced in the tissue of the ZnD animals. The obtained data suggest dynamic redistribution of bio-elements and enhancement of oxidative/inflammatory parameters after dietary zinc restriction, which may have a link with depression-like behavior/NMDAR function/neurodegeneration.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Sowa-Kućma
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | | | - Paulina Misztak
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Gołębiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Młyniec
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland
| | - Mirosław Krośniak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marek Lankosz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland
| | | | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
149
|
Aydin Sunbul E, Sunbul M, Yanartas O, Cengiz F, Bozbay M, Sari I, Gulec H. Increased Neutrophil/Lymphocyte Ratio in Patients with Depression is Correlated with the Severity of Depression and Cardiovascular Risk Factors. Psychiatry Investig 2016; 13:121-6. [PMID: 26766954 PMCID: PMC4701675 DOI: 10.4306/pi.2016.13.1.121] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/14/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Chronic inflammation is associated with cardiovascular (CV) risk factors and psychiatric disorders. The neutrophil to lymphocyte ratio (NLR) has been investigated as a new biomarker for systemic inflammatory response. The aim of the study is to investigate the relation of NLR with severity of depression and CV risk factors. METHODS The study population consisted of 256 patients with depressive disorder. Patients were evaluated with the Hamilton Rating Scale for Depression (HAM-D). Patients were classified into four groups according to their HAM-D score such as mild, moderate, severe, and very severe depression. Patients were also evaluated in terms of CV risk factors. RESULTS Patients with higher HAM-D score had significantly higher NLR levels compared to patients with lower HAM-D score. Correlation analysis revealed that severity of depression was associated with NLR in depressive patients (r=0.333, p<0.001). Patients with one or more CV risk factors have significantly higher NLR levels. Correlation analysis revealed that CV risk factors were associated with NLR in depressive patients (r=0.132, p=0.034). In logistic regression analyses, NLR levels were an independent predictor of severe or very severe depression (odds ratio: 3.02, 95% confidence interval: 1.867-4.884, p<0.001). A NLR of 1.57 or higher predicted severe or very severe depression with a sensitivity of 61.4% and specificity of 61.2%. CONCLUSION Higher HAM-D scores are associated with higher NLR levels in depressive patients. NLR more than 1.57 was an independent predictor of severe or very severe depression. A simple, cheap white blood cell count may give an idea about the severity of depression.
Collapse
Affiliation(s)
- Esra Aydin Sunbul
- Erenkoy Training and Research Hospital for Psychiatric and Neurological Disorders, Psychiatry Clinic, Istanbul, Turkey
| | - Murat Sunbul
- Department of Cardiology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Omer Yanartas
- Department of Psychiatry, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Fatma Cengiz
- Erenkoy Training and Research Hospital for Psychiatric and Neurological Disorders, Psychiatry Clinic, Istanbul, Turkey
| | - Mehmet Bozbay
- Department of Cardiology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Ibrahim Sari
- Department of Cardiology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Huseyin Gulec
- Erenkoy Training and Research Hospital for Psychiatric and Neurological Disorders, Psychiatry Clinic, Istanbul, Turkey
| |
Collapse
|
150
|
Muneer A. The Neurobiology of Bipolar Disorder: An Integrated Approach. Chonnam Med J 2016; 52:18-37. [PMID: 26865997 PMCID: PMC4742607 DOI: 10.4068/cmj.2016.52.1.18] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder is a heterogeneous condition with myriad clinical manifestations and many comorbidities leading to severe disabilities in the biopsychosocial realm. The objective of this review article was to underline recent advances in knowledge regarding the neurobiology of bipolar disorder. A further aim was to draw attention to new therapeutic targets in the treatment of bipolar disorder. To accomplish these goals, an electronic search was undertaken of the PubMed database in August 2015 of literature published during the last 10 years on the pathophysiology of bipolar disorder. A wide-ranging evaluation of the existing work was done with search terms such as "mood disorders and biology," "bipolar disorder and HPA axis," "bipolar disorder and cytokines," "mood disorders and circadian rhythm," "bipolar disorder and oxidative stress," etc. This endeavor showed that bipolar disorder is a diverse condition sharing neurobiological mechanisms with major depressive disorder and psychotic spectrum disorders. There is convincing evidence of crosstalk between different biological systems that act in a deleterious manner causing expression of the disease in genetically predisposed individuals. Inflammatory mediators act in concert with oxidative stress to dysregulate hormonal, metabolic, and circadian homeostasis in precipitating and perpetuating the illness. Stress, whether biologically or psychologically mediated, is responsible for the initiation and progression of the diathesis. Bipolar spectrum disorders have a strong genetic component; severe life stresses acting through various paths cause the illness phenotype.
Collapse
Affiliation(s)
- Ather Muneer
- Department of Psychiatry, Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|