101
|
Krishnan A, Roy S, Menon S. Amphiphilic Block Copolymers: From Synthesis Including Living Polymerization Methods to Applications in Drug Delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Tenorio-López JA, Benvenuta-Tapia JJ, García-Navarro N, Vivaldo-Lima E, Champagne P, Saldívar-Guerra E. Mathematical Description of the RAFT Copolymerization of Styrene and Glycidyl Methacrylate Using the Terminal Model. Polymers (Basel) 2022; 14:1448. [PMID: 35406321 PMCID: PMC9003474 DOI: 10.3390/polym14071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
A mathematical model for the kinetics, composition and molar mass development of the bulk reversible addition-fragmentation chain transfer (RAFT) copolymerization of glycidyl methacrylate (GMA) and styrene (St), at several GMA molar feed fractions at 103 °C, in the presence of 2-cyano isopropyl dodecyl trithiocarbonate as the RAFT agent and 1,1'-azobis(cyclohexane carbonitrile), as the initiator, is presented. The copolymerization proceeded in a controlled manner and dispersities of the copolymers remained narrow even at high conversions. Experimental data and calculated profiles of conversion versus time, composition versus conversion and molar mass development for the RAFT copolymerization of St and GMA agreed well for all conditions tested, including high-conversion regions. The kinetic rate constants associated with the RAFT- related reactions and diffusion-controlled parameters were properly estimated using a weighted nonlinear multivariable regression procedure. The mathematical model developed in this study may be used as an aid in the design and upscaling of industrial RAFT polymerization processes.
Collapse
Affiliation(s)
- José Alfredo Tenorio-López
- Facultad de Ciencias Químicas, Universidad Veracruzana (UV), Coatzacoalcos 96535, Mexico; (J.A.T.-L.); (N.G.-N.)
| | - Juan José Benvenuta-Tapia
- Facultad de Ciencias Químicas, Universidad Veracruzana (UV), Coatzacoalcos 96535, Mexico; (J.A.T.-L.); (N.G.-N.)
| | - Norma García-Navarro
- Facultad de Ciencias Químicas, Universidad Veracruzana (UV), Coatzacoalcos 96535, Mexico; (J.A.T.-L.); (N.G.-N.)
| | - Eduardo Vivaldo-Lima
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Pascale Champagne
- Faculty of Engineering and Applied Science, Queen’s University, Kingston, ON K7L3N6, Canada;
| | - Enrique Saldívar-Guerra
- Polymer Synthesis Department, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Mexico
| |
Collapse
|
103
|
Kim S, Lee H, Choi H, Yoo KY, Yoon H. Investigation on photopolymerization of PEGDA to fabricate high-aspect-ratio microneedles. RSC Adv 2022; 12:9550-9555. [PMID: 35424926 PMCID: PMC8985357 DOI: 10.1039/d2ra00189f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022] Open
Abstract
Microneedles (MNs) are micron-sized needles that can penetrate the stratum corneum, enabling the non-invasive and painless administration of drugs and vaccines. In this work, fabrication conditions for high-aspect-ratio MNs by the photopolymerization of polyethylene glycol diacrylate (PEGDA) were investigated. Ultraviolet (UV) light was used to crosslink photocurable prepolymers in specific areas defined by a photomask. The aspect ratio of solidified MNs is too small to penetrate the stratum corneum if the degree of polymerization is insufficient. However, if the degree of polymerization is too high, a film is formed between the MNs by solidification of an undesired area owing to the scattering effect, reducing needle height. The influence of prepolymer molecular weight and the degree of UV absorption by the photoinitiator (PI) were studied to optimize the conditions for obtaining high-aspect-ratio MNs. Additionally, the effect of spacing ratio on high-aspect-ratio MNs without film formation has been discussed. A penetration test was conducted with porcine skin to analyze the effect of mechanical properties of MN. This study could guide the fabrication of MNs by the photopolymerization of biocompatible polymers with a photomask. Fabrication conditions for high-aspect-ratio MNs by the photopolymerization of PEGDA were investigated. The influence of prepolymer molecular weight and the degree of UV absorption by the photoinitiator (PI) were studied to optimize the conditions.![]()
Collapse
Affiliation(s)
- Sohyun Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea
| | - Hyemin Lee
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea
| | - Hyewon Choi
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea
| | - Kee-Youn Yoo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea
| | - Hyunsik Yoon
- Department of Nano Bio Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea .,Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology Seoul 01811 Republic of Korea
| |
Collapse
|
104
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|
105
|
Lim LF, Judd M, Vasko P, Gardiner MG, Pantazis DA, Cox N, Hicks J. Crystalline Germanium(I) and Tin(I) Centered Radical Anions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Feng Lim
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Martyna Judd
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Petra Vasko
- University of Helsinki: Helsingin Yliopisto Department of Chemistry P.O. Box 55 FI-00014 Helsinki FINLAND
| | - Michael G. Gardiner
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Dimitrios A. Pantazis
- Max-Planck-Institut fur Kohlenforschung Institut fur Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Nicholas Cox
- Australian National University Research School of Chemistry Sullivas Creek Road 2601 Acton AUSTRALIA
| | - Jamie Hicks
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| |
Collapse
|
106
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
107
|
|
108
|
Fillbrook LL, Nothling MD, Stenzel MH, Price WS, Beves JE. Rapid Online Analysis of Photopolymerization Kinetics and Molecular Weight Using Diffusion NMR. ACS Macro Lett 2022; 11:166-172. [PMID: 35574764 DOI: 10.1021/acsmacrolett.1c00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions.
Collapse
Affiliation(s)
| | | | | | - William S. Price
- Nanoscale Group, School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | | |
Collapse
|
109
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
110
|
Radfar S, Ghanbari R, Attaripour Isfahani A, Rezaei H, Kheirollahi M. A novel signal amplification tag to develop rapid and sensitive aptamer-based biosensors. Bioelectrochemistry 2022; 145:108087. [DOI: 10.1016/j.bioelechem.2022.108087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
|
111
|
Liu Y, Sun Y, Zhang W. Synthesis of
Stimuli‐Responsive
Block Copolymers and Block Copolymer Nano‐assemblies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
112
|
Coban D, Gridina O, Karg M, Gröschel AH. Morphology Control of Multicompartment Micelles in Water through Hierarchical Self-Assembly of Amphiphilic Terpolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Coban
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany
| | - Olga Gridina
- Colloids and Nanooptics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias Karg
- Colloids and Nanooptics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - André H. Gröschel
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany
| |
Collapse
|
113
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
114
|
Yang J, Yu X, Song J, Song Q, Hall SCL, Yu G, Perrier S. Aggregation‐Induced Emission Featured Supramolecular Tubisomes for Imaging‐Guided Drug Delivery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jie Yang
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- College of Science Nanjing Forestry University Nanjing 210037 P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ji‐Inn Song
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Qiao Song
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | | |
Collapse
|
115
|
Computational Study on Production Mechanism of Nano-Graphene Oxide/Poly Diallyl Dimethyl Ammonium Chloride (NGO/PDADMAC) Nanocomposite. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2025867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
116
|
Pu Z, Fan X, Su J, Zhu M, Jiang Z. Aqueous dispersing mechanism study of nonionic polymeric dispersant for organic pigments. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-021-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
117
|
Alshehri IH, Pahovnik D, Žagar E, Shipp DA. Stepwise Gradient Copolymers of n-Butyl Acrylate and Isobornyl Acrylate by Emulsion RAFT Copolymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ishah H. Alshehri
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| |
Collapse
|
118
|
Zhang BY, Luo HN, Zhang W, Liu Y. Research progress in self-oscillating polymer brushes. RSC Adv 2022; 12:1366-1374. [PMID: 35425176 PMCID: PMC8979042 DOI: 10.1039/d1ra07374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications. Self-oscillating polymers are anchored on surfaces of certain materials and are coupled with some self-oscillating reactions (with the Belousov–Zhabotinsky (BZ) reaction as an example) to form self-oscillating polymer brushes. As an independent field of stimulus response functional surface research, the development of new intelligent bionic materials has good potential. This article reviews the oscillation mechanisms of self-oscillating polymer brushes and their classifications. First, the oscillation mechanisms of self-oscillating polymer brushes are introduced. Second, the research progress in self-oscillating polymers is discussed in terms of the type of self-oscillation reactions. Finally, possible future developments of self-oscillating polymer brushes are prospected. Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.![]()
Collapse
Affiliation(s)
- Bao-Ying Zhang
- School of Chemical Engineering, China University of Mining and Technology Xuzhou Jiangsu 221116 China .,School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Hai-Nan Luo
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Wei Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| |
Collapse
|
119
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
120
|
Bignardi C, Oliveira LF, Pesqueira NM, Riga-Rocha BA, Machado AE, Carvalho-Jr VP, Goi BE. Photoinduced organometallic mediating radical polymerization of acrylates mediated by CoII complexes of non-symmetrical tetradentate Schiff-base ligands. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Liu M, Zhang R, Ma Y, Han M, Solan GA, Yang W, Liang T, Sun WH. Trifluoromethoxy-substituted nickel catalysts for producing highly branched polyethylenes: impact of solvent, activator and N,N′-ligand on polymer properties. Polym Chem 2022. [DOI: 10.1039/d1py01637g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly branched and narrowly dispersed polyethylenes with high or ultra-high molecular weights are accessible using the depicted nickel precatalyst/activator combinations.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Randi Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingyang Han
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Wenhong Yang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
122
|
Li M, Zhang J, He Y, Zhang X, Cui Z, Fu P, Liu M, Shi G, Qiao X, Pang X. Dual Enhancement of Carrier Generation and Migration on Au/g-C3N4 photocatalysts for High-Efficient Broadband PET-RAFT Polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01590g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced electron/energy transfer RAFT (PET-RAFT) polymerization can produce well-defined polymers with spatio-temporal control. Semiconductor graphitic carbon nitride (g-C3N4) as thermally and chemically stable photocatalyst, has achieved PET-RAFT method under UV-irradiation...
Collapse
|
123
|
Zhou M, Guo W, Zhang S, Xu B, Jin W, Huang X. Synthesis of Double-Bonds-Containing Diblock Copolymers via RAFT Polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01626a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyallenes that present internal double bonds are attractive platforms for the development of diverse functional materials. However, the controlled block copolymerization of allene derivatives with precise structure and designable architecture...
Collapse
|
124
|
Mielańczyk A, Kupczak M, Klymenko O, Mielańczyk Ł, Arabasz S, Madej K, Neugebauer D. The Structure-Self-Assembly Relationship in PDMAEMA/Polyester Miktoarm Stars. Polym Chem 2022. [DOI: 10.1039/d2py00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined miktoarm star-shaped polymers based on heterofunctional glucose derivative initiator, N,N’-dimethylaminoethyl methacrylate (DMAEMA) and various cyclic esters, such as ε-caprolactone (CL), lactide (LA), glycolide (GA), were obtained by combining atom...
Collapse
|
125
|
Polgar AM, Huang SH, Hudson ZM. Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TADF donor-acceptor conjugates were applied as photosensitizers for organocatalyzed organic atom transfer radical polymerization. A donor-modification strategy was found to dramatically improve the control over the polymerization.
Collapse
Affiliation(s)
- Alexander M. Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Shine H. Huang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
126
|
Bobrin VA, Lee K, Zhang J, Corrigan N, Boyer C. Nanostructure Control in 3D Printed Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107643. [PMID: 34742167 DOI: 10.1002/adma.202107643] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Currently, there are no straightforward methods to 3D print materials with nanoscale control over morphological and functional properties. Here, a novel approach for the fabrication of materials with controlled nanoscale morphologies using a rapid and commercially available Digital Light Processing 3D printing technique is demonstrated. This process exploits reversible deactivation radical polymerization to control the in-situ-polymerization-induced microphase separation of 3D printing resins, which provides materials with complex architectures controllable from the macro- to nanoscale, resulting in the preparation of materials with enhanced mechanical properties. This method does not require specialized equipment or process conditions and thus represents an important development in the production of advanced materials via additive manufacturing.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenny Lee
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
127
|
Hairy nanoparticles by atom transfer radical polymerization in miniemulsion. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
128
|
Costa JRC, Góis JR, Fernandes JR, Matyjaszewski K, Coelho JFJ, Serra AC. Tosyl iodide – a new initiator for the photo-controlled iodine transfer polymerization of methacrylates under sunlight irradiation. Polym Chem 2022. [DOI: 10.1039/d1py01356d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A very simple photo-controlled iodine transfer polymerization system consisting only of methacrylate monomers, solvent (dimethylacetamide), and initiator (tosyl iodide) under violet and sunlight irradiation is reported.
Collapse
Affiliation(s)
- João R. C. Costa
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Joana R. Góis
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - José R. Fernandes
- Centro de Química – Vila Real, Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Jorge F. J. Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C. Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
129
|
Eichhorn J, Klein M, Romanenko I, Schacher FH. Synthesis of block copolymers containing 3-chloro-2-hydroxypropyl methacrylate by NMP – a versatile platform for functionalization. Polym Chem 2022. [DOI: 10.1039/d2py00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights the potential of 3-chloro-2-hydroxypropyl methacrylate (ClHPMA) as a functional building block in nanostructured block copolymer architectures.
Collapse
Affiliation(s)
- Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Michael Klein
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
| | - Iuliia Romanenko
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
130
|
Chen R, Jiang X, Lu G, Liu W, Jin W, Tian G, Huang X. Well-Defined Thermo- and pH-Responsive Double Hydrophilic Graft Copolymer Bearing a Pyridine-Containing Backbone. Polym Chem 2022. [DOI: 10.1039/d2py00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graft copolymers have extensive applications in material science because of their tunable composition of backbone and side chains and diverse morphologies of aggregates. Recent studies mainly focused on the amphiphilic...
Collapse
|
131
|
Ali Azouaou T, Lemarchand J, Noël V, Mattana G, Decorse P, Perruchot C. Localized and structured growth of polymer brushes using ink jet printing approach. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inkjet printing (IJP) technique has been used for the deposition of silica nanoparticles with controlled position and shape onto flexible polyethylene naphthalate (PEN) substrate. The printed silica areas have been chemically functionalized with a silane molecule bearing an ATRP initiator group. Surface-initiated atom transfer radical polymerisation (SI-ATRP) methodology has been betrothed to grow polymer brushes onto the silica printed areas. X-ray photoelectron spectroscopy (XPS) has been used after each step of functionalisation in order to determine the elemental surface composition. In addition, IJP has been used to design specific pattern at 250 micrometer scale. By combining maskless IJP technic and XPS line-scan mode, this work clearly demonstrates that the position and the pattern shape of printed areas can be controlled on demand, and that, structurally polymer brushes are only generated onto the functionalised silica printed areas.
Collapse
|
132
|
Awad M, Dhib R, Duever T. Atom transfer radical polymerization initiated by activator generated by electron transfer in emulsion media: a review of recent advances and challenges from an engineering perspective. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Awad
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Ramdhane Dhib
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Thomas Duever
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
133
|
Cooze MJ, Deacon HM, Phe K, Hutchinson RA. Methacrylate and Styrene Block Copolymer Synthesis by Cu‐Mediated Chain Extension of Acrylate Macroinitiator in a Semibatch Reactor. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Morgan J. Cooze
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Hayden M. Deacon
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Katrina Phe
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
134
|
Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2021; 27:42. [PMID: 35011281 PMCID: PMC8746853 DOI: 10.3390/molecules27010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitri Matioszek
- SNF SA, ZAC de Milieux, 42160 Andrézieux-Bouthéon, France; (O.B.); (C.C.); (J.K.); (F.B.); (C.F.); (C.B.); (J.M.); (F.V.); (C.D.)
| |
Collapse
|
135
|
Perrier S, Yang J, Yu X, Song JI, Song Q, Hall SCL, Yu G. AIE Featured Supramolecular Tubisomes for Imaging-Guided Drug Delivery. Angew Chem Int Ed Engl 2021; 61:e202115208. [PMID: 34927320 DOI: 10.1002/anie.202115208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/07/2022]
Abstract
Polymeric cylinders, a fascinating type of nanostructures with high surface area, internal volume and rigidity, have been exploited as novel drug delivery vehicles over the past decade. However, it's still an open challenge to afford cylindrical nanostructures using polymeric building blocks via traditional self-assembly processes. Herein, we report a hierarchical self-assembly strategy of preparing cylindrical aggregates (tubisomes) from an amphiphilic supramolecular bottlebrush polymer in which cyclic peptide nanotube is employed as the noncovalent backbone. Additionally, aggregation induced emission effect was introduced into the tubisomes to endow them with excellent fluorescent property. Intriguingly, encapsulation of anticancer drug doxorubicin (DOX) can inactivate the fluorescence of both tubisome and DOX due to the energy transfer relay (ETR). The release of DOX can interrupt the ETR effect and light up the silenced fluorescence, thereby permitting the in-situ visualization of drug release. The supramolecular tubisomes described here paves an alternative way for fabricating polymeric cylindrical nanostructures, and holds great potential in imaging-guided drug delivery.
Collapse
Affiliation(s)
- Sebastien Perrier
- The University of Warwick / Monash University, Department of Chemistry, Library Road, CV4 7AL, Coventry, UNITED KINGDOM
| | - Jie Yang
- Nanjing Forestry University, College of Science, 210037, Nanjing, CHINA
| | - Xinyang Yu
- Tsinghua University, Department of Chemistry, CHINA
| | - Ji-Inn Song
- University of Warwick, Department of Chemistry, UNITED KINGDOM
| | - Qiao Song
- University of Warwick, Department of Chemistry, UNITED KINGDOM
| | | | - Guocan Yu
- Tsinghua University, Department of Chemistry, CHINA
| |
Collapse
|
136
|
Wu S, Chen Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shilong Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
137
|
Wang Z, Zhou Y, Chen M. Computer‐Aided
Living Polymerization Conducted under
Continuous‐Flow
Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
138
|
Sangpanya A, Fuangtharnthip P, Nimmanon V, Pachimsawat P. Toothbrush-Dentifrice Abrasion of Dental Sealants: An In Vitro Study. Eur J Dent 2021; 16:549-556. [PMID: 34856628 PMCID: PMC9507614 DOI: 10.1055/s-0041-1735798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective
This study sought to investigate the toothbrush-dentifrice abrasion of dental sealants.
Materials and Methods
Weight loss (∆W) and depth loss (∆D) were used as abrasion indicators. Sealant samples from nine products were soaked in dentifrice slurry and abraded by using a toothbrushing machine with a brushing force of 300 g. The mean percentages of ∆W and mean values of ∆D after 24,000 and 48,000 strokes of brushing were compared by using paired
t
-test. A comparison of these mean values among sealant products was performed by using one-way ANOVA and multiple comparison analysis (Scheffe's test).
Results
Abrasive wear was observed in all sealants. Teethmate F-1 (Kuraray Noritake, Tokyo, Japan)—a fluoride-releasing unfilled sealant—exhibited the maximum abrasive wear, with ∆W and ∆D values of 1.14% ± 0.37% and 12.84 ± 4.28 µm, respectively. Delton (Dentsply Sirona, Charlotte, North Carolina, United States), a light-cured unfilled sealant, showed the minimum abrasive wear, with ∆W and ∆D values of 0.41% ± 0.09% and 2.93 ± 1.23 µm, respectively. No statistical differences were observed among unfilled sealants except when compared with Teethmate F-1. Similarly, no differences were observed when comparing among filled sealants and flowable composite.
Conclusion
Abrasive wear occurred in all sealants after brushing with dentifrice. Almost all unfilled sealants showed less wear compared with both filled sealants and flowable composite. However, the low abrasive values of all sealants after brushing with dentifrice implied that there is no clinical significance to this finding.
Collapse
Affiliation(s)
- Angkhana Sangpanya
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Pornpoj Fuangtharnthip
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Vanida Nimmanon
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Praewpat Pachimsawat
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
139
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
140
|
Jin B, Bai P, Ru Q, Liu W, Wang H, Xu L. Ultrasonic synthesis of Mn-Ni-Fe tri-metallic oxide anchored on polymer-grafted conductive carbon for rechargeable zinc-air battery. ULTRASONICS SONOCHEMISTRY 2021; 81:105846. [PMID: 34839126 PMCID: PMC8637642 DOI: 10.1016/j.ultsonch.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 05/02/2023]
Abstract
As a promising electrochemical energy device, a rechargeable zinc-air battery (RZAB) requires cost-effective cathode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Some earth-abundant transition metal oxides have certain levels of bi-functional ORR/OER catalytic activities yet low electronic conductivities. The addition of high-electronic-conductivity material such as carbon black could result in another problem because there is low compatibility between metal oxide and carbon. In this work, polymer chains are ultrasonically prepared to act as binders to anchor metal-oxide active sites to porous domains of carbon black. The monomer N-isopropyl acrylamide is polymerized under ultrasonication instead of using conventional radical initiators which are dangerous and harmful. Reactive free radicals produced by ultrasonic irradiation can also help to form the Mn-Ni-Fe tri-metallic oxide. Thus, aided by the amide-type polymer as an adhesive, the tri-metallic oxide anchored on polymer-grafted carbon black prepared by ultrasonication possess a large number of metal-oxide active sites and hierarchical pores, contributing substantially to the enhanced ORR/OER electrocatalytic performance in the RZABs. Accordingly, this work provides interesting insight into the effective combination of inherently incompatible components for the fabrication of composite materials from an ultrasonic standpoint.
Collapse
Affiliation(s)
- Bolin Jin
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Qiang Ru
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Huifen Wang
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
141
|
Organic Photocatalysts Based on Dithieno[3,2-b:2′,3′-d]pyrrole for Photoinduced Metal-Free Atom Transfer Radical Polymerization. Macromol Res 2021. [DOI: 10.1007/s13233-021-9085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
142
|
Baffie F, Patias G, Shegiwal A, Brunel F, Monteil V, Verrieux L, Perrin L, Haddleton DM, D'Agosto F. Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angew Chem Int Ed Engl 2021; 60:25356-25364. [PMID: 34546635 PMCID: PMC9298203 DOI: 10.1002/anie.202108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Indexed: 11/07/2022]
Abstract
Two scalable polymerisation methods are used in combination for the synthesis of ethylene and methacrylate block copolymers. ω-Unsaturated methacrylic oligomers (MMAn ) produced by catalytic chain transfer (co)polymerisation (CCTP) of methyl methacrylate (MMA) and methacrylic acid (MAA) are used as reagents in the radical polymerisation of ethylene (E) in dimethyl carbonate solvent under relatively mild conditions (80 bar, 70 °C). Kinetic measurements and analyses of the produced copolymers by size exclusion chromatography (SEC) and a combination of nuclear magnetic resonance (NMR) techniques indicate that MMAn is involved in a degradative chain transfer process resulting in the formation of (MMA)n -b-PE block copolymers. Molecular modelling performed by DFT supports the overall reactivity scheme and observed selectivities. The effect of MMAn molar mass and composition is also studied. The block copolymers were characterised by differential scanning calorimetry (DSC) and their bulk behaviour studied by SAXS/WAXS analysis.
Collapse
Affiliation(s)
- Florian Baffie
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Georgios Patias
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Ataulla Shegiwal
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Fabrice Brunel
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Vincent Monteil
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| | - Ludmilla Verrieux
- Université de LyonUniversité Claude Bernard Lyon 1CPE LyonINSA-LyonCNRSUMR 5246ICBMS43 Bd du 11 Novembre 191869616VilleurbanneFrance
| | - Lionel Perrin
- Université de LyonUniversité Claude Bernard Lyon 1CPE LyonINSA-LyonCNRSUMR 5246ICBMS43 Bd du 11 Novembre 191869616VilleurbanneFrance
| | - David M. Haddleton
- University of WarwickDepartment of ChemistryGibbet HillCV4 7ALCoventryUK
| | - Franck D'Agosto
- Université de LyonUniversité Lyon 1CPE LyonCNRS UMR 5128Laboratoire CP2MÉquipe PCM69616Villeurbanne, CEDEXFrance
| |
Collapse
|
143
|
Baffie F, Patias G, Shegiwal A, Brunel F, Monteil V, Verrieux L, Perrin L, Haddleton DM, D'Agosto F. Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Florian Baffie
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Georgios Patias
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Ataulla Shegiwal
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Fabrice Brunel
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Vincent Monteil
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| | - Ludmilla Verrieux
- Université de Lyon Université Claude Bernard Lyon 1 CPE Lyon INSA-Lyon CNRS UMR 5246 ICBMS 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Lionel Perrin
- Université de Lyon Université Claude Bernard Lyon 1 CPE Lyon INSA-Lyon CNRS UMR 5246 ICBMS 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - David M. Haddleton
- University of Warwick Department of Chemistry Gibbet Hill CV4 7AL Coventry UK
| | - Franck D'Agosto
- Université de Lyon Université Lyon 1 CPE Lyon CNRS UMR 5128 Laboratoire CP2M Équipe PCM 69616 Villeurbanne, CEDEX France
| |
Collapse
|
144
|
Nguyen B, Soares JBP. Effect of the Branching Morphology of a Cationic Polymer Flocculant Synthesized by Controlled Reversible‐Deactivation Radical Polymerization on the Flocculation and Dewatering of Dilute Mature Fine Tailings. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin Nguyen
- Department of Chemical and Materials Engineering University of Alberta Edmonton AB
| | - João B. P. Soares
- Department of Chemical and Materials Engineering University of Alberta Edmonton AB
| |
Collapse
|
145
|
Zhang Y, Tang Y, Zhang J, Harrisson S. Amphiphilic Asymmetric Diblock Copolymer with pH-Responsive Fluorescent Properties. ACS Macro Lett 2021; 10:1346-1352. [PMID: 35549021 DOI: 10.1021/acsmacrolett.1c00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymers with changeable fluorescent properties have numerous applications in sensing, bioimaging, and detection. Here we describe the facile synthesis of a pH-responsive amphiphilic asymmetric diblock copolymer of acrylic acid and butyl acrylate that incorporates a polarity-sensitive fluorophore. The asymmetric structure enhances the stimuli-responsive behavior: as the environmental pH decreases, the fluorescent intensity of the asymmetric diblock copolymer gradually increases, whereas its symmetric block counterpart shows limited and stepwise change. Besides, this remarkable difference was demonstrated to be concentration-independent, as similar emission behavior was found for both polymers at lower concentrations. These results indicate that the fluorescence properties of the copolymer can be adjusted by rationally designing the copolymer structure. This work provides a novel and general strategy for the design and synthesis of polymeric materials with encapsulated structures showing stimuli-responsive fluorescent properties to be applied as fluorescent probes with a smoothly varying response curve rather than the simple on-off switch that is typical of block copolymer systems.
Collapse
Affiliation(s)
- Yanyao Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Simon Harrisson
- LCPO UMR 5629, Université Bordeaux/CNRS/Ecole Nationale Supérieure de Chimie, de Biologie and de Physique, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
| |
Collapse
|
146
|
Hamelmann NM, Paats JWD, Paulusse JMJ. Cytosolic Delivery of Single-Chain Polymer Nanoparticles. ACS Macro Lett 2021; 10:1443-1449. [PMID: 35549017 DOI: 10.1021/acsmacrolett.1c00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytosolic delivery of therapeutic agents is key to improving their efficacy, as the therapeutics are primarily active in specific organelles. Single-chain polymer nanoparticles (SCNPs) are a promising nanocarrier platform in biomedical applications due to their unique size range of 5-20 nm, modularity, and ease of functionalization. However, cytosolic delivery of SCNPs remains challenging. Here, we report the synthesis of active ester-functional SCNPs of approximately 10 nm via intramolecular thiol-Michael addition cross-linking and their functionalization with increasing amounts of tertiary amines 0 to 60 mol % to obtain SCNPs with increasing positive surface charges. No significant cytotoxicity was detected in bEND.3 cells for the SCNPs, except when SCNPs with high amounts of tertiary amines were incubated over prolonged periods of time at high concentrations. Cellular uptake of the SCNPs was analyzed, presenting different uptake behavior depending on the degree of functionalization. Confocal microscopy revealed successful cytosolic delivery of SCNPs with high degrees of functionalization (45%, 60%), while SCNPs with low amounts (0% to 30%) of tertiary amines showed high degrees of colocalization with lysosomes. This work presents a strategy to direct the intracellular location of SCNPs by controlled surface modification to improve intracellular targeting for biomedical applications.
Collapse
Affiliation(s)
- Naomi M. Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jan-Willem D. Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
147
|
Chain-transfer-catalyst: strategy for construction of site-specific functional CO2-based polycarbonates. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
148
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
149
|
Li CY, Yu SS. Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chia-Yu Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
150
|
Cao M, Zhong M. Chain‐growth branching radical polymerization: an
inibramer
strategy. POLYM INT 2021. [DOI: 10.1002/pi.6315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxue Cao
- Department of Chemical and Environmental Engineering Yale University New Haven CT USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven CT USA
- Department of Chemistry Yale University New Haven CT USA
| |
Collapse
|