101
|
Lee KH, Chu JY, Kim AR, Kim HG, Yoo DJ. Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
102
|
Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2021; 13:polym13162827. [PMID: 34451365 PMCID: PMC8398372 DOI: 10.3390/polym13162827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, blended anion exchange membranes were prepared using polyphenylene oxide containing quaternary ammonium groups and polyvinylidene fluoride. A polyvinylidene fluoride with high hydrophobicity was blended in to lower the vanadium ion permeability, which increased when the hydrophilicity increased. At the same time, the dimensional stability also improved due to the excellent physical properties of polyvinylidene fluoride. Subsequently, permeation of the vanadium ions was prevented due to the positive charge of the anion exchange membrane, and thus the permeability was relatively lower than that of a commercial proton exchange membrane. Due to the above properties, the self-discharge of the blended anion exchange membrane (30.1 h for QA–PPO/PVDF(2/8)) was also lower than that of the commercial proton exchange membrane (27.9 h for Nafion), and it was confirmed that it was an applicable candidate for vanadium redox flow batteries.
Collapse
|
103
|
Highly conductive hydroxide exchange membranes containing fluorene-units tethered with dual pairs of quaternary piperidinium cations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
104
|
Choudhury RR, Gohil JM, Dutta K. Poly(vinyl alcohol)‐based membranes for fuel cell and water treatment applications: A review on recent advancements. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rikarani R. Choudhury
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
| | - Jaydevsinh M. Gohil
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| | - Kingshuk Dutta
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| |
Collapse
|
105
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N‐Heterocyclic Ammonium Groups for Anion‐Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Haijun Liu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Chuan Hu
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Shaoyi Xu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Hui Li
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Jiantao Fan
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 Guangdong China
- Academy for Advanced Interdisciplinary Studies of SUSTech Southern University of Science and Technology Shenzhen 1088 Guangdong China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Shenzhen 518055 Guangdong China
| | - Young Moo Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
106
|
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, Li H, Fan J, Lee YM. Insight into the Alkaline Stability of N-Heterocyclic Ammonium Groups for Anion-Exchange Polyelectrolytes. Angew Chem Int Ed Engl 2021; 60:19272-19280. [PMID: 34164897 DOI: 10.1002/anie.202105231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The alkaline stability of N-heterocyclic ammonium (NHA) groups is a critical topic in anion-exchange membranes (AEMs) and AEM fuel cells (AEMFCs). Here, we report a systematic study on the alkaline stability of 24 representative NHA groups at different hydration numbers (λ) at 80 °C. The results elucidate that γ-substituted NHAs containing electron-donating groups display superior alkaline stability, while electron-withdrawing substituents are detrimental to durable NHAs. Density-functional-theory calculations and experimental results suggest that nucleophilic substitution is the dominant degradation pathway in NHAs, while Hofmann elimination is the primary degradation pathway for NHA-based AEMs. Different degradation pathways determine the alkaline stability of NHAs or NHA-based AEMs. AEMFC durability (from 1 A cm-2 to 3 A cm-2 ) suggests that NHA-based AEMs are mainly subjected to Hofmann elimination under 1 A cm-2 current density for 1000 h, providing insights into the relationship between current density, λ value, and durability of NHA-based AEMs.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiqi Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haijun Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bo Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Shaoyi Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Jiantao Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Academy for Advanced Interdisciplinary Studies of SUSTech, Southern University of Science and Technology, Shenzhen, 1088, Guangdong, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen, 518055, Guangdong, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
107
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
108
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
109
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
110
|
Wang K, Zhang Z, Li S, Zhang H, Yue N, Pang J, Jiang Z. Side-Chain-Type Anion Exchange Membranes Based on Poly(arylene ether sulfone)s Containing High-Density Quaternary Ammonium Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23547-23557. [PMID: 33979135 DOI: 10.1021/acsami.1c00889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To obtain anion exchange membranes with both high ionic conductivity and good dimensional stability, a series of side-chain-type poly(arylene ether sulfone)s (PAES-QDTPM-x) were designed and synthesized. Quaternary ammonium (QA) groups were densely aggregated and grafted onto the main chain via flexible hydrophobic spacers. Well-defined microphase separation was confirmed by small-angle X-ray scattering. PAES-QDTPM-0.30 exhibited reasonably high conductivity (39.4 mS cm-1 at 20 °C and 76.1 mS cm-1 at 80 °C) and excellent dimensional stability at 80 °C (11.9% in length, 11.2% in thickness) due to the concentration of ion clusters and the side-chain-type structure. All membranes maintained over 82% of the conductivity after alkali treatment for 14 days. In the H2/O2 fuel cell performance test, the maximum power density of PAES-QDTPM-0.30 at 60 °C was 225.8 mW cm-2.
Collapse
Affiliation(s)
- Kaiqi Wang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenpeng Zhang
- Shenyang Rubber Research & Design Institute Company Limited, Shenyang 110021, People's Republic of China
| | - Su Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haibo Zhang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nailin Yue
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
111
|
Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119167] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
112
|
Chen N, Wang HH, Kim SP, Kim HM, Lee WH, Hu C, Bae JY, Sim ES, Chung YC, Jang JH, Yoo SJ, Zhuang Y, Lee YM. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun 2021; 12:2367. [PMID: 33888709 PMCID: PMC8062622 DOI: 10.1038/s41467-021-22612-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components-anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH- conductivity of 208 mS cm-1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm-2 in H2-O2 and 1.25 W cm-2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm-2 current density for ~200 h.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ho Hyun Wang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Pyo Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hae Min Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Won Hee Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon Yong Bae
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eun Seob Sim
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong-Chae Chung
- Department of Materials Science and Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jue-Hyuk Jang
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
113
|
Hong SJ, Yoon SJ, Kim TH, Lee JY, Oh SG, Hong YT, So S, Yu DM. Alcohol-Treated Porous PTFE Substrate for the Penetration of PTFE-Incompatible Hydrocarbon-Based Ionomer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3694-3701. [PMID: 33729784 DOI: 10.1021/acs.langmuir.1c00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For a mechanically tough proton exchange membrane, a composite membrane incorporated with a porous polymer substrate is of great interest to suppress the ionomer swelling and to improve the dimensional stability and mechanical strength of the ionomers. For the composite membranes, good impregnation of substrate-incompatible ionomer solution into the substrate pores still remains one of the challenges to be solved. Here, we demonstrated a facile process (surface treatment with solvents compatible with both substrate and the ionomer solution) for the fabrication of the composite membranes using polytetrafluoroethylene (PTFE) as a porous substrate and poly(arylene ether sulfone) (SPAES) as a hydrocarbon-based (HC) ionomer. Appropriate solvents for the surface treatment were sought through the contact angle measurement, and it was found that alcohol solvents effectively tuned the surface property of PTFE pores to facilitate the penetration of the SPAES/N-methyl-2-pyrrolidone (NMP) solution into ∼300 nm pores of the substrate. Using this simple alcohol treatment, the SPAES/NMP contact angle was reduced in half, and we could fabricate the mechanically tough PTFE/HC composite membranes, which were apparently translucent and microscopically almost void-free composite membranes.
Collapse
Affiliation(s)
- Seung Jae Hong
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Jun Yoon
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Tae-Ho Kim
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jang Yong Lee
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seong-Geun Oh
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Taik Hong
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soonyong So
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Duk Man Yu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
114
|
Chen N, Hu C, Wang HH, Kim SP, Kim HM, Lee WH, Bae JY, Park JH, Lee YM. Poly(Alkyl-Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm -2. Angew Chem Int Ed Engl 2021; 60:7710-7718. [PMID: 33368927 PMCID: PMC8048807 DOI: 10.1002/anie.202013395] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Indexed: 11/11/2022]
Abstract
Aryl-ether-free anion-exchange ionomers (AEIs) and membranes (AEMs) have become an important benchmark to address the insufficient durability and power-density issues associated with AEM fuel cells (AEMFCs). Here, we present aliphatic chain-containing poly(diphenyl-terphenyl piperidinium) (PDTP) copolymers to reduce the phenyl content and adsorption of AEIs and to increase the mechanical properties of AEMs. Specifically, PDTP AEMs possess excellent mechanical properties (storage modulus>1800 MPa, tensile strength>70 MPa), H2 fuel-barrier properties (<10 Barrer), good ion conductivity, and ex-situ stability. Meanwhile, PDTP AEIs with low phenyl content and high-water permeability display excellent peak power densities (PPDs). The present AEMFCs reach outstanding PPDs of 2.58 W cm-2 (>7.6 A cm-2 current density) and 1.38 W cm-2 at 80 °C in H2 /O2 and H2 /air, respectively, along with a specific power (PPD/catalyst loading) over 8 W mg-1 , which is the highest record for Pt-based AEMFCs so far.
Collapse
Affiliation(s)
- Nanjun Chen
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Chuan Hu
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Ho Hyun Wang
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Sun Pyo Kim
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Hae Min Kim
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Won Hee Lee
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Joon Yong Bae
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Jong Hyeong Park
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Young Moo Lee
- Department of Energy EngineeringCollege of EngineeringHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
115
|
Chen N, Hu C, Wang HH, Kim SP, Kim HM, Lee WH, Bae JY, Park JH, Lee YM. Poly(Alkyl‐Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline‐Membrane Fuel‐Cell Performance of 2.58 W cm
−2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nanjun Chen
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Chuan Hu
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Ho Hyun Wang
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Sun Pyo Kim
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Hae Min Kim
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Won Hee Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Joon Yong Bae
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Jong Hyeong Park
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| | - Young Moo Lee
- Department of Energy Engineering College of Engineering Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|