101
|
Exploring the top of the protein folding funnel by experiment. Curr Opin Struct Biol 2013; 23:30-5. [DOI: 10.1016/j.sbi.2012.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
|
102
|
Schuler B, Hofmann H. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 2013; 23:36-47. [DOI: 10.1016/j.sbi.2012.10.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
103
|
Liu B, Conn CS, Qian SB. Viewing folding of nascent polypeptide chains from ribosomes. Expert Rev Proteomics 2012; 9:579-81. [PMID: 23256666 DOI: 10.1586/epr.12.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
104
|
Milanesi L, Waltho JP, Hunter CA, Shaw DJ, Beddard GS, Reid GD, Dev S, Volk M. Measurement of energy landscape roughness of folded and unfolded proteins. Proc Natl Acad Sci U S A 2012; 109:19563-8. [PMID: 23150572 PMCID: PMC3511724 DOI: 10.1073/pnas.1211764109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics of protein conformational changes, from protein folding to smaller changes, such as those involved in ligand binding, are governed by the properties of the conformational energy landscape. Different techniques have been used to follow the motion of a protein over this landscape and thus quantify its properties. However, these techniques often are limited to short timescales and low-energy conformations. Here, we describe a general approach that overcomes these limitations. Starting from a nonnative conformation held by an aromatic disulfide bond, we use time-resolved spectroscopy to observe nonequilibrium backbone dynamics over nine orders of magnitude in time, from picoseconds to milliseconds, after photolysis of the disulfide bond. We find that the reencounter probability of residues that initially are in close contact decreases with time following an unusual power law that persists over the full time range and is independent of the primary sequence. Model simulations show that this power law arises from subdiffusional motion, indicating a wide distribution of trapping times in local minima of the energy landscape, and enable us to quantify the roughness of the energy landscape (4-5 k(B)T). Surprisingly, even under denaturing conditions, the energy landscape remains highly rugged with deep traps (>20 k(B)T) that result from multiple nonnative interactions and are sufficient for trapping on the millisecond timescale. Finally, we suggest that the subdiffusional motion of the protein backbone found here may promote rapid folding of proteins with low contact order by enhancing contact formation between nearby residues.
Collapse
Affiliation(s)
- Lilia Milanesi
- Departments of Molecular Biology and Biotechnology and
- Chemistry, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jonathan P. Waltho
- Departments of Molecular Biology and Biotechnology and
- Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom
| | | | - Daniel J. Shaw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Godfrey S. Beddard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Gavin D. Reid
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Sagarika Dev
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Martin Volk
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
105
|
Johnson E. Separability between overall and internal motion: a protein folding problem. Proteins 2012; 80:2645-51. [PMID: 22945391 DOI: 10.1002/prot.24175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/23/2012] [Accepted: 08/26/2012] [Indexed: 12/29/2022]
Abstract
The separability between overall and internal motions is evaluated over multiple folding trajectories of the villin headpiece subdomain. The analysis, which relies on the Prompers-Brüschweiler separability index, offers a potentially useful perspective on protein folding. The protein is considered folded in this study, not when it reaches some static target, but rather when it tumbles as a dynamically constrained object. The analysis also demonstrates how the separability index, when applied to protein folding simulations, can facilitate the analysis of NMR relaxation data.
Collapse
Affiliation(s)
- Eric Johnson
- Department of Chemistry and Physical Sciences, College of Mount St. Joseph, Cincinnati, OH 45233, USA.
| |
Collapse
|
106
|
Okumura M, Shimamoto S, Nakanishi T, Yoshida YI, Konogami T, Maeda S, Hidaka Y. Effects of positively charged redox molecules on disulfide-coupled protein folding. FEBS Lett 2012; 586:3926-30. [PMID: 23044009 DOI: 10.1016/j.febslet.2012.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/05/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
In vitro folding of disulfide-containing proteins is generally regulated by redox molecules, such as glutathione. However, the role of the cross-disulfide-linked species formed between the redox molecule and the protein as a folding intermediate in the folding mechanism is poorly understood. In the present study, we investigated the effect of the charge on a redox molecule on disulfide-coupled protein folding. Several types of aliphatic thiol compounds including glutathione were examined for the folding of disulfide-containing-proteins, such as lysozyme and prouroguanylin. The results indicate that the positive charge and its dispersion play a critical role in accelerating disulfide-coupled protein folding.
Collapse
Affiliation(s)
- Masaki Okumura
- Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
107
|
Enemark S, Kurniawan NA, Rajagopalan R. β-hairpin forms by rolling up from C-terminal: topological guidance of early folding dynamics. Sci Rep 2012; 2:649. [PMID: 22970341 PMCID: PMC3438464 DOI: 10.1038/srep00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/28/2012] [Indexed: 12/02/2022] Open
Abstract
That protein folding is a non-random, guided process has been known even prior to Levinthal's paradox; yet, guided searches, attendant mechanisms and their relation to primary sequence remain obscure. Using extensive molecular dynamics simulations of a β-hairpin with key sequence features similar to those of >13,000 β-hairpins in full proteins, we provide significant insights on the entire pre-folding dynamics at single-residue levels and describe a single, highly coordinated roll-up folding mechanism, with clearly identifiable stages, directing structural progression toward native state. Additional simulations of single-site mutants illustrate the role of three key residues in facilitating this roll-up mechanism. Given the many β-hairpins in full proteins with similar residue arrangements and since β-hairpins are believed to act as nucleation sites in early-stage folding dynamics of full proteins, the topologically guided mechanism seen here may represent one of Nature's strategies for reducing early-stage folding complexity.
Collapse
Affiliation(s)
- Søren Enemark
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive 3, E4-14-10, Singapore 117576
| | | | | |
Collapse
|
108
|
Wang Y, Chu X, Suo Z, Wang E, Wang J. Multidomain protein solves the folding problem by multifunnel combined landscape: theoretical investigation of a Y-family DNA polymerase. J Am Chem Soc 2012; 134:13755-64. [PMID: 22827444 DOI: 10.1021/ja3045663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Approximately three-fourths of eukaryotic proteins are composed of multiple independently folded domains. However, much of our understanding is based on single domain proteins or isolated domains whose studies directly lead to well-known energy landscape theory in which proteins fold by navigating through a funneled energy landscape toward native structure ensembles. The degrees of freedom for proteins with multiple domains are many orders of magnitude larger than that for single domain proteins. Now, the question arises: How do the multidomain proteins solve the "protein folding problem"? Here, we specifically address this issue by exploring the structure folding relationship of Sulfolobus solfataricus DNA polymerase IV (DPO4), a prototype Y-family DNA polymerase which contains a polymerase core consisting of a palm (P domain), a finger (F domain), and a thumb domain (T domain) in addition to a little finger domain (LF domain). The theoretical results are in good agreement with the experimental data and lead to several theoretical predictions. Finally, we propose that for rapid folding into well-defined conformations which carry out the biological functions, four-domain DPO4 employs a divide-and-conquer strategy, that is, combining multiple individual folding funnels into a single funnel (domains fold independently and then coalesce). In this way, the degrees of freedom for multidomain proteins are polynomial rather than exponential, and the conformational search process can be reduced effectively from a large to a smaller time scale.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | | | | | | | | |
Collapse
|
109
|
Monitoring cotranslational protein folding in mammalian cells at codon resolution. Proc Natl Acad Sci U S A 2012; 109:12467-72. [PMID: 22802618 DOI: 10.1073/pnas.1208138109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How the ribosome-bound nascent chain folds to assume its functional tertiary structure remains a central puzzle in biology. In contrast to refolding of a denatured protein, cotranslational folding is complicated by the vectorial nature of nascent chains, the frequent ribosome pausing, and the cellular crowdedness. Here, we present a strategy called folding-associated cotranslational sequencing that enables monitoring of the folding competency of nascent chains during elongation at codon resolution. By using an engineered multidomain fusion protein, we demonstrate an efficient cotranslational folding immediately after the emergence of the full domain sequence. We also apply folding-associated cotranslational sequencing to track cotranslational folding of hemagglutinin in influenza A virus-infected cells. In contrast to sequential formation of distinct epitopes, the receptor binding domain of hemagglutinin follows a global folding route by displaying two epitopes simultaneously when the full sequence is available. Our results provide direct evidence of domain-wise global folding that occurs cotranslationally in mammalian cells.
Collapse
|
110
|
Aghera N, Udgaonkar JB. Kinetic Studies of the Folding of Heterodimeric Monellin: Evidence for Switching between Alternative Parallel Pathways. J Mol Biol 2012; 420:235-50. [DOI: 10.1016/j.jmb.2012.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
|
111
|
Abdo M, Brown SP, Courter JR, Tucker MJ, Hochstrasser RM, Smith AB. Design, synthesis, and photochemical validation of peptide linchpins containing the S,S-tetrazine phototrigger. Org Lett 2012; 14:3518-21. [PMID: 22731895 DOI: 10.1021/ol301490h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The design, solid-phase synthesis, and photochemical validation of diverse peptide linchpins, containing the S,S-tetrazine phototrigger, have been achieved. Steady state irradiation or femtosecond laser pulses confirm their rapid photofragmentation. Attachment of peptides to the C- and N-termini will provide access to diverse constrained peptide constructs that hold the promise of providing information about early peptide/protein conformational dynamics upon photochemical release.
Collapse
Affiliation(s)
- Mohannad Abdo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
112
|
Shandiz AT, Baxa MC, Sosnick TR. A "Link-Psi" strategy using crosslinking indicates that the folding transition state of ubiquitin is not very malleable. Protein Sci 2012; 21:819-27. [PMID: 22528473 DOI: 10.1002/pro.2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/09/2022]
Abstract
Using a combined crosslinking-ψ analysis strategy, we examine whether the structural content of the transition state of ubiquitin can be altered. A synthetic dichloroacetone crosslink is first introduced across two β strands. Whether the structural content in the transition state ensemble has shifted towards the region containing the crosslink is probed by remeasuring the ψ value at another region (ψ identifies the degree to which an inserted bi-Histidine metal ion binding site is formed in the transition state). For sites around the periphery of the obligate transition state nucleus, we find that the resulting changes in ψ values are near or at our detection limit, thereby indicating that the structural content of the transition state has not measurably changed upon crosslinking. This work demonstrates the utility of the simultaneous application of crosslinking and ψ-analysis for examining potential transition state heterogeneity in globular proteins.
Collapse
Affiliation(s)
- Ali T Shandiz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
113
|
Hałabis A, Żmudzińska W, Liwo A, Ołdziej S. Conformational Dynamics of the Trp-Cage Miniprotein at Its Folding Temperature. J Phys Chem B 2012; 116:6898-907. [DOI: 10.1021/jp212630y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Hałabis
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952
Gdańsk, Poland
| | - Stanisław Ołdziej
- Laboratory of Biopolymer Structure,
Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-922 Gdańsk, Poland
| |
Collapse
|
114
|
Xu M, Beresneva O, Rosario R, Roder H. Microsecond folding dynamics of apomyoglobin at acidic pH. J Phys Chem B 2012; 116:7014-25. [PMID: 22475221 DOI: 10.1021/jp3012365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apomyolgobin (apoMb) is an important model for understanding the folding mechanism of helical proteins. This study focuses on a partially structured state of sperm whale apoMb populated at pH 4.2 (M-state), which structurally resembles a late kinetic intermediate in the formation of the native state (N) at higher pH. The thermodynamics and cooperativity of apoMb folding at pH 4.2 and 6.2 were studied by global analysis of the urea-induced unfolding transitions monitored by tryptophan fluorescence and circular dichroism. The kinetics of folding and unfolding of apoMb at pH 4.2 was measured over a time window from 40 to 850 μs, using fluorescence-detected continuous-flow measurements. Our observation of biphasic kinetics provides clear evidence for rapid (<100 μs) accumulation of previously unresolved intermediate states in both refolding and unfolding experiments. Quantitative kinetic modeling of the results, using a four-state mechanism with two intermediates on a direct route between the unfolded and folded states (U↔I↔L↔M), gave new insight into the conformational states and barriers that precede the rate-limiting step in the formation of the N-state of apoMb.
Collapse
Affiliation(s)
- Ming Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
115
|
Understanding how small helical proteins fold: conformational dynamics of Im proteins relevant to their folding landscapes. Biochem Soc Trans 2012; 40:424-8. [DOI: 10.1042/bst20110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the mechanism of folding of small proteins requires characterization of their starting unfolded states and any partially unfolded states populated during folding. Here, we review what is known from NMR about these states of Im7, a 4-helix bundle protein that folds via an on-pathway intermediate, and show that there is an alignment of non-native structure in urea-unfolded Im7 with the helices of native Im7 that is a consequence of hydrophobic helix-promoting residues also promoting cluster-formation in the unfolded protein. We suggest that this kind of alignment is present in other proteins and is relevant to how native state topology determines folding rates.
Collapse
|
116
|
Pashley CL, Morgan GJ, Kalverda AP, Thompson GS, Kleanthous C, Radford SE. Conformational properties of the unfolded state of Im7 in nondenaturing conditions. J Mol Biol 2012; 416:300-18. [PMID: 22226836 PMCID: PMC3314952 DOI: 10.1016/j.jmb.2011.12.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/04/2022]
Abstract
The unfolded ensemble in aqueous solution represents the starting point of protein folding. Characterisation of this species is often difficult since the native state is usually predominantly populated at equilibrium. Previous work has shown that the four-helix protein, Im7 (immunity protein 7), folds via an on-pathway intermediate. While the transition states and folding intermediate have been characterised in atomistic detail, knowledge of the unfolded ensemble under the same ambient conditions remained sparse. Here, we introduce destabilising amino acid substitutions into the sequence of Im7, such that the unfolded state becomes predominantly populated at equilibrium in the absence of denaturant. Using far- and near-UV CD, fluorescence, urea titration and heteronuclear NMR experiments, we show that three amino acid substitutions (L18A-L19A-L37A) are sufficient to prevent Im7 folding, such that the unfolded state is predominantly populated at equilibrium. Using measurement of chemical shifts, (15)N transverse relaxation rates and sedimentation coefficients, we show that the unfolded species of L18A-L19A-L37A deviates significantly from random-coil behaviour. Specifically, we demonstrate that this unfolded species is compact (R(h)=25 Å) relative to the urea-denatured state (R(h)≥30 Å) and contains local clusters of hydrophobic residues in regions that correspond to the four helices in the native state. Despite these interactions, there is no evidence for long-range stabilising tertiary interactions or persistent helical structure. The results reveal an unfolded ensemble that is conformationally restricted in regions of the polypeptide chain that ultimately form helices I, II and IV in the native state.
Collapse
Key Words
- ts1, transition state 1
- ts2, transition state 2
- cole7, colicin e7
- ssp, secondary structure propensity
- smfret, single-molecule förster resonance energy transfer
- im7, immunity protein 7
- edta, ethylenediaminetetraacetic acid
- hsqc, heteronuclear single quantum coherence
- auc, analytical ultracentrifugation
- itc, isothermal titration calorimetry
- bmrb, biological magnetic resonance data bank
- noe, nuclear overhauser enhancement
- aabuf, average area buried upon folding
- pdb, protein data bank
- protein folding
- nmr
- unfolded ensemble
- denatured state
- immunity protein
Collapse
Affiliation(s)
- Clare L. Pashley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J. Morgan
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gary S. Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
117
|
Zarrine-Afsar A, Zhang Z, Schweiker KL, Makhatadze GI, Davidson AR, Chan HS. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain. Proteins 2011; 80:858-70. [PMID: 22161863 DOI: 10.1002/prot.23243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 11/11/2022]
Abstract
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.
Collapse
Affiliation(s)
- Arash Zarrine-Afsar
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Haran G. How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 2011; 22:14-20. [PMID: 22104965 DOI: 10.1016/j.sbi.2011.10.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.
Collapse
Affiliation(s)
- Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
119
|
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Chicago, IL 60637, USA
| | | |
Collapse
|
120
|
|
121
|
Bowler BE. Residual structure in unfolded proteins. Curr Opin Struct Biol 2011; 22:4-13. [PMID: 21978577 DOI: 10.1016/j.sbi.2011.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022]
Abstract
The denatured state ensemble (DSE) of unfolded proteins, once considered to be well-modeled by an energetically featureless random coil, is now well-known to contain flickering elements of residual structure. The position and nature of DSE residual structure may provide clues toward deciphering the protein folding code. This review focuses on recent advances in our understanding of the nature of DSE collapse under folding conditions, the quantification of the stability of residual structure in the DSE, the determination of the location and types of residues involved in thermodynamically significant residual structure and advances in detection of long-range interactions in the DSE.
Collapse
Affiliation(s)
- Bruce E Bowler
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
122
|
Krivov SV. The Free Energy Landscape Analysis of Protein (FIP35) Folding Dynamics. J Phys Chem B 2011; 115:12315-24. [DOI: 10.1021/jp208585r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergei V. Krivov
- Institute of Molecular and Cellular Biology, Leeds University, Leeds, United Kingdom
| |
Collapse
|
123
|
Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O. Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 2011; 95:550-8. [PMID: 21442608 DOI: 10.1002/bip.21628] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/08/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful method for obtaining quantitative structural information on the size and shape of proteins, and it is increasingly used in kinetic studies of folding and association reactions. In this minireview, we discuss recent developments in using SAXS to obtain structural information on the unfolded ensemble and early folding intermediates of proteins using continuous-flow mixing devices. Interfacing of these micromachined devices to SAXS beamlines has allowed access to the microsecond time regime. The experimental constraints in implementation of turbulence and laminar flow-based mixers with SAXS detection and a comparison of the two approaches are presented. Current improvements and future prospects of microsecond time-resolved SAXS and the synergy with ab initio structure prediction and molecular dynamics simulations are discussed.
Collapse
Affiliation(s)
- Sagar V Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|