101
|
Kurochkin IV, Guarnera E, Wong JH, Eisenhaber F, Berezovsky IN. Toward Allosterically Increased Catalytic Activity of Insulin-Degrading Enzyme against Amyloid Peptides. Biochemistry 2016; 56:228-239. [PMID: 27982586 DOI: 10.1021/acs.biochem.6b00783] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The physiological role of insulin-degrading enzyme (IDE) in the intracytosolic clearance of amyloid β (Aβ) and other amyloid-like peptides supports a hypothesis that human IDE hyperactivation could be therapeutically beneficial for the treatment of late-onset Alzheimer's disease (AD). The major challenge standing in the way of this goal is increasing the specific catalytic activity of IDE against the Aβ substrate. There were previous indications that the allosteric mode of IDE activity regulation could potentially provide a highly specific path toward degradation of amyloid-like peptides, while not dramatically affecting activity against other substrates. Recently developed theoretical concepts are used here to explore potential allosteric modulation of the IDE activity as a result of single-residue mutations. Five candidates are selected for experimental follow-up and allosteric free energy calculations: Ser137Ala, Lys396Ala, Asp426Ala, Phe807Ala, and Lys898Ala. Our experiments show that three mutations (Ser137Ala, Phe807Ala, and Lys898Ala) decrease the Km of the Aβ substrate. Mutation Lys898Ala results in increased catalytic activity of IDE; on the other hand, Lys364Ala does not change the activity and Asp426Ala diminishes it. Quantifying effects of mutations in terms of allosteric free energy, we show that favorable mutations lead to stabilization of the catalytic sites and other function-relevant distal sites as well as increased dynamics of the IDE-N and IDE-C halves that allow efficient substrate entrance and cleavage. A possibility for intramolecular upregulation of IDE activity against amyloid peptides via allosteric mutations calls for further investigations in this direction. Ultimately, we are hopeful it will lead to the development of IDE-based drugs for the treatment of the late-onset form of AD characterized by an overall impairment of Aβ clearance.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Jin H Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS) , 8 Medical Drive, Singapore 117579.,School of Computer Engineering (SCE), Nanyang Technological University (NTU) , 50 Nanyang Drive, Singapore 637553
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS) , 8 Medical Drive, Singapore 117579
| |
Collapse
|
102
|
Mou L, Cui T, Liu W, Zhang H, Cai Z, Lu S, Gao G. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation. Chem Biol Drug Des 2016; 89:723-731. [PMID: 27797456 DOI: 10.1111/cbdd.12895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/02/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity.
Collapse
Affiliation(s)
- Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Tongwei Cui
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Weiguang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Hong Zhang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhanxiu Cai
- Department of Electrical and Computer Engineering, College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Gao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
103
|
Berezovsky IN, Guarnera E, Zheng Z, Eisenhaber B, Eisenhaber F. Protein function machinery: from basic structural units to modulation of activity. Curr Opin Struct Biol 2016; 42:67-74. [PMID: 27865209 DOI: 10.1016/j.sbi.2016.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Contemporary protein structure is a result of the trade off between the laws of physics and the evolutionary selection. The polymer nature of proteins played a decisive role in establishing the basic structural and functional units of soluble proteins. We discuss how these elementary building blocks work in the hierarchy of protein domain structure, co-translational folding, as well as in enzymatic activity and molecular interactions. Next, we consider modulators of the protein function, such as intermolecular interactions, disorder-to-order transitions, and allosteric signaling, acting via interference with the protein's structural dynamics. We also discuss the post-translational modifications, which is a complementary intricate mechanism evolved for regulation of protein functions and interactions. In conclusion, we assess an anticipated contribution of discussed topics to the future advancements in the field.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
104
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
105
|
Schueler-Furman O, Wodak SJ. Computational approaches to investigating allostery. Curr Opin Struct Biol 2016; 41:159-171. [PMID: 27607077 DOI: 10.1016/j.sbi.2016.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Allosteric regulation plays a key role in many biological processes, such as signal transduction, transcriptional regulation, and many more. It is rooted in fundamental thermodynamic and dynamic properties of macromolecular systems that are still poorly understood and are moreover modulated by the cellular context. Here we review the computational approaches used in the investigation of allosteric processes in protein systems. We outline how the models of allostery have evolved from their initial formulation in the sixties to the current views, which more fully account for the roles of the thermodynamic and dynamic properties of the system. We then describe the major classes of computational approaches employed to elucidate the mechanisms of allostery, the insights they have provided, as well as their limitations. We complement this analysis by highlighting the role of computational approaches in promising practical applications, such as the engineering of regulatory modules and identifying allosteric binding sites.
Collapse
Affiliation(s)
- Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University, Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
106
|
Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc Natl Acad Sci U S A 2016; 113:E4567-76. [PMID: 27432987 PMCID: PMC4978270 DOI: 10.1073/pnas.1604936113] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.
Collapse
|
107
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
108
|
Guarnera E, Berezovsky IN. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication. PLoS Comput Biol 2016; 12:e1004678. [PMID: 26939022 PMCID: PMC4777440 DOI: 10.1371/journal.pcbi.1004678] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. The 50th anniversary of Monod-Changeux-Jacob seminal paper “Allosteric proteins and cellular control systems” became the hallmark of a new wave in the allostery studies and the turning point in our vision of allostery and its implications in protein engineering and drug design. Recent experimental and theoretical works clearly show relevance of allosteric phenomenon to drug design, unraveling advantages of allosteric drugs in comparison to traditional orthosteric compounds. Remarkable simplicity of allosteric effectors and, at the same time, their potentially high specificity is one of the most important traits. The non conserved nature of allosteric ligands is a basis for avoiding drug resistance, and existence of latent regulatory sites make them attractive drug targets. The model presented in this work provides a theoretical framework for the quantification of the causality and energetics of allosteric regulation, which is a prerequisite for design of effector molecules with required characteristics. The synthesis between the thermodynamics of allostery and the intrinsic atomic nature of proteins and their interactions with the allosteric effectors accomplished in this work is a small initial step in the long endeavor towards future allosteric drugs.
Collapse
Affiliation(s)
- Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore
| |
Collapse
|