101
|
Purakayastha TJ, Bera T, Bhaduri D, Sarkar B, Mandal S, Wade P, Kumari S, Biswas S, Menon M, Pathak H, Tsang DCW. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. CHEMOSPHERE 2019; 227:345-365. [PMID: 30999175 DOI: 10.1016/j.chemosphere.2019.03.170] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/20/2019] [Accepted: 03/26/2019] [Indexed: 05/22/2023]
Abstract
The beneficial role of biochar on improvement of soil quality, C sequestration, and enhancing crop yield is widely reported. As such there is not much consolidated information available linking biochar modulated soil condition improvement and soil nutrient availability on crop yields. The present review paper addresses the above issues by compilation of world literature on biochar and a new dimension is introduced in this review by performing a meta-analysis of published data by using multivariate statistical analysis. Hence this review is a new in its kind and is useful to the broad spectrum of readers. Generally, alkalinity in biochar increases with increase in pyrolysis temperature and majority of the biochar is alkaline in nature except a few which are acidic. The N content in many biochar was reported to be more than 4% as well as less than 0.5%. Poultry litter biochar is a rich source of P (3.12%) and K (7.40%), while paper mill sludge biochar is higher in Ca content (31.1%) and swine solids biochar in Zn (49810 mg kg-1), and Fe (74800 mg kg-1) contents. The effect of biochar on enhancing soil pH was higher in Alfisol, Ferrosol and Acrisol. Soil application of biochar could on an average increase (78%), decrease (16%), or show no effect on crop yields under different soil types. Biochar produced at a lower pyrolysis temperature could deliver greater soil nutrient availabilities than that prepared at higher temperature. Principal component analysis (PCA) of available data shows an inverse relationship between [pyrolysis temperature and soil pH], and [biochar application rate and soil cation exchange capacity]. The PCA also suggests that the original soil properties and application rate strongly control crop yield stimulations via biochar amendments. Finally, biochar application shows net soil C gains while also serving for increased plant biomass production that strongly recommends biochar as a useful soil amendment. Therefore, the application of biochar to soils emerges as a 'win-win strategy' for sustainable waste management, climate change mitigation and food security.
Collapse
Affiliation(s)
- T J Purakayastha
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - T Bera
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sanchita Mandal
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Peter Wade
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Savita Kumari
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sunanda Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Manoj Menon
- Department of Geography, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - H Pathak
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
102
|
Visentin C, da Silva Trentin AW, Braun AB, Thomé A. Application of life cycle assessment as a tool for evaluating the sustainability of contaminated sites remediation: A systematic and bibliographic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:893-905. [PMID: 30978551 DOI: 10.1016/j.scitotenv.2019.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
As the discussion surrounding sustainable remediation has advanced, numerous tools have been developed to evaluate the sustainability of remediation technologies, including life cycle assessment (LCA). In the present study, a systematic and bibliometric analysis of scientific articles indexed in the databases of Scopus and the Web of Science in the field of LCA was performed, particularly studies relating to the remediation of contaminated sites from a sustainability perspective. We selected a bibliographic portfolio (BP) of papers related to sustainable remediation using LCA. Then, we performed a bibliometric analysis of the selected BP, presenting theoretical development, highlighting the authors, journals, and countries associated with these publications. Finally, we conducted a thematic synthesis and reviewed the prospects for future research. The BP was composed of 44 papers from 2007 to 2018. In 2018 there was the highest number of publications, corresponding to 27% of the total BP. The results showed that developed countries have generated the largest number of publications, whereas developing countries had lower representation in the BP. However, China stands out as the second country with the highest number of publications. The thematic analysis showed that most articles have aimed to assess the environmental impacts of remediation techniques. However, several publications have performed a broader analysis considering the economic and social pillars of sustainability through using LCA in conjunction with other tools. The study also highlights the main application of LCA in decision-making on the remediation processes in the context of sustainable remediation. The present research study makes several new contributions, providing academics and practitioners with an overview of the implementation of LCA in the field of sustainable remediation of contaminated sites through sorting published data according to scientific indexes and bibliometrics, describing the main research approaches, and highlighting prospects for new research.
Collapse
Affiliation(s)
- Caroline Visentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil.
| | - Adan William da Silva Trentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil
| | - Adeli Beatriz Braun
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, Zip Code 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
103
|
Chang J, Duan Y, Dong J, Shen S, Si G, He F, Yang Q, Chen J. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:676-684. [PMID: 30939320 DOI: 10.1016/j.scitotenv.2019.03.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Reducing Hg contamination in soil using eco-friendly approaches has attracted increasing attention in recent years. In this study, a novel multi-metal-resistant Hg-volatilizing fungus belonging to Lecythophora sp., DC-F1, was isolated from multi-metal-polluted mining-area soil, and its performance in reducing Hg bioavailability in soil when used in combination with biochar was investigated. The isolate displayed a minimum inhibitory concentration of 84.5mg·L-1 for Hg(II) and volatilized >86% of Hg(II) from LB liquid medium with an initial concentration of 7.0mg·L-1 within 16h. Hg(II) contents in soils and grown lettuce shoots decreased by 13.3-26.1% and 49.5-67.7%, respectively, with DC-F1 and/or biochar addition compared with a control over 56days of incubation. Moreover, treatment with both bioagents achieved the lowest Hg content in lettuce shoots. Hg presence and DC-F1 addition significantly decreased the number of fungal ITS gene copies in soils. High-throughput sequencing showed that the soil fungal community compositions were more largely influenced by DC-F1 addition than by biochar addition, with the proportion of Mortierella increasing and those of Penicillium and Thielavia decreasing with DC-F1 addition. Developing the coupling of Lecythophora sp. DC-F1 with biochar into a feasible approach for the recovery of Hg-contaminated soils is promising.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Yijun Duan
- Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lakes), Kunming 650034, PR China
| | - Jia Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Shili Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China
| | - Guangzheng Si
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Fang He
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Qingchen Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, PR China
| | - Jinquan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
104
|
Turull M, Fontàs C, Díez S. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:40-46. [PMID: 30851683 DOI: 10.1016/j.scitotenv.2019.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Peri-urban agriculture provides environmental benefits to the nearby urban areas. However, domestic and industrial infrastructures can be sources of pollution that can affect agricultural production. In this work, the diffusive gradient in thin film (DGT) technique was used to assess the bioavailability of mercury (Hg) in organic-amended agricultural soils, and uptake by lettuce. Two different amendments were studied individually in three different sets using a wood-based biochar at two rates (3% and 6%, w/w), and compost at one rate (30% w/w). The effect of the amendments on Hg bioavailability, mobility and uptake was investigated by means of both DGT analyses and accumulation of Hg by lettuce. DGT manufactured in-house devices with polyacrylamide gel using both open and restricted diffusive layers (ODL and RDL, respectively) were used to determine organic and inorganic Hg labile species in soils, respectively. The Hg concentration in lettuce leaves and roots were analyzed and compared with DGT measurements to predict the uptake of Hg from the different organic-amended soils and the non-amended soils. Results show that the application of biochar reduces the bioavailability of Hg in soil and, in consequence, the Hg uptake by lettuce. Inorganic Hg species were predominant in all the different sets of the experiment (62-97%), although the addition of the different amendments reduced the free ionic species in soil.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69,17003 Girona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
105
|
O'Connor D, Pan S, Shen Z, Song Y, Jin Y, Wu WM, Hou D. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:527-534. [PMID: 30928524 DOI: 10.1016/j.envpol.2019.03.092] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) are an emerging concern and potential risk to marine and terrestrial environments. Surface soils are reported to act as a sink. However, MP vertical mobility in the subsurface remains uncertain due to a lack of scientific data. This study focused on MP penetration in sand soil column experiments. Here we report the mobility of five different MPs, which consisted of polyethylene (PE) and polypropylene (PP) particles of various sizes and densities. We observed that the smallest sized PE MPs (21 μm) had the greatest movement potential. Moreover, it was found that when these MPs were subjected to greater numbers of wet-dry cycles, the penetration depth significantly increased, with an apparent linear relationship between depth and wet-dry cycle number (r2 = 0.817). In comparison, increasing the volume of infiltration liquid or the surface MP concentration had only negligible or weak effects on migration depth (r2 = 0.169 and 0.312, respectively). Based on the observed wet-dry cycle trend, we forecast 100-year penetration depths using weather data for 347 cities across China. The average penetration depth was calculated as 5.24 m (95% CI = 2.78-7.70 m), with Beijing Municipality and Hebei, Henan and Hubei provinces being the most vulnerable to MP vertical dispersion. Our results suggest that soils may not only represent a sink for MPs, but also a feasible entryway to subsurface receptors, such as subterranean fauna or aquifers. Finally, research gaps are identified and suggested research directions are put forward to garner a better understanding MP vertical migration in soil.
Collapse
Affiliation(s)
- David O'Connor
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shizhen Pan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhengtao Shen
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada
| | - Yinan Song
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuanliang Jin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA, 94305-4020, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
106
|
Wang Y, Hou D, Qi S, O'Connor D, Luo J. High stress low-flow (HSLF) sampling: A newly proposed groundwater purge and sampling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:127-132. [PMID: 30739847 DOI: 10.1016/j.scitotenv.2019.01.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Representative groundwater sampling is critical for establishing contaminant distributions, evaluating the effectiveness of remediation operations, monitoring the protection of human health and the environment, and sustainably managing groundwater resources. However, traditional low flow (low stress) or three-well-volume purge well sampling techniques can render high labor costs or high wastewater volumes. Newly developed passive samplers can only deal with limited analytical needs. A new High Stress Low Flow (HSLF) method is proposed involving dual pumping rates, which may significantly reduce purge time and wastewater production, while maintaining analytical needs, thus offering a new tool to promote green and sustainable remediation. A three-dimension numerical model was used to evaluate the potential benefits of the proposed HSLF approach. Compared to low flow sampling and three-well-volume purge methods, it was calculated that HSLF can reduce sampling time by up to 81.0% and 81.3%, respectively, and reduce wastewater production by up to 12.5% and 91.2%, respectively. The improvement achieved was affected by formation characteristics (e.g. hydraulic conductivity) and operation parameters (e.g. pumping rates and drawdown control). Further optimization and field testing is required to recognize the full potential of this newly proposed method.
Collapse
Affiliation(s)
- Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shengqi Qi
- School of Environment, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States of America
| |
Collapse
|
107
|
O'Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, Wang S, Tack FMG, Rinklebe J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. ENVIRONMENT INTERNATIONAL 2019; 126:747-761. [PMID: 30878870 DOI: 10.1016/j.envint.2019.03.019] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) is a potentially harmful trace element in the environment and one of the World Health Organization's foremost chemicals of concern. The threat posed by Hg contaminated soils to humans is pervasive, with an estimated 86 Gg of anthropogenic Hg pollution accumulated in surface soils worldwide. This review critically examines both recent advances and remaining knowledge gaps with respect to cycling of mercury in the soil environment, to aid the assessment and management of risks caused by Hg contamination. Included in this review are factors affecting Hg release from soil to the atmosphere, including how rainfall events drive gaseous elemental mercury (GEM) flux from soils of low Hg content, and how ambient conditions such as atmospheric O3 concentration play a significant role. Mercury contaminated soils constitute complex systems where many interdependent factors, including the amount and composition of soil organic matter and clays, oxidized minerals (e.g. Fe oxides), reduced elements (e.g. S2-), as well as soil pH and redox conditions affect Hg forms and transformation. Speciation influences the extent and rate of Hg subsurface transportation, which has often been assumed insignificant. Nano-sized Hg particles as well as soluble Hg complexes play important roles in soil Hg mobility, availability, and methylation. Finally, implications for human health and suggested research directions are put forward, where there is significant potential to improve remedial actions by accounting for Hg speciation and transportation factors.
Collapse
Affiliation(s)
- David O'Connor
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, China
| | - Deyi Hou
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, OJeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Lei Duan
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Qingru Wu
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| |
Collapse
|
108
|
Song Y, Kirkwood N, Maksimović Č, Zheng X, O'Connor D, Jin Y, Hou D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:568-579. [PMID: 30726765 DOI: 10.1016/j.scitotenv.2019.01.347] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/26/2023]
Abstract
Urban industrialization has caused severe land contamination at hundreds of thousands of sites in cities all around the world, posing a serious health risk to millions of people. Many contaminated brownfield sites are being left abandoned due to the high cost of remediation. Traditional physical and chemical remediation technologies also require high energy and resource input, and can result in loss of land functionality and cause secondary pollution. Nature-based solutions (NBS) including phytoremediation and conversion of brownfield sites to public greenspaces, holds much promise in maximizing a sustainable urban renaissance. NBS is an umbrella concept that can be used to capture nature based, cost effective and eco-friendly treatment technologies, as well as redevelopment strategies that are socially inclusive, economically viable, and with good public acceptance. The NBS concept is novel and in urgent need of new research to better understand the pros and cons, and to enhance its practicality. This review article summarizes NBS's main features, key technology choices, case studies, limitations, and future trends for urban contaminated land remediation and brownfield redevelopment.
Collapse
Affiliation(s)
- Yinan Song
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Niall Kirkwood
- Graduate School of Design, Harvard University, 48 Quincy Street, Cambridge, MA 02138, USA
| | - Čedo Maksimović
- Department of Civil Engineering, Imperial College, London SW7 2AZ, UK
| | - Xiaodi Zheng
- School of Architecture, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanliang Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
109
|
Xing Y, Wang J, Xia J, Liu Z, Zhang Y, Du Y, Wei W. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:18-24. [PMID: 30508751 DOI: 10.1016/j.ecoenv.2018.11.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
We studied the addition of two biochars (rice shell biochar (RSB) and wheat straw biochar (WSB)) to soil at doses of 24-72 t/ha on the dynamics of pH, dissolved organic carbon (DOC), sulfate, Fe(III), and Fe(II), as well as on mercury (Hg) mobility in the pore water of a polluted paddy soil, throughout the rice-growing season. The effect of biochar addition to soil on rice biomass and Hg accumulation was also investigated. The key results showed that the addition of RSB or WSB to soil improved significantly the biomass of aboveground tissues of rice plants, particularly at higher dose treatments, compared with the control. The RSB treatment noticeably decreased Hg concentration in the pore water compared to the control, throughout the rice-growing season, and this decrease was likely due to the decreased Hg mobility by the RSB by promoting the level of sulfate in the pore water, which might be reduced to sulfide to combine with Hg to form Hg sulfides. The extent of Hg concentration reduction in the pore water was less pronounced in the WSB treatments relative to the RSB treatments. Addition of RSB to soil at doses of 24-72 t/ha decreased significantly Hg contents in the stalk, bran, hull and polish rice of rice plants compared to the non-treated rice (control), particularly Hg content in the polished rice was below the Chinese safety level (< 20 ng g-1, GB2762-2012). The WSB treatments showed limited effects on rice tissues Hg. Biochar (RSB) may offer a promising method for managing the risk of Hg in paddy field by inhibiting rice Hg uptake.
Collapse
Affiliation(s)
- Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenmei Liu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Yonghang Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Ying Du
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Wanli Wei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| |
Collapse
|
110
|
Preparation and Modification of Biochar Materials and their Application in Soil Remediation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071365] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a new functional material, biochar was usually prepared from biomass and solid wastes such as agricultural and forestry waste, sludge, livestock, and poultry manure. The wide application of biochar is due to its abilities to remove pollutants, remediate contaminated soil, and reduce greenhouse gas emissions. In this paper, the influence of preparation methods, process parameters, and modification methods on the physicochemical properties of biochar were discussed, as well as the mechanisms of biochar in the remediation of soil pollution. The biochar applications in soil remediation in the past years were summarized, such as the removal of heavy metals and persistent organic pollutants (POPs), and the improvement of soil quality. Finally, the potential risks of biochar application and the future research directions were analyzed.
Collapse
|
111
|
Wang Y, Dang F, Zheng X, Zhong H. Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:590-596. [PMID: 30471573 DOI: 10.1016/j.jhazmat.2018.11.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) accumulation in rice is an emerging food safety issue in China and other countries; however, mitigation methods are scarce. Here, the effects of selenium (Se) and multiple applications of Se and biochar on rice MeHg bioaccumulation were investigated using pot and microcosm experiments. We report that Se amendment was still effective in reducing MeHg levels in paddy soil and rice grain after three years of aging. Biochar amendment (0.5% w/w) further decreased grain (brown rice) MeHg levels by 82-87%. The grain MeHg level decrease following the combination of Se and biochar amendment could be partly attributed to inhibition of net MeHg production in soil by Se. In addition, biochar decreased not only net MeHg production but also MeHg bioavailability in the soil, which could be due to organosulfur compounds in the biochar. Our findings suggest that multiple applications of Se and biochar could be a novel remediation strategy to mitigate MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yongjie Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xiangmin Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
112
|
Jin Y, O'Connor D, Ok YS, Tsang DCW, Liu A, Hou D. Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. ENVIRONMENT INTERNATIONAL 2019; 124:320-328. [PMID: 30660845 DOI: 10.1016/j.envint.2019.01.024] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/11/2023]
Abstract
Potentially toxic elements such as heavy metals are ubiquitous in the environment. Risk-based environmental management relies upon identifying pollution sources, pathways, and the exposed population. In a Chinese urban setting, many residents live in high-rise buildings without private gardens. Therefore, the main residential risk of exposure to contaminated soils and dusts may be associated with public open spaces. As children are the most vulnerable receptor, playgrounds represent an important yet often overlooked exposure point. The present study assessed plausible sources of heavy metals at children's playgrounds in a representative metropolitan environment. Soil and equipment dust samples were collected from 71 playgrounds across Beijing, which were analyzed for 11 different heavy metals. Principal component analysis (PCA) was used to identify the latent constructs which control heavy metal variability and reflect potential sources. Cluster analysis (CA) was conducted to group sampled locations, which provided further insights on plausible sources. The main factors extracted from the PCA were then subject to geostatistical analysis. The systematic combination of GIS with multivariate statistical analysis proved valuable for elucidating anthropogenic and natural sources. Elevated Be, V, Cr, Mn, Co, Ni, As in playground soils were found to derive mainly from the natural background (spatial autocorrelation = 2 km), while elevated Cu and Pb was attributed to traffic activities (spatial autocorrelation = 17 km), especially along the routes of Beijing's inner ring-roads, the major roads toward the northwest and northeast, and the international airport. These results suggest that heavy metals in playground equipment dust may derive mainly from atmospheric deposition of air pollution of both natural and anthropogenic origin (spatial autocorrelation = 11-13 km). Among them, Be, V, Mn, Co, Cu, As, Pb were attributed to atmospheric pollution deriving from the north of Beijing, brought by the prevailing northern wind in the winter season; whereas, Cr and Ni may possibly be brought from the southeast by the summer season winds. Knowledge of anthropogenic vs. natural origins of heavy metals in playgrounds is critical in assessing health impact and designing policy instruments for metropolitan areas.
Collapse
Affiliation(s)
- Yuanliang Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
113
|
Zhang J, Wu S, Xu Z, Wang M, Man YB, Christie P, Liang P, Shan S, Wong MH. The role of sewage sludge biochar in methylmercury formation and accumulation in rice. CHEMOSPHERE 2019; 218:527-533. [PMID: 30500713 DOI: 10.1016/j.chemosphere.2018.11.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) can accumulate in rice and this has been demonstrated to be an important human MeHg exposure pathway. How to reduce MeHg concentrations in rice grains has therefore become a very important public health issue. Previous studies have investigated the role of plant biochars on Hg bioavailability in soils but knowledge of the influence of sewage sludge biochars (SSB) on MeHg formation and bioaccumulation in different soils is lacking. In the present study, SSB was applied to two Hg-contaminated soils, one acid and the other calcareous, in an attempt to stabilize MeHg in the soil and further mitigate MeHg accumulation in rice grains. The results indicate that the presence of SSB may promote Hg methylation in an acid soil. Moreover, MeHg concentrations increased gradually during rice growth, perhaps due to the release of root exudates. SSB can inhibit both MeHg and total Hg (THg) accumulation in different rice tissues. Both MeHg and THg decreased in the rice grains by up to 73.4 and 81.9%, respectively. However, the inhibitory effect was less pronounced in a calcareous soil. This study further demonstrates that biochar application can inhibit MeHg accumulation in soils despite the promotion of MeHg formation in soil by SSB application. However, an effect of biochar on MeHg accumulation was observed only in the acid soil. These results are useful in managing applications of biochars to Hg-contaminated paddy fields.
Collapse
Affiliation(s)
- Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Shengchun Wu
- Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Zhentao Xu
- Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Minyan Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, 311800, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR
| | - Peter Christie
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Peng Liang
- Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR
| |
Collapse
|
114
|
Wang Y, Li Q, Zhang P, O'Connor D, Varma RS, Yu M, Hou D. One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. J Colloid Interface Sci 2019; 539:161-167. [DOI: 10.1016/j.jcis.2018.12.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
|
115
|
Bera T, Vardanyan L, Inglett KS, Reddy KR, O'Connor GA, Erickson JE, Wilkie AC. Influence of select bioenergy by-products on soil carbon and microbial activity: A laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1354-1363. [PMID: 30759575 DOI: 10.1016/j.scitotenv.2018.10.237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Concerns about the negative impacts of crop biomass removal on soil ecological functions have led to questioning the long-term sustainability of bioenergy production. To offset this potential negative impact, use of organic C rich by-products from the bioenergy industries have been proposed as a means to replenish soil C in degraded soils. However, the impact of these by-products application on soil carbon dynamics is not fully understood. We measured biogeochemical changes in soil organic C following a three-year field application of two by-products, biochar (BC) and fermentation-by product (FBP), of bioenergy industry processes in an elephant grass [Pennisetum purpureum (L.) Schum.] field. There was a significant increase in overall soil organic C (SOC) observed in BC (270%) treated plots, however the higher labile SOC (51%) content was present in FBP treated plots. Solid-state 13C NMR spectroscopy further revealed increased aromatic and alkyl groups in BC amended soils which lend to its significantly higher hydrophobicity index, HI (2.13) compared with FBP amended soils (HI = 0.8). Initial biogeochemical responses of amended soils to drought conditions were also investigated during a short-term experiment with drying and rewetting of soils. Increased concentrations of extractable C and higher stimulation of microbial activities (respiration and enzyme activities) in FBP amended soils were measured. Overall, our results reveal different impacts of the two soil amendments, where FBP soil application can affect the labile SOC availability, and stimulate rapid microbial response in drought affected soils, and biochar soil application lowers the labile SOC and microbial stimulation facilitating C sequestration over time.
Collapse
Affiliation(s)
- T Bera
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - L Vardanyan
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - K S Inglett
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - K R Reddy
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - G A O'Connor
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - J E Erickson
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - A C Wilkie
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
116
|
Chen C, Yan X, Xu Y, Yoza BA, Wang X, Kou Y, Ye H, Wang Q, Li QX. Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2631-2640. [PMID: 30463118 DOI: 10.1016/j.scitotenv.2018.10.131] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Large quantities of hazardous activated petroleum waste sludge and wastewaters are generated from petroleum refining. The present disposal of the sludge via incineration or landfill may cause secondary pollution as well as additional costs. Treatment of petroleum refinery wastewater (PRW) by catalytic ozonation process (COP) remains a great challenge of developing low-cost and high-efficiency catalysts. Use of waste sludge derived biochar as catalysts in COP of PRW not only solves the solid wastes and wastewaters problems but also improves profitability. The elements of carbon (C), silicon (Si) and metals originally found in activated petroleum waste sludge contribute to the formation of active sites during pyrolysis. The biochar contains functional C groups, SiO structures, and metallic oxides that promote oxidation through the formation of hydroxyl radicals (OHs) mineralizing petroleum contaminants. Catalytic ozonation of PRW using this sludge biochar (SBC) doubles the total organic carbon removal (53.5%) relative to single ozonation (26.9%). Oxygen (Ox)-, nitrogen (NOx)- and sulfur (OxS)-containing contaminants were decreased by 33.4% (989 vs 659), 58.2% (912 vs 384) and 12.5% (384 vs 336). The present study shows the potential of a "wastes-treat-wastes" process for wastewater treatment.
Collapse
Affiliation(s)
- Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Xin Yan
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - YingYing Xu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Yue Kou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Huangfan Ye
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
117
|
Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J. Biochar, soil and land-use interactions that reduce nitrate leaching and N 2O emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2354-2364. [PMID: 30336425 DOI: 10.1016/j.scitotenv.2018.10.060] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 05/14/2023]
Abstract
Biochar can reduce both nitrous oxide (N2O) emissions and nitrate (NO3-) leaching, but refining biochar's use for estimating these types of losses remains elusive. For example, biochar properties such as ash content and labile organic compounds may induce transient effects that alter N-based losses. Thus, the aim of this meta-analysis was to assess interactions between biochar-induced effects on N2O emissions and NO3- retention, regarding the duration of experiments as well as soil and land use properties. Data were compiled from 88 peer-reviewed publications resulting in 608 observations up to May 2016 and corresponding response ratios were used to perform a random effects meta-analysis, testing biochar's impact on cumulative N2O emissions, soil NO3- concentrations and leaching in temperate, semi-arid, sub-tropical, and tropical climate. The overall N2O emissions reduction was 38%, but N2O emission reductions tended to be negligible after one year. Overall, soil NO3- concentrations remained unaffected while NO3- leaching was reduced by 13% with biochar; greater leaching reductions (>26%) occurred over longer experimental times (i.e. >30 days). Biochar had the strongest N2O-emission reducing effect in paddy soils (Anthrosols) and sandy soils (Arenosols). The use of biochar reduced both N2O emissions and NO3- leaching in arable farming and horticulture, but it did not affect these losses in grasslands and perennial crops. In conclusion, the time-dependent impact on N2O emissions and NO3- leaching is a crucial factor that needs to be considered in order to develop and test resilient and sustainable biochar-based N loss mitigation strategies. Our results provide a valuable starting point for future biochar-based N loss mitigation studies.
Collapse
Affiliation(s)
- Nils Borchard
- Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia; Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland.
| | - Michael Schirrmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Maria Luz Cayuela
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Claudia Kammann
- Geisenheim University, Department of Applied Ecology, Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Nicole Wrage-Mönnig
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Grassland and Fodder Sciences, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Jose M Estavillo
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Apdo. 644, E-48080 Bilbao, Spain
| | - Teresa Fuertes-Mendizábal
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Apdo. 644, E-48080 Bilbao, Spain
| | - Gilbert Sigua
- United States Department of Agriculture, Agriculture Research Service, Coastal Plains Research Center, 2611 West Lucas Street, Florence, SC 29501, USA
| | - Kurt Spokas
- United States Department of Agriculture, Agriculture Research Service, Soil & Water Management Research Unit, 439 Borlaug Hall, 1991 Buford Circle, University of Minnesota, St. Paul, MN 55108, USA
| | - James A Ippolito
- Department of Soil and Crop Sciences, C127 Plant Sciences Building, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Jeff Novak
- United States Department of Agriculture, Agriculture Research Service, Coastal Plains Research Center, 2611 West Lucas Street, Florence, SC 29501, USA
| |
Collapse
|
118
|
Wang J, Xing Y, Xie Y, Meng Y, Xia J, Feng X. The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1615-1623. [PMID: 30235645 DOI: 10.1016/j.scitotenv.2018.07.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
We used calcium carbonate-enriched clay minerals (CECM) and diammonium phosphate (DAP) as immobilization agents for mercury (Hg) immobilization. The effects of CECM, DAP, or both in different amounts and ratios, as well as pH and initial Hg concentrations, on Hg removal from solutions were investigated. The removal mechanism was revealed using transmission electron microscope with energy-dispersive X-ray (TEM-EDX) spectroscopy, and extended X-ray absorption fine structure spectroscopy (EXAFS). The performance of CECM and DAP under field conditions was also studied. The results showed that application of CECM and DAP at a ratio of 50:1 (w/w) removed over 90% of Hg from solutions containing 1.8 μM Hg2+, which was 9- or 2.6-fold higher than solely DAP (<10%) or CECM (34%<), respectively. Mercury removal by CECM and DAP was weakly affected by pH values between 4 and 10, and their maximum Hg removal capacity was 37 mg g-1. Both TEM-EDX and EXAFS results showed that the precipitate of Hg with phosphorus-associated minerals might be the primary mechanism of Hg removal by CECM and DAP. Results from the field trial showed that application of CECM and DAP decreased soil bioavailable Hg contents, but did not affect contents of organic matter bound Hg or residual Hg fractions, as compared with control and initial soils. Application of CECM and DAP resulted in dramatic reductions (40%-53%) of Hg in the edible tissues of Brassica chinensis and Raphanus raphanistrum in comparison to the non-treated control. We conclude that CECM and DAP offer a promising method for in situ remediation of Hg-contaminated farmlands in southwest of China.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Yuanyan Xie
- BCEG Environmental Remediation Co., Ltd, Beijing 100015, China
| | - Yong Meng
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
119
|
Park JH, Wang JJ, Zhou B, Mikhael JER, DeLaune RD. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:627-635. [PMID: 30384068 DOI: 10.1016/j.envpol.2018.10.069] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Biochar has been used to remove heavy metals from aqueous solutions. In this study, a sulfurized wood biochar (SWB) by direct impregnation with elemental sulfur was produced and evaluated along with pristine wood biochar (WB) for adsorption characteristics and mechanism of mercury. Mercury adsorption by WB and SWB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of WB and SWB were 57.8 and 107.5 mg g-1, respectively. Intraparticle diffusion model showed that mercury adsorption was fast due to boundary layer and slow adsorption due to diffusion into biochar pores. Although, mercury adsorption by both WB and SWB was predominantly influenced by the pH, temperature, salt concentration, and biochar dosage, the SWB showed a relatively stable mercury adsorption compared to WB under different conditions, suggesting the strong affinity of SWB for mercury. The XPS analysis showed different adsorption mechanisms of mercury between WB and SWB. In particular, mercury adsorption in WB was due to Hg-Cπ bond formation and interaction with carboxyl and hydroxyl groups, whereas in SWB it is primarily due to mercury interaction with C-SOx-C and thiophenic groups in addition to Hg-Cπ bond formation and interaction with carboxyl groups. The SEM-EDS mapping also demonstrated that mercury in SWB was related to carbon, oxygen and sulfur. Overall, the sulfurized biochar was effective for removing mercury from aqueous solution, and its direct production through pyrolysis with elemental sulfur impregnation of wood chips could make it an economic option as absorbent for treating mercury-rich wastewater.
Collapse
Affiliation(s)
- Jong-Hwan Park
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Jim J Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| | - Baoyue Zhou
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Joseph E R Mikhael
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Ronald D DeLaune
- Department of Oceanography and Costal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
120
|
Chen J, Dong J, Chang J, Guo T, Yang Q, Jia W, Shen S. Characterization of an Hg(II)-volatilizing Pseudomonas sp. strain, DC-B1, and its potential for soil remediation when combined with biochar amendment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:172-179. [PMID: 30053587 DOI: 10.1016/j.ecoenv.2018.07.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Hg contamination is a critical environmental problem, and its remediation using cost-effective and environmentally friendly methods is highly desirable. In this study, a multi-metal-resistant bacterium showing strong Hg(II) volatilization ability, Pseudomonas sp. DC-B1, was isolated from heavy metal-contaminated soils. DC-B1 volatilized 81.1%, 79.2% and 74.3% of the initial Hg2+ from culture solutions with initial Hg2+ concentrations of 5.1, 10.4, and 15.7 mg/L, respectively, within 24 h. Microcosm experiments were performed to investigate the remediation of Hg(II)-spiked soils inoculated with DC-B1 coupled with sawdust biochar amendment. The efficiency of Hg removal from two types of soil samples with different properties and an initial Hg(II) content of approximately 100 mg/kg was enhanced 5.7-13.1% by bio-augmentation with inoculation of the bacterial strain DC-B1, 5.4-10.7% by amendment of 4% (w/w) biochar, and 10.7-23.2% by the combination of DC-B1 and biochar amendments over an incubation period of 24 d over the efficiency in the control treatment under flooded conditions. Longer root lengths were observed in lettuce grown in the treated soils than in lettuce from the control soil, confirming the bioremediation efficacy of the two bioagents for soil Hg contamination.
Collapse
Affiliation(s)
- Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Jia Dong
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| | - Tongtong Guo
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, China
| | - Qingchen Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, China
| | - Wei Jia
- School of Architecture and Planning, Yunnan University, Kunming 650091, China
| | - Shili Shen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| |
Collapse
|
121
|
Fly Ash Modified Coalmine Solid Wastes for Stabilization of Trace Metals in Mining Damaged Land Reclamation: A Case Study in Xuzhou Coalmine Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102317. [PMID: 30347897 PMCID: PMC6209872 DOI: 10.3390/ijerph15102317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/23/2022]
Abstract
In China, coalmine wastes, such as gangues, are used for reclamation of mining subsided land. However, as waste rocks, gangues contain several trace metal elements, which could be released under natural weathering and hydrodynamic leaching effects and then migrate into the reclamed soil layer. However, it is very difficult to find adequate other backfill materials for substitution of gangues. In this paper, we present a novel method and case study to restrict the migration ability of trace metal elements in gangues by using another kind of coalmine solid waste—fly ashes from coal combustion. In this study, fly ashes were mixed with gangues in different mass proportions 1:0.2, 1:0.4, 1:0.6 and 1:0.8 as new designed backfill materials. Due to the help of fly ash, the occurrence states of studied trace metal elements were greatly changed, and their releasing and migration ability under hydrodynamic leaching effect were also significantly restricted. In this research seven trace metal elements in gangues Cu, Zn, Pb, Cd, Cr, Mn and Ni were studied by using soil column hydrodynamical leaching method and simulated precipitation for one year. The results show that under the driving of natural precipitation trace metal elements were generally transported deep inside the reconstructed land base, i.e., far away from soil layer and most of the trace metal elements were transformed into a bonded state, or combined in inert occurrence states, especially the residual state. With this method, the migration activities of tested trace metal elements were greatly restricted and the environmental potential risk could be significantly reduced.
Collapse
|
122
|
Xu J, Zhang X, Sun C, He H, Dai Y, Yang S, Lin Y, Zhan X, Li Q, Zhou Y. Catalytic Degradation of Diatrizoate by Persulfate Activation with Peanut Shell Biochar-Supported Nano Zero-Valent Iron in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091937. [PMID: 30200550 PMCID: PMC6163213 DOI: 10.3390/ijerph15091937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 11/16/2022]
Abstract
An emerging pollutant, diatrizoate (DTZ) has been frequently detected in aqueous solution. Unique reticular peanut shell biochar (BC)-supported nano zero-valent iron (nZVI) composite (nZVI/BC) was successfully synthesized and used as a catalyst for activating persulfate (PS) to promote the removal of DTZ. The structure and morphology of the nanocomposite materials were characterized by scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller measurements, and Fourier transform infrared spectroscopy. The degradation of DTZ (20 mg L-1) was achieved by activating PS with the nanocomposite material. The removal of DTZ reached nearly 100% using 25 mM PS and 0.45 g L-1 nZVI/2BC (mass ratio of nZVI and BC at 1:2) nanocomposite material at pH 3.0 and 25 °C. Influencing factors, such as dosages of nZVI/2BC and PS, temperature, and pH were also investigated. The mechanisms of PS activation with nZVI/2BC were discussed, including BC property, electron transfer, and the identification of free radicals in the reaction. The findings demonstrated that nZVI/BC-PS (peanut shell BC-supported nZVI activating PS) is a promising material for the treatment of refractory organic pollutants.
Collapse
Affiliation(s)
- Jian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Xueliang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Yusuo Lin
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qun Li
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Yan Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| |
Collapse
|
123
|
Faheem F, Bao J, Zheng H, Tufail H, Irshad S, Du J. Adsorption-assisted decontamination of Hg(ii) from aqueous solution by multi-functionalized corncob-derived biochar. RSC Adv 2018; 8:38425-38435. [PMID: 35559052 PMCID: PMC9090558 DOI: 10.1039/c8ra06622a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Mercury (Hg) contamination of wastewater streams as a result of anthropogenic activities is a great threat to living organisms due to its acute toxicity.
Collapse
Affiliation(s)
- Faheem Faheem
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Jianguo Bao
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Han Zheng
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Haseeb Tufail
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Sana Irshad
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Jiangkun Du
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- P. R. China
| |
Collapse
|