101
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
102
|
|
103
|
Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2011; 2:499. [PMID: 21988915 DOI: 10.1038/ncomms1508] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/13/2011] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle fibres form by fusion of mesoderm progenitors called myoblasts. After birth, muscle fibres do not increase in number but continue to grow in size because of fusion of satellite cells, the postnatal myogenic cells, responsible for muscle growth and regeneration. Numerous studies suggest that, on transplantation, non-myogenic cells also may contribute to muscle regeneration. However, there is currently no evidence that such a contribution represents a natural developmental option of these non-myogenic cells, rather than a consequence of experimental manipulation resulting in cell fusion. Here we show that pericytes, transgenically labelled with an inducible Alkaline Phosphatase CreERT2, but not endothelial cells, fuse with developing myofibres and enter the satellite cell compartment during unperturbed postnatal development. This contribution increases significantly during acute injury or in chronically regenerating dystrophic muscle. These data show that pericytes, resident in small vessels of skeletal muscle, contribute to its growth and regeneration during postnatal life.
Collapse
|
104
|
Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B, Lieubeau B, Carlus M, Fornasari B, Theret M, Orlando P, Ledevin M, Zuber C, Leroux I, Deleau S, Guigand L, Testault I, Le Rumeur E, Fiszman M, Chérel Y. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in duchenne muscular dystrophy dogs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2501-18. [PMID: 21924229 DOI: 10.1016/j.ajpath.2011.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dog's clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.
Collapse
Affiliation(s)
- Karl Rouger
- INRA, UMR 703 Développement et Pathologie du Tissu Musculaire, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Duchenne muscular dystrophy is a devastating muscular dystrophy of childhood. Mutations in the dystrophin gene destroy the link between the internal muscle filaments and the extracellular matrix, resulting in severe muscle weakness and progressive muscle wasting. There is currently no cure and, whilst palliative treatment has improved, affected boys are normally confined to a wheelchair by 12 years of age and die from respiratory or cardiac complications in their twenties or thirties. Therapies currently being developed include mutation-specific treatments, DNA- and cell-based therapies, and drugs which aim to modulate cellular pathways or gene expression. This review aims to provide an overview of the different therapeutic approaches aimed at reconstructing the dystrophin-associated protein complex, including restoration of dystrophin expression and upregulation of the functional homologue, utrophin.
Collapse
Affiliation(s)
- Rebecca J Fairclough
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford UK
| | | | | |
Collapse
|
106
|
Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C. Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 2011; 11:157-76. [PMID: 21219234 DOI: 10.1517/14712598.2011.542748] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Muscular dystrophies are a heterogeneous group of genetic diseases characterized by muscle weakness, wasting and degeneration. Cell therapy consists of delivering myogenic precursor cells to damaged tissue for the complementation of missing proteins and/or the regeneration of new muscle fibres. AREAS COVERED We focus on human candidate cells described so far (myoblasts, mesoangioblasts, pericytes, myoendothelial cells, CD133(+) cells, aldehyde-dehydrogenase-positive cells, mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells), gene-based strategies developed to modify cells prior to injection, animal models (dystrophic and/or immunodeficient) used for pre-clinical studies, and clinical trials that have been performed using cell therapy strategies. The approaches are reviewed in terms of feasibility, hurdles, potential solutions and/or research areas from where the solution may come and potential application in terms of types of dystrophies and targets. EXPERT OPINION Cell therapy for muscular dystrophies should be put in the context of which dystrophy or muscle group is targeted, what tools are available at hand, but even more importantly what can cell therapy bring as compared with and/or in combination with other therapeutic strategies. The solution will probably be the right dosage of these combinations adapted to each dystrophy, or even to each type of mutation within a dystrophy.
Collapse
Affiliation(s)
- Elisa Negroni
- Unité Thérapies des Maladies du muscle strié, UMRS974, UPMC Université Paris 6, UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | | | | | | | | | | |
Collapse
|
107
|
Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 2011; 19:830-40. [PMID: 21468001 DOI: 10.1038/mt.2011.59] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life. There are currently no curative treatments for this disease but different therapeutic approaches are being studied. Gene therapy consists of introducing a transgene coding for full-length or a truncated version of dystrophin complementary DNA (cDNA) in muscles, whereas pharmaceutical therapy includes the use of chemical/biochemical substances to restore dystrophin expression or alleviate the DMD phenotype. Over the past years, many potential drugs were explored. This led to several clinical trials for gentamicin and ataluren (PTC124) allowing stop codon read-through. An alternative approach is to induce the expression of an internally deleted, partially functional dystrophin protein through exon skipping. The vectors and the methods used in gene therapy have been continually improving in order to obtain greater encapsidation capacity and better transduction efficiency. The most promising experimental approaches using pharmaceutical and gene therapies are reviewed in this article.
Collapse
|
108
|
Goyenvalle A, Seto JT, Davies KE, Chamberlain J. Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011; 20:R69-78. [PMID: 21436158 DOI: 10.1093/hmg/ddr105] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic disorders characterized by muscle weakness and wasting. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, and although the molecular mechanisms of the disease have been extensively investigated since the discovery of the gene in 1986, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies, RNA-based technology and pharmacological approaches. While the proof of principle has been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense-mediated exon skipping has shown encouraging results and holds promise for the treatment of dystrophic muscle. Here, we summarize the recent progress in therapeutic approaches to muscular dystrophies, with an emphasis on gene therapy and exon skipping for DMD.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
109
|
Meng J, Adkin CF, Xu SW, Muntoni F, Morgan JE. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One 2011; 6:e17454. [PMID: 21408080 PMCID: PMC3052358 DOI: 10.1371/journal.pone.0017454] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient's skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings. METHODOLOGY/PRINCIPAL FINDINGS Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts. CONCLUSIONS/SIGNIFICANCE Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Carl F. Adkin
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Shi-wen Xu
- Centre for Rheumatology, Department of Medicine, University College London - Royal Free Campus, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Jennifer E. Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
- * E-mail:
| |
Collapse
|
110
|
Sartorelli V, Juan AH. Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis. Curr Top Dev Biol 2011; 96:57-83. [PMID: 21621067 DOI: 10.1016/b978-0-12-385940-2.00003-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Satellite cells (SCs) are the main source of adult skeletal muscle stem cells responsible for muscle growth and regeneration. By interpreting extracellular cues, developmental regulators control quiescence, proliferation, and differentiation of SCs by influencing coordinate gene expression. The scope of this review is limited to the description and discussion of protein complexes that introduce and decode heritable histone and chromatin modifications and how these modifications are relevant for SC biology.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
111
|
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord 2011; 21:4-12. [DOI: 10.1016/j.nmd.2010.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
|
112
|
Meregalli M, Farini A, Belicchi M, Torrente Y. CD133(+) cells isolated from various sources and their role in future clinical perspectives. Expert Opin Biol Ther 2010; 10:1521-8. [PMID: 20932225 DOI: 10.1517/14712598.2010.528386] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND CD133 is a member of a novel family of cell surface glycoproteins. Initially, the expression of CD133 antigen was seen only in the hematopoietic derived CD34(+) stem cells. At present, CD133 expression is demonstrated in undifferentiated epithelium, different types of tumors and myogenic cells. CD133(+) neurosphere cells isolated from brain are able to differentiate into both neurons and glial cells. These data suggested that CD133 could be a specific marker for various stem and progenitor cell populations. OBJECTIVES The main goal would be to describe the role for CD133 as a marker of stem cells able to engraft and differentiate, to form functional non-hematopoietic adult lineages and contribute to disease amelioration via tissue regeneration. RESULTS/CONCLUSION In conclusion, since the rise of CD133 antigen as a suitable stem cell marker, the possible use of CD133(+) stem cells in therapeutic applications has opened a new promising field in the treatment of degenerating diseases. The human circulating cells expressing the CD133 antigen behave as a stem cell population capable of commitment to hematopoietic, endothelial and myogenic lineages. CD133 cell therapy may represent a promising treatment for many diseases.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Department of Neurological Sciences, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Italy.
| | | | | | | |
Collapse
|
113
|
Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 2010; 12:362-372. [PMID: 20889128 DOI: 10.1016/j.cmet.2010.08.016] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/17/2009] [Accepted: 06/18/2010] [Indexed: 12/20/2022]
Abstract
Recent evidence points to a strong relationship between increased mitochondrial biogenesis and increased survival in eukaryotes. Branched-chain amino acids (BCAAs) have been shown to extend chronological life span in yeast. However, the role of these amino acids in mitochondrial biogenesis and longevity in mammals is unknown. Here, we show that a BCAA-enriched mixture (BCAAem) increased the average life span of mice. BCAAem supplementation increased mitochondrial biogenesis and sirtuin 1 expression in primary cardiac and skeletal myocytes and in cardiac and skeletal muscle, but not in adipose tissue and liver of middle-aged mice, and this was accompanied by enhanced physical endurance. Moreover, the reactive oxygen species (ROS) defense system genes were upregulated, and ROS production was reduced by BCAAem supplementation. All of the BCAAem-mediated effects were strongly attenuated in endothelial nitric oxide synthase null mutant mice. These data reveal an important antiaging role of BCAAs mediated by mitochondrial biogenesis in mammals.
Collapse
|
114
|
Meregalli M, Farini A, Parolini D, Maciotta S, Torrente Y. Stem cell therapies to treat muscular dystrophy: progress to date. BioDrugs 2010; 24:237-47. [PMID: 20623990 DOI: 10.2165/11534300-000000000-00000] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Muscular dystrophies are heritable, heterogeneous neuromuscular disorders and include Duchenne and Becker muscular dystrophies (DMD and BMD, respectively). DMD patients exhibit progressive muscle weakness and atrophy followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. In-frame mutations in the dystrophin gene lead to expression of a partially functional protein, resulting in the milder BMD. No effective therapies are available at present. Cell-based therapies have been attempted in an effort to promote muscle regeneration, with the hope that the host cells would repopulate the muscle and improve muscle function and pathology. Injection of adult myoblasts has led to the development of new muscle fibers, but several limitations have been identified, such as poor cell survival and limited migratory ability. As an alternative to myoblasts, stem cells were considered preferable for therapeutic applications because of their capacity for self-renewal and differentiation potential. In recent years, encouraging results have been obtained with adult stem cells to treat human diseases such as leukemia, Parkinson's disease, stroke, and muscular dystrophies. Embryonic stem cells (ESCs) can be derived from mammalian embryos in the blastocyst stage, and because they can differentiate into a wide range of specialized cells, they hold potential for use in treating almost all human diseases. Several ongoing studies focus on this possibility, evaluating differentiation of specific cell lines from human ESCs (hESCs) as well as the potential tumorigenicity of hESCs. The most important limitation with using hESCs is that it requires destruction of human blastocysts or embryos. Conversely, adult stem cells have been identified in various tissues, where they serve to maintain, generate, and replace terminally differentiated cells within their specific tissue as the need arises for cell turnover or from tissue injury. Moreover, these cells can participate in regeneration of more than just their specific tissue type. Here we describe multiple types of muscle- and fetal-derived myogenic stem cells, their characterization, and their possible use in treating muscular dystrophies such as DMD and BMD. We also emphasize that the most promising possibility for the management and therapy of DMD and BMD is a combination of different approaches, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Scienze Neurologiche, Centro Dino Ferrari, Università di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | |
Collapse
|
115
|
Park KS, Oh D. Gene therapy for muscular dystrophies: progress and challenges. J Clin Neurol 2010; 6:111-6. [PMID: 20944811 PMCID: PMC2950915 DOI: 10.3988/jcn.2010.6.3.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 11/23/2022] Open
Abstract
Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases.
Collapse
Affiliation(s)
- Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | |
Collapse
|
116
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
117
|
Exon skipping and duchenne muscular dystrophy therapy: selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Mol Ther 2010; 18:1675-82. [PMID: 20551908 DOI: 10.1038/mt.2010.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One promising approach for the gene therapy of Duchenne muscular dystrophy (DMD) is exon skipping. When thinking of possible intervention on human, it is very crucial to identify the most appropriate antisense sequences able to provide the highest possible skipping efficiency. In this article, we compared the exon 51 skipping activity of 10 different antisense molecules, raised against splice junctions and/or exonic splicing enhancers (ESEs), expressed as part of the U1 small nuclear RNA (snRNA). The effectiveness of each construct was tested in human DMD myoblasts carrying the deletion of exons 48-50, which can be treated with skipping of exon 51. Our results show that the highest skipping activity and dystrophin rescue is achieved upon expression of a U1 snRNA-derived antisense molecule targeting exon 51 splice sites in combination with an internal exon sequence. The efficacy of this molecule was further proven on an exon 45-50 deletion background, utilizing patient's fibroblasts transdifferentiated into myoblasts. In this system, we showed that the selected antisense was able to produce 50% skipping of exon 51.
Collapse
|
118
|
Lorain S, Peccate C, Le Hir M, Garcia L. Exon exchange approach to repair Duchenne dystrophin transcripts. PLoS One 2010; 5:e10894. [PMID: 20531943 PMCID: PMC2878348 DOI: 10.1371/journal.pone.0010894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Trans-splicing strategies for mRNA repair involve engineered transcripts designed to anneal target mRNAs in order to interfere with their natural splicing, giving rise to mRNA chimeras where endogenous mutated exons have been replaced by exogenous replacement sequences. A number of trans-splicing molecules have already been proposed for replacing either the 5′ or the 3′ part of transcripts to be repaired. Here, we show the feasibility of RNA surgery by using a double trans-splicing approach allowing the specific substitution of a given mutated exon. Methodology/Principal Findings As a target we used a minigene encoding a fragment of the mdx dystrophin gene enclosing the mutated exon (exon 23). This minigene was cotransfected with a variety of exon exchange constructions, differing in their annealing domains. We obtained accurate and efficient replacement of exon 23 in the mRNA target. Adding up a downstream intronic splice enhancer DISE in the exon exchange molecule enhanced drastically its efficiency up to 25–45% of repair depending on the construction in use. Conclusions/Significance These results demonstrate the possibility to fix up mutated exons, refurbish deleted exons and introduce protein motifs, while keeping natural untranslated sequences, which are essential for mRNA stability and translation regulation. Conversely to the well-known exon skipping, exon exchange has the advantage to be compatible with almost any type of mutations and more generally to a wide range of genetic conditions. In particular, it allows addressing disorders caused by dominant mutations.
Collapse
Affiliation(s)
- Stéphanie Lorain
- Université Pierre et Marie Curie (UMR S 974)-Institut National de la Santé et de la Recherche Médicale (U974)-Centre National de la Recherche Scientifique (UMR 7215), Paris, France.
| | | | | | | |
Collapse
|
119
|
Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 2010; 340:549-67. [DOI: 10.1007/s00441-010-0978-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/06/2010] [Indexed: 01/06/2023]
|
120
|
Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforêt P, Behin A, Butler-Browne G, Mouly V, Krahn M, Garcia L, Lévy N. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 2010; 31:136-42. [PMID: 19953532 DOI: 10.1002/humu.21160] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations in DYSF encoding dysferlin cause primary dysferlinopathies, autosomal recessive diseases that mainly present clinically as Limb Girdle Muscular Dystrophy type 2B and Miyoshi myopathy. More than 350 different sequence variants have been reported in DYSF. Like dystrophin, the size of the dysferlin mRNA is above the limited packaging size of AAV vectors. Alternative strategies to AAV gene transfer in muscle cells must then be addressed for patients. A gene therapy approach for Duchenne muscular dystrophy was recently developed, based on exon-skipping strategy. Numerous sequences are recognized by splicing protein complexes and, when specifically blocked by antisense oligoucleotides (AON), the corresponding exon is skipped. We hypothesized that this approach could be useful for patients affected with dysferlinopathies. To confirm this assumption, exon 32 was selected as a prioritary target for exon skipping strategy. This option was initially driven by the report from Sinnreich and colleagues of a patient with a very mild and late-onset phenotype associated to a natural skipping of exon 32. Three different antisense oligonucleotides were tested in myoblasts generated from control and patient MyoD transduced fibroblasts, either as oligonucleotides or after incorporation into lentiviral vectors. These approaches led to a high efficiency of exon 32 skipping. Therefore, these results seem promising, and could be applied to several other exons in the DYSF gene. Patients carrying mutations in exons whose the in-frame suppression has been proven to have no major consequences on the protein function, might benefit of exon-skipping based gene correction.
Collapse
Affiliation(s)
- Nicolas Wein
- Université de la Méditerranée, Inserm UMR_S 910 Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Park IH. DYS-HAC-iPS cells: the combination of gene and cell therapy to treat duchenne muscular dystrophy. Mol Ther 2010; 18:238-40. [PMID: 20125163 DOI: 10.1038/mt.2009.303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- In-Hyun Park
- Department of Genetics, Yale School of Medicine, Yale Stem Cell Center, New Haven, Connecticut, USA
| |
Collapse
|
122
|
The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul Disord 2010; 20:6-15. [PMID: 20034794 DOI: 10.1016/j.nmd.2009.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/23/2009] [Accepted: 11/04/2009] [Indexed: 12/31/2022]
Abstract
Stem cell therapy holds promise for treating muscle diseases. Although satellite cells regenerate skeletal muscle, they only have a local effect after intra-muscular transplantation. Alternative cell types, more easily obtainable and systemically-deliverable, were therefore sought. Human synovial stem cells (hSSCs) have been reported to regenerate muscle fibres and reconstitute the satellite cell pool. We therefore determined if these cells are able to regenerate skeletal muscle after intra-muscular injection into cryodamaged muscles of Rag2-/gamma chain-/C5-mice. We found that hSSCs possess only limited capacity to undergo myogenic differentiation in vitro or to contribute to muscle regeneration in vivo. However, this is enhanced by over-expression of human MyoD1. Interestingly, hSSCs express extracellular matrix components laminin alpha2 and collagen VI within grafted muscles. Therefore, despite their limited capacity to regenerate skeletal muscle, hSSCs could play a role in treating muscular dystrophies secondary to defects in extracellular matrix proteins.
Collapse
|
123
|
Labie D, Kaplan JC. [Update on RNA splicing repair: applications to beta thalassemia and other perspectives]. Med Sci (Paris) 2010; 26:38-41. [PMID: 20132773 DOI: 10.1051/medsci/201026138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
124
|
Ex vivo expansion of human circulating myogenic progenitors on cluster-assembled nanostructured TiO2. Biomaterials 2010; 31:5385-96. [PMID: 20398929 DOI: 10.1016/j.biomaterials.2010.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/09/2010] [Indexed: 01/22/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells has been explored in the fields of stem cell biology, gene therapy and clinical transplantation. Recently, we demonstrated the existence of a circulating myogenic progenitor expressing the CD133 antigen. The relative inability of circulating CD133+ stem cells to reproduce themselves ex vivo imposes substantial limitations on their use for clinical applications in muscular dystrophies. Here we report that the use of cluster-assembled nanostructured titanium dioxide (ns-TiO(2)) substrates, in combination with cytokine enriched medium, enables high-level expansion of circulating CD133+ stem cells in vitro. Furthermore, we demonstrate that expanded circulating CD133+ stem cells retain their in vitro capacity to differentiate into myogenic cells. The exploitation of cluster-assembled ns-TiO(2) substrates for the expansion of CD133+ stem cells in vitro could therefore make the clinical application of these stem cells for the treatment of muscle diseases practical.
Collapse
|
125
|
Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 2010; 120:11-9. [PMID: 20051632 DOI: 10.1172/jci40373] [Citation(s) in RCA: 449] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main properties of satellite cells and other myogenic progenitors as well as recent efforts to obtain myogenic cells from pluripotent stem cells for patient-tailored cell therapy. Clinical trials utilizing these cells to treat muscular dystrophies, heart failure, and stress urinary incontinence are also briefly outlined.
Collapse
Affiliation(s)
- Francesco Saverio Tedesco
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan, Italy
| | | | | | | | | |
Collapse
|
126
|
SUGITA H, TAKEDA S. Progress in muscular dystrophy research with special emphasis on gene therapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:748-756. [PMID: 20689232 PMCID: PMC3066538 DOI: 10.2183/pjab.86.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/03/2010] [Indexed: 05/29/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked, progressive muscle-wasting disease caused by mutations in the DMD gene. Since the disease was described by physicians in the 19th century, information about the subject has been accumulated. One author (Sugita) was one of the coworkers who first reported that the serum creatine kinase (CK) level is elevated in progressive muscular dystrophy patients. Even 50 years after that first report, an elevated serum CK level is still the most useful marker in the diagnosis of DMD, a sensitive index of the state of skeletal muscle, and useful to evaluate therapeutic effects. In the latter half of this article, we describe recent progress in the therapy of DMD, with an emphasis on gene therapies, particularly exon skipping.
Collapse
Affiliation(s)
- Hideo SUGITA
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
127
|
Malerba A, Thorogood FC, Dickson G, Graham IR. Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice. Hum Gene Ther 2009; 20:955-65. [PMID: 19469709 DOI: 10.1089/hum.2008.157] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a myodegenerative disorder caused primarily by mutations that create premature termination of dystrophin translation. The antisense oligonucleotide approach for skipping dystrophin exons allows restoration of the correct reading frame in the dystrophin transcript, thus producing a shorter protein. A similar approach in humans would result in the conversion of DMD to the milder Becker muscular dystrophy. It has been demonstrated previously that repeated intravascular injection of phosphorodiamidate morpholino oligomers (PMOs) in the mdx mouse induces more dystrophin expression than a single injection, but this approach is costly, and data demonstrating the safety of high doses of systemically injected PMO are unavailable. Furthermore, several publications have demonstrated the efficacy of peptide-conjugated PMOs, but the clinical applicability of such compounds is unclear at this stage. Here, we report that multiple intravascular injections of low doses of naked PMO show significantly more dystrophin-positive fibers in a variety of muscle groups, 8 weeks after administration compared with a single dose of the same total amount. After administration of a total of 200 mg of PMO per kilogram, histological features, such as the cross-sectional area, centronucleation index, and expression of the dystrophin-associated protein complex, showed significant improvement in mice treated by repeated injection. Furthermore, four administrations of just 5 mg/kg induced a significant amount of dystrophin expression. These results clearly demonstrate the key role of the optimization of dosing regimen for the systemic administration of PMO in patients, and support the clinical feasibility of this approach with naked PMO.
Collapse
Affiliation(s)
- Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | | | | | | |
Collapse
|
128
|
Abstract
Muscular dystrophies are individually rare genetic disorders that cause much chronic disability, affecting young children and adults. In the past 20 years, more than 30 genetic types of muscular dystrophy have been defined. During this time, precise diagnosis, genetic counselling, and medical management have improved. These advances in medical practice have occurred while definitive therapies based on an improved knowledge of disease pathogenesis are awaited. A wide range of therapeutic options have been tested in animal models, and some are being tested in clinical trials. Various therapeutic targets are being investigated, from personalised medicines targeting specific mutations and drugs targeting cellular pathways to gene-based and cell-based therapies.
Collapse
Affiliation(s)
- Kate Bushby
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
129
|
Farini A, Razini P, Erratico S, Torrente Y, Meregalli M. Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 2009; 221:526-34. [PMID: 19688776 DOI: 10.1002/jcp.21895] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the dystrophin gene cause an X-linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD. The identification of a stem cell population providing efficient muscle regeneration is critical for the progression of cell therapy for DMD. We speculated that the most promising possibility for the treatment of DMD is a combination of different approaches, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Neurological Science, Centro Dino Ferrari, University of Milan, Fondazione IRCCS Policlinico Mangiagalli Regina Elena, Italy
| | | | | | | | | |
Collapse
|
130
|
Le Roy F, Charton K, Lorson CL, Richard I. RNA-targeting approaches for neuromuscular diseases. Trends Mol Med 2009; 15:580-91. [PMID: 19906562 DOI: 10.1016/j.molmed.2009.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/25/2009] [Accepted: 10/08/2009] [Indexed: 12/16/2022]
Abstract
Although most molecular therapy strategies for genetic diseases are based on gene replacement, interesting alternative approaches target RNA. These strategies rely on the modification of the mutated gene's expression in vivo by modulating pre-mRNA splicing, mRNA stability or mRNA translation. Here, we review recent progress using these RNA-based approaches in the field of muscle and muscle-related genetic diseases. Different molecular tools, including modified antisense oligonucleotides, pre-mRNA trans-splicing molecules, ribozymes or chemical compounds have been used successfully on patient cells or animal models of disease. These diverse strategies show tremendous therapeutic potential and several clinical trials have been initiated with Duchenne muscular dystrophy patients with promising results.
Collapse
Affiliation(s)
- Florence Le Roy
- Généthon, CNRS/UEVE UMR8587 LAMBE, 1, rue de l'Internationale, 91000 Evry, France
| | | | | | | |
Collapse
|
131
|
Quattrocelli M, Cassano M, Crippa S, Perini I, Sampaolesi M. Cell therapy strategies and improvements for muscular dystrophy. Cell Death Differ 2009; 17:1222-9. [DOI: 10.1038/cdd.2009.160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
132
|
Albrecht DE, Garg N, Rufibach LE, Williams BA, Monnier N, Hwang E, Mittal P. 3rd Annual Dysferlin Conference 2-5 June 2009, Boston, Massachusetts, USA. Neuromuscul Disord 2009; 19:867-73. [PMID: 19781937 DOI: 10.1016/j.nmd.2009.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas E Albrecht
- Jain Foundation Inc., 2310 130th Ave. NE, Suite B101, Bellevue, Washington 98005, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Cosgrove BD, Sacco A, Gilbert PM, Blau HM. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 2009; 78:185-94. [PMID: 19751902 PMCID: PMC2801624 DOI: 10.1016/j.diff.2009.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 12/24/2022]
Abstract
Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions, and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells.
Collapse
Affiliation(s)
- Benjamin D. Cosgrove
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alessandra Sacco
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Penney M. Gilbert
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M. Blau
- Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Stem Cell Biology and Regenerative Medicine Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
134
|
Abstract
The last 20 years have witnessed major advances in the understanding of muscle diseases and significant inroads are being made to treat muscular dystrophy. However, no curative therapy is currently available for any of the muscular dystrophies, despite the immense progress made using several approaches and only palliative and symptomatic treatment is available for patients. The discovery of miRNAs as new and important regulators of gene expression is expected to broaden our biological understanding of the regulatory mechanism in muscle by adding another dimension of regulation to the diversity and complexity of gene-regulatory networks. As important regulators of muscle development, unravelling the regulatory circuits involved may be challenging, given that a single miRNA can regulate the expression of many mRNA targets. Although the identification of the regulatory targets of miRNAs in muscle is a challenge, it will be critical for placing them in genetic pathways and biological contexts. Therefore, combining informatics, biochemical and genetic approaches will not only expected to reveal the elucidation of the miRNA regulatory network in skeletal muscle and to bring a better knowledge on muscle tissue regulation but will also raise new opportunities for therapeutic intervention in muscular dystrophies by identifying candidate miRNAs as potential targets for clinical application.
Collapse
Affiliation(s)
- Iris Eisenberg
- Howard Hughes Medical Institute, Childrens Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
135
|
In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 2009; 17:1771-8. [PMID: 19623164 DOI: 10.1038/mt.2009.167] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle-derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2(-/-) gammaC(-/-) C5(-/-) mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle-derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy.
Collapse
|
136
|
Chaouch S, Mouly V, Goyenvalle A, Vulin A, Mamchaoui K, Negroni E, Di Santo J, Butler-Browne G, Torrente Y, Garcia L, Furling D. Immortalized Skin Fibroblasts Expressing Conditional MyoD as a Renewable and Reliable Source of Converted Human Muscle Cells to Assess Therapeutic Strategies for Muscular Dystrophies: Validation of an Exon-Skipping Approach to Restore Dystrophin in Duchenne Muscular Dystrophy Cells. Hum Gene Ther 2009; 20:784-90. [DOI: 10.1089/hum.2008.163] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soraya Chaouch
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Vincent Mouly
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Aurélie Goyenvalle
- Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Adeline Vulin
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Kamel Mamchaoui
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Elisa Negroni
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - James Di Santo
- Unité des Cytokines et Développement Lymphoide, Institut Pasteur, Paris F-75015, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Yvan Torrente
- Stem Cell Laboratory of the Centro Dino Ferrari, Department of Neurological Sciences, Fondazione IRCCS Policlinico of Milan, University of Milan, 20122 Milan, Italy
| | - Luis Garcia
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Denis Furling
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| |
Collapse
|
137
|
Trollet C, Athanasopoulos T, Popplewell L, Malerba A, Dickson G. Gene therapy for muscular dystrophy: current progress and future prospects. Expert Opin Biol Ther 2009; 9:849-66. [DOI: 10.1517/14712590903029164] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
138
|
Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30:293-9. [PMID: 19156838 DOI: 10.1002/humu.20918] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antisense-mediated exon skipping aiming for reading frame restoration is currently a promising therapeutic application for Duchenne muscular dystrophy (DMD). This approach is mutation specific, but as the majority of DMD patients have deletions that cluster in hotspot regions, the skipping of a small number of exons is applicable to relatively large numbers of patients. To assess the actual applicability of the exon skipping approach, we here determined for deletions, duplications and point mutations reported in the Leiden DMD mutation database, which exon(s) should be skipped to restore the open reading frame. In theory, single and double exon skipping would be applicable to 79% of deletions, 91% of small mutations, and 73% of duplications, amounting to 83% of all DMD mutations. Exon 51 skipping, which is being tested in clinical trials, would be applicable to the largest group (13%) of all DMD patients. Further research is needed to determine the functionality of different in-frame dystrophins and a number of hurdles has to be overcome before this approach can be applied clinically.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
139
|
Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: Promising tool for DMD therapy. Mol Ther 2009; 17:1234-40. [PMID: 19455105 DOI: 10.1038/mt.2009.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral vectors encoding modified small nuclear RNAs (snRNAs), by masking important splicing sites. In this study, we demonstrate that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1 (hnRNPA1). In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression to near wild-type levels. Furthermore, we show the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of adeno-associated virus (AAV) vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications.
Collapse
|
140
|
Gayraud-Morel B, Chrétien F, Tajbakhsh S. Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 2009; 4:293-319. [PMID: 19317647 DOI: 10.2217/17460751.4.2.293] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue development and regeneration share common features, since modules of regulatory pathways and transcription factors that are crucial for prenatal development are redeployed for tissue reconstruction after trauma. Regenerative medicine has therefore gained important insights through the study of developmental and regenerative biology. Moreover, diverse experimental models have been used to investigate the regeneration process in different tissues and organs. Paradoxically, little is known regarding the relative contribution of stem cells with respect to the supporting tissue during tissue regeneration. Particular attention will be given to mouse models using distinct injury paradigms to investigate the regenerative biology of skeletal muscle. An understanding of the response of stem and parenchymal cells is crucial for the development of clinical strategies to combat the normal decline in tissue performance during aging or its reconstitution after trauma and during disease. This review addresses these issues, focusing on muscle regeneration and how different factors, including genes, cells and the environment, impinge on this process.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
141
|
Arnett ALH, Chamberlain JR, Chamberlain JS. Therapy for neuromuscular disorders. Curr Opin Genet Dev 2009; 19:290-7. [PMID: 19411172 DOI: 10.1016/j.gde.2009.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 12/21/2022]
Abstract
Research into therapeutic approaches for both recessive and dominant neuromuscular disorders has made great progress over the past few years. In the field of gene therapy, antisense-mediated exon skipping is being applied to bypass deleterious mutations in the dystrophin gene and restore dystrophin expression in animal models of muscular dystrophy. Approaches for the dominant genetic muscle diseases have turned toward elimination of the mutant gene product with anti-sense oligonucleotide therapy and RNA interference techniques. Refinements of adeno-associated viral vectors and strategies for their delivery are also leading towards future clinical trials. The discovery of new, multipotent cell lineages, some of which possess the ability to successfully engraft muscle following vascular delivery, presents exciting prospects for the field of stem cell therapy. These discoveries represent steady progress towards the development of effective therapies for a wide range of neuromuscular disorders.
Collapse
Affiliation(s)
- Andrea L H Arnett
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195-7720, United States.
| | | | | |
Collapse
|
142
|
Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2009; 2:22-31. [PMID: 18371418 DOI: 10.1016/j.stem.2007.12.012] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Muscle satellite cells have been shown to be a heterogeneous population of committed myogenic progenitors and noncommitted stem cells. This hierarchical composition of differentiating progenitors and self-renewable stem cells assures the extraordinary regenerative capacity of skeletal muscles. Recent studies have revealed a role for asymmetric division in satellite cell maintenance and offer novel insights into the regulation of satellite cell function by the niche. A thorough understanding of the molecular regulation and cell fate determination of satellite cells and other potential stem cells resident in muscle is essential for successful stem cell-based therapies to treat muscular diseases.
Collapse
Affiliation(s)
- Shihuan Kuang
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | | | | |
Collapse
|
143
|
Laufer SD, Restle T. Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des 2009; 14:3637-55. [PMID: 19075740 PMCID: PMC2778081 DOI: 10.2174/138161208786898806] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular uptake of therapeutic oligonucleotides and subsequent intracellular trafficking to their target sites represents the major technical hurdle for the biological effectiveness of these potential drugs. Accordingly, laboratories worldwide focus on the development of suitable delivery systems. Among the different available non-viral systems like cationic polymers, cationic liposomes and polymeric nanoparticles, cell-penetrating peptides (CPPs) represent an attractive concept to bypass the problem of poor membrane permeability of these charged macromolecules. While uptake per se in most cases does not represent the main obstacle of nucleic acid delivery in vitro, it becomes increasingly apparent that intracellular trafficking is the bottleneck. As a consequence, in order to optimize a given delivery system, a side-by-side analysis of nucleic acid cargo internalized and the corresponding biological effect is required to determine the overall efficacy. In this review, we will concentrate on peptide-mediated delivery of siRNAs and steric block oligonucleotides and discuss different methods for quantitative assessment of the amount of cargo taken up and how to correlate those numbers with biological effects by applying easy to handle reporter systems. To illustrate current limitations of non-viral nucleic acid delivery systems, we present own data as an example and discuss options of how to enhance trafficking of molecules entrapped in cellular compartments.
Collapse
Affiliation(s)
- S D Laufer
- Institut für Molekulare Medizin, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | |
Collapse
|
144
|
Stocum DL, Zupanc GK. Stretching the limits: Stem cells in regeneration science. Dev Dyn 2008; 237:3648-71. [DOI: 10.1002/dvdy.21774] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
145
|
Abstract
Duchenne muscular dystrophy is a devastating muscle wasting disease for which there is no effective treatment. In this issue of Cell Stem Cell, Benchaouir et al. (2007) demonstrate the delivery of genetically corrected CD133+ patient cells into mice, suggesting a new potential avenue for autologous cell therapy.
Collapse
|
146
|
Denti MA, Incitti T, Sthandier O, Nicoletti C, De Angelis FG, Rizzuto E, Auricchio A, Musarò A, Bozzoni I. Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum Gene Ther 2008; 19:601-8. [PMID: 18500943 DOI: 10.1089/hum.2008.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many mutations and deletions in the dystrophin gene, responsible for Duchenne muscular dystrophy (DMD), can be corrected at the posttranscriptional level by skipping specific exons. Here we show that long-term benefit can be obtained in the dystrophic mouse model through the use of adeno-associated viral vectors expressing antisense sequences: persistent exon skipping, dystrophin rescue, and functional benefit were observed 74 weeks after a single systemic administration. The therapeutic benefit was sufficient to preserve the muscle integrity of mice up to old age. These results indicate a possible long-term gene therapy treatment of the DMD pathology.
Collapse
Affiliation(s)
- Michela Alessandra Denti
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8:1051-61. [DOI: 10.1517/14712598.8.8.1051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
148
|
Darabi R, Santos FNC, Perlingeiro RCR. The Therapeutic Potential of Embryonic and Adult Stem Cells for Skeletal Muscle Regeneration. ACTA ACUST UNITED AC 2008; 4:217-25. [DOI: 10.1007/s12015-008-9023-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2008] [Indexed: 11/28/2022]
|
149
|
Vieira NM, Bueno CR, Brandalise V, Moraes LV, Zucconi E, Secco M, Suzuki MF, Camargo MM, Bartolini P, Brum PC, Vainzof M, Zatz M. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 2008; 26:2391-8. [PMID: 18583542 DOI: 10.1634/stemcells.2008-0043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Collapse
Affiliation(s)
- Natássia M Vieira
- Human Genome Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kaplan JC, Chelly J, Garcia L. Un saut symbolique mais encourageant dans le traitement de la myopathie de Duchenne. Med Sci (Paris) 2008; 24:215-7. [DOI: 10.1051/medsci/2008242215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|