101
|
Brel VK, Artyushin OI, Moiseeva AA, Sharova EV, Buyanovskaya AG, Nelyubina YV. Functionalization of bioactive substrates with a F5SCH = CH moiety. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1662906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valery K. Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg I. Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Aleksandra A. Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena V. Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasiya G. Buyanovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
102
|
Chang CW, Lee GH. Synthesis of 1,4,5-trisubstituted triazoles by [3+2] cycloaddition of a ruthenium azido complex with ynoate esters. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
103
|
Ghamat SN, Talebpour Z, Mehdi A. Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
104
|
Maikhuri VK, Bohra K, Srivastava S, Kavita, Prasad AK. Click synthesis of N1-(β-D-ribofuranosyl)-C4-(coumarin-4″-yl)-1,2,3-triazoles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1657150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vipin K. Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kapil Bohra
- Department of Chemistry, DDU College, University of Delhi, Delhi, India
| | - Smriti Srivastava
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kavita
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
105
|
Rosado-Solano DN, Barón-Rodríguez MA, Sanabria Florez PL, Luna-Parada LK, Puerto-Galvis CE, Zorro-González AF, Kouznetsov VV, Vargas-Méndez LY. Synthesis, Biological Evaluation and In Silico Computational Studies of 7-Chloro-4-(1 H-1,2,3-triazol-1-yl)quinoline Derivatives: Search for New Controlling Agents against Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9210-9219. [PMID: 31390203 DOI: 10.1021/acs.jafc.9b01067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The insecticidal and antifeedant activities of five 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives were evaluated against the maize armyworm, Spodoptera frugiperda (J.E. Smith). These hybrids were prepared through a copper-catalyzed azide alkyne cycloaddition (CuAAC, known as a click reaction) and displayed larvicidal properties with LD50 values below 3 mg/g insect, and triazolyl-quinoline hybrid 6 showed an LD50 of 0.65 mg/g insect, making it 2-fold less potent than methomyl, which was used as a reference insecticide (LD50 = 0.34 mg/g insect). Compound 4 was the most active antifeedant derivative (CE50 = 162.1 μg/mL) with a good antifeedant index (56-79%) at concentrations of 250-1000 μg/mL. Additionally, triazolyl-quinoline hybrids 4-8 exhibited weak inhibitory activity against commercial acetylcholinesterase from Electrophorus electricus (electric-eel AChE) (IC50 = 27.7 μg/mL) as well as low anti-ChE activity on S. frugiperda larvae homogenate (IC50 = 68.4 μg/mL). Finally, molecular docking simulations suggested that hybrid 7 binds to the catalytic active site (CAS) of this enzyme and around the rim of the enzyme cavity, acting as a mixed (competitive and noncompetitive) inhibitor like methomyl. Triazolyl-quinolines 4-6 and 8 inhibit AChE by binding over the perimeter of the enzyme cavity, functioning as noncompetitive inhibitors. The results described in this work can help to identify lead triazole structures from click chemistry for the development of insecticide and deterrent products against S. frugiperda and related insect pests.
Collapse
Affiliation(s)
- Doris Natalia Rosado-Solano
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Mario Alberto Barón-Rodríguez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Pedro Luis Sanabria Florez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Luz Karime Luna-Parada
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
| | - Carlos Eduardo Puerto-Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
- Laboratorio de Química Orgánica Aplicada , Universidad Manuela Beltrán , Cl. 33 # 26-34 , Bucaramanga , A.A. 680002 , Colombia
| | - Andrés Felipe Zorro-González
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará , Universidad Industrial de Santander , Km 2 vía Refugio , Piedecuesta , A.A. 681011 , Colombia
| | - Leonor Yamile Vargas-Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental , Universidad Santo Tomás , Bucaramanga A.A. 1076 , Colombia
| |
Collapse
|
106
|
Aguilar-Morales CM, de Loera D, Contreras-Celedón C, Cortés-García CJ, Chacón-García L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1616301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Cesia M. Aguilar-Morales
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Claudia Contreras-Celedón
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Carlos J. Cortés-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
107
|
Arafa WAA, Nayl AEA. Water as a solvent for Ru‐catalyzed click reaction: Highly efficient recyclable catalytic system for triazolocoumarins synthesis. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wael Abdelgayed Ahmed Arafa
- Chemistry Department, College of ScienceJouf University P.O. Box 2014 Sakaka, Aljouf Kingdom of Saudi Arabia
- Chemistry Department, Faculty of ScienceFayoum University P.O. Box 63514 Fayoum City Egypt
| | - Abd El‐Aziz Ahmed Nayl
- Chemistry Department, College of ScienceJouf University P.O. Box 2014 Sakaka, Aljouf Kingdom of Saudi Arabia
- Hot Laboratories CenterAtomic Energy Authority of Egypt P.O. 13759 Inshas, Cairo Egypt
| |
Collapse
|
108
|
Tejería E, Giglio J, Fernández L, Rey A. Development and evaluation of a 99mTc(V)-nitrido complex derived from estradiol for breast cancer imaging. Appl Radiat Isot 2019; 154:108854. [PMID: 31442798 DOI: 10.1016/j.apradiso.2019.108854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 01/10/2023]
Abstract
Estrogen receptors are overexpressed in 70% of breast cancer and identification of their presence is important to select the appropriate treatment. This work proposes the preparation and evaluation of an estradiol derived as potential ER imaging agent. Ethinylestradiol was derivatized to introduce a dithiocarbamate function for Tc coordination. Labeling was achieved through the formation of a symmetric Tc(V)-nitrido complex with a radiochemical purity (RCP) > 95%. Physicochemical evaluation, cell uptake, biodistribution in normal animals and in nude mice bearing induced ER + breast tumors showed promising results.
Collapse
Affiliation(s)
- Emilia Tejería
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Javier Giglio
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| | - Leticia Fernández
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| |
Collapse
|
109
|
Trznadel R, Singh A, Kleczewska N, Liberska J, Ruszkowski P, Celewicz L. Synthesis and in vitro anticancer activity of new gemcitabine-nucleoside analogue dimers containing methyltriazole or ester-methyltriazole linker. Bioorg Med Chem Lett 2019; 29:2587-2594. [PMID: 31400940 DOI: 10.1016/j.bmcl.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Two series of novel gemcitabine-nucleoside analogue dimers were synthesized using the 'click' chemistry approach. In the first series of dimers (21-30), the nucleoside units were connected with a stable methyltriazole 4N-3'(or 5')C linker whereas in the second series (31-40) with a cleavable ester-methyltriazole 4N-3'(or 5')C linker. Dimers 21-40 were evaluated for their cytotoxic activity in five human cancer cell lines such as cervical (HeLa), nasopharyngeal (KB), lung (A549), brain (U87), liver (HepG2) and normal dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Compound 29 comprising two gemcitabine (dFdC) units exhibited the highest activity among dimers 21-30. The activity of compound 29 was higher than that of dFdC in all the studied cancer cell lines. A similar order of activity was observed for compounds 25, 28, and 30. The best activity among all the dimers synthesized was displayed by compound 39, comprising two gemcitabine units with a cleavable linker. The activity of compound 39 was 5 to 9 times higher than that of dFdC, depending on the cell line. In addition, marked cytotoxic activity was shown by compounds 31, 36, 38, and 40.
Collapse
Affiliation(s)
- Roksana Trznadel
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St 8, 61-614 Poznań, Poland
| | - Aleksandra Singh
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St 8, 61-614 Poznań, Poland
| | - Natalia Kleczewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St 8, 61-614 Poznań, Poland
| | - Joanna Liberska
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka St 5 a, 60-806 Poznań, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka St 5 a, 60-806 Poznań, Poland
| | - Lech Celewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St 8, 61-614 Poznań, Poland.
| |
Collapse
|
110
|
Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
111
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
112
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|
113
|
Li S, Nie H, Gu S, Han Z, Han G, Zhang W. Synthesis of Multicompartment Nanoparticles of ABC Miktoarm Star Polymers by Seeded RAFT Dispersion Polymerization. ACS Macro Lett 2019; 8:783-788. [PMID: 35619511 DOI: 10.1021/acsmacrolett.9b00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polymeric multicompartment nanoparticles (MCNs) of μ-ABC miktoarm star polymers composed of poly(N,N-dimethylacrylamide) (PDMA), poly(butyl methacrylate) (PBMA), and polystyrene (PS) were synthesized by Cu(I)-catalyzed click reaction and seeded RAFT dispersion polymerization. The synthesized MCNs have a solvophobic PBMA core with separate segregated PS microdomains and a solvophilic PDMA corona. The size and/or morphology of MCNs are correlative to the length of PDMA, PBMA, and PS segments. Ascribed to the characteristic structure, MCNs of μ-DBS can decrease interfacial tension in n-hexane/water, which is much superior to linear diblock copolymer nanoassemblies.
Collapse
Affiliation(s)
- Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Song Gu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 100123, China
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 100123, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
114
|
Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| |
Collapse
|
115
|
Gomes RS, Jardim GA, de Carvalho RL, Araujo MH, da Silva Júnior EN. Beyond copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition: Synthesis and mechanism insights. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
116
|
Chavan PV, Charate SP, Desai UV, Rode CV, Wadgaonkar PP. Bentonite ‐ Clay ‐ Supported Cuprous Iodide Nanoparticles (BENT‐ CuI NPs): A New Heterogeneous Catalyst in Diversity ‐ Oriented Synthesis of 1, 2, 3‐ Triazoles in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201900421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pramod V. Chavan
- Department of ChemistryShivaji University Kolhapur – 416 004 India
| | | | - Uday V. Desai
- Department of ChemistryShivaji University Kolhapur – 416 004 India
| | - Chandrashekhar V. Rode
- Chemical Engineering and Process DivisionCSIR National Chemical Laboratory Pune - 411 008 India
| | - Prakash P. Wadgaonkar
- Polymer Science and Engineering DivisionCSIR National Chemical Laboratory Pune - 411 008 India
| |
Collapse
|
117
|
Hall C, Wolfe H, Wells A, Chien HC, Colas C, Schlessinger A, Giacomini KM, Thomas AA. l-Type amino acid transporter 1 activity of 1,2,3-triazolyl analogs of l-histidine and l-tryptophan. Bioorg Med Chem Lett 2019; 29:2254-2258. [PMID: 31248771 DOI: 10.1016/j.bmcl.2019.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023]
Abstract
A series of 1,2,3-triazole analogs of the amino acids l-histidine and l-tryptophan were modeled, synthesized and tested for l-type amino acid transporter 1 (LAT1; SLC7A5) activity to guide the design of amino acid-drug conjugates (prodrugs). These triazoles were conveniently prepared by the highly convergent Huisgen 1,3-dipolar cycloaddition (Click Chemistry). Despite comparable predicted binding modes, triazoles generally demonstrated reduced cell uptake and LAT1 binding potency relative to their natural amino acid counterparts. The structure-activity relationship (SAR) data for these triazoles has important ramifications for treating cancer and brain disorders using amino acid prodrugs or LAT1 inhibitors.
Collapse
Affiliation(s)
- Colton Hall
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Hannah Wolfe
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Alyssa Wells
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claire Colas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 69949, USA.
| |
Collapse
|
118
|
Click chemistry approach to characterize curcumin-protein interactions in vitro and in vivo. J Nutr Biochem 2019; 68:1-6. [DOI: 10.1016/j.jnutbio.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
|
119
|
Mohammadi L, Zolifgol MA, Yarie M, Ebrahiminia M, Roberts KP, Hussaini SR. Application of two magnetic nanoparticle-supported copper(I) catalysts for the synthesis of triazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Zych D, Slodek A, Zimny D, Golba S, Malarz K, Mrozek-Wilczkiewicz A. Influence of the substituent D/A at the 1,2,3-triazole ring on novel terpyridine derivatives: synthesis and properties. RSC Adv 2019; 9:16554-16564. [PMID: 35516389 PMCID: PMC9064414 DOI: 10.1039/c9ra02655j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, we newly designed and developed a synthesis route based on the 1,3-dipolar cycloaddition of the derivatives of 4'-(1,2,3-triazol-4-yl)phenyl-2,2':6',2''-terpyridine with various (hetero)aryl substituents, differing in electronic character, on a triazol ring. The obtained compounds were comprehensively characterized by UV-Vis spectroscopy and electrochemical and thermal studies. Moreover, preliminary biological tests were conducted. The investigation allowed the selection of materials with the most promising properties with particular emphasis on the nature of the substituents. In addition, theoretical studies (DFT and TD-DFT) were performed to verify the comprehensive understanding of experimental results.
Collapse
Affiliation(s)
- Dawid Zych
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Aneta Slodek
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Dżastin Zimny
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia Szkolna 9 40-007 Katowice Poland
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics, Faculty of Mathematics, Physics and Chemistry, Silesian Center for Education and Interdisciplinary Research, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, Faculty of Mathematics, Physics and Chemistry, Silesian Center for Education and Interdisciplinary Research, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzów Poland
| |
Collapse
|
121
|
Dai Y, Weng J, George J, Chen H, Lin Q, Wang J, Royzen M, Zhang Q. Three-Component Protein Modification Using Mercaptobenzaldehyde Derivatives. Org Lett 2019; 21:3828-3833. [PMID: 31058515 DOI: 10.1021/acs.orglett.9b01294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemoselective primary amine modification strategy that enables the three-component, one-pot bioconjugation is described. The specifically designed, mercaptobenzaldehyde-based bifunctional linker achieves highly selective and robust amine labeling under biocompatible conditions. This linker demonstrates wide functional group tolerance and is simple to prepare, which allowed facile payload incorporation. Finally, our studies have shown that the introduction of linker does not impair the function of modified protein such as insulin.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jiaping Weng
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Justin George
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Huan Chen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qishan Lin
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jun Wang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Maksim Royzen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qiang Zhang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
122
|
Toncheva-Moncheva N, Bakardzhiev P, Rangelov S, Trzebicka B, Forys A, Petrov PD. Linear Amphiphilic Polyglycidol/Poly(ε-caprolactone) Block Copolymers Prepared via “Click” Chemistry-Based Concept. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Pavel Bakardzhiev
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
123
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
124
|
Rigo S, Gunkel-Grabole G, Meier W, Palivan CG. Surfaces with Dual Functionality through Specific Coimmobilization of Self-Assembled Polymeric Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4557-4565. [PMID: 30296105 DOI: 10.1021/acs.langmuir.8b02812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coimmobilization of functional, nanosized assemblies broadens the possibility to engineer dually functionalized active surfaces with a nanostructured texture. Surfaces decorated with different nanoassemblies, such as micelles, polymersomes, or nanoparticles are in high demand for various applications ranging from catalysis, biosensing up to antimicrobial surfaces. Here, we present a combination of bio-orthogonal and catalyst-free strain-promoted azide-alkyne click (SPAAC) and thiol-ene reactions to simultaneously coimmobilize various nanoassemblies; we selected polymersome-polymersome and polymersome-micelle assemblies. For the first time, the immobilization method using SPAAC reaction was studied in detail to attach soft, polymeric assemblies on a solid support. Together, the SPAAC and thiol-ene reactions successfully coimmobilized two unique self-assembled structures on the surfaces. Additionally, poly(dimethylsiloxane) (PDMS)-based polymersomes were used as "ink" for direct immobilization from a PDMS-based microstamp onto a surface creating locally defined patterns. Combining immobilization reactions has the advantage to attach any kind of nanoassembly pairs, resulting in surfaces with "desired" interfacial properties. Different nanoassemblies that encapsulate multiple active compounds coimmobilized on a surface will pave the way for the development of multifunctional surfaces with controlled properties and efficiency.
Collapse
Affiliation(s)
- Serena Rigo
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Gesine Gunkel-Grabole
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Wolfgang Meier
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| | - Cornelia G Palivan
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4002 Basel , Switzerland
| |
Collapse
|
125
|
Thanh ND, Hai DS, Ngoc Bich VT, Thu Hien PT, Ky Duyen NT, Mai NT, Dung TT, Toan VN, Kim Van HT, Dang LH, Toan DN, Thanh Van TT. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene−d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur J Med Chem 2019; 167:454-471. [DOI: 10.1016/j.ejmech.2019.01.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
|
126
|
Aguirre-Pranzoni C, Tosso RD, Bisogno FR, Kurina-Sanz M, Orden AA. Preparation of chiral β-hydroxytriazoles in one-pot chemoenzymatic bioprocesses catalyzed by Rhodotorula mucilaginosa. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
127
|
Regioselective Synthesis, Molecular Descriptors of (1,5‐Disubstituted 1,2,3‐Triazolyl)Coumarin/Quinolone Derivatives and Their Docking Studies against Cancer Targets. ChemistrySelect 2019. [DOI: 10.1002/slct.201900114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
128
|
Synthesis, crystal structure and investigation of the catalytic and spectroscopic properties of a Zn(II) complex with coumarin-hydrazone ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
129
|
Chauhan UB, Tomich AW, Lavallo V. The first example of a “click” reaction with a carboranyl azide and an olefin. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
130
|
Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp3−H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry 2019; 25:4077-4086. [DOI: 10.1002/chem.201806288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Aysegül Özdemir
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Andrea Gini
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
131
|
Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, "Click" and RDA Reactions. Molecules 2019; 24:molecules24040772. [PMID: 30795610 PMCID: PMC6412576 DOI: 10.3390/molecules24040772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022] Open
Abstract
An uncomplicated, high-yielding synthetic route has been developed to constitute complicated heterocycles, applying domino, click and retro-Diels–Alder (RDA) reaction sequences. Starting from 2-aminocarboxamides, a new set of isoindolo[2,1-a]quinazolinones was synthesized with domino ring closure. A click reaction was performed to create the 1,2,3-triazole heterocyclic ring, followed by an RDA reaction resulting in dihydropyrimido[2,1-a]isoindole-2,6-diones. The absolute configuration, concluded by the norbornene structure that served as a chiral source, remained constant throughout the transformations. The structure of the synthesized compounds was examined by 1H and 13C Nuclear Magnetic Resonance (NMR) methods.
Collapse
|
132
|
Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett 2019; 29:949-958. [PMID: 30799214 DOI: 10.1016/j.bmcl.2019.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. "Hybrid-structures", i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.
Collapse
Affiliation(s)
- René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
133
|
Chang CW, Lee GH. Facile synthesis of 1,5-disubstituted 1,2,3-triazoles by the regiospecific alkylation of a ruthenium triazolato complex. Dalton Trans 2019; 48:2028-2037. [PMID: 30656320 DOI: 10.1039/c8dt04189j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkylation of the N(2)-bound ruthenium triazolate [Ru]N3C2HCO2Et (2, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with benzylbromides is reported. The regiospecific alkylation of 2, which results from the [3 + 2] cycloaddition of ethyl propiolate with [Ru]-N3 (1), gives a series of cationic N(1)-bound N(3)-alkylated-4-ethoxycarbonyl triazolato complexes {[Ru]N3(CH2R)C2HCO2Et}[Br] (3a, R = 4-CH2Br-C6H4; 3b, R = 3,5-(CH2Br)2-C6H3; 3c, R = 2,6-F2-C6H3; 3d, R = 4-CN-C6H4) and the subsequent cleavage of the Ru-N bond of 3a-3d gives N(1)-alkylated-5-ethoxycarbonyl triazoles N3(CH2R)C2HCO2Et (4a-4d) and [Ru]-Br, which, on reacting with sodium azide, would afford [Ru]-N3 (1) thus forming a reaction cycle. The treatment of {[Ru]N3(CH2C6F5)C2HCO2Et}[Br] (3e) with sodium azide in refluxing ethanol gives the free triazole N3(CH2C6F5)C2HCO2Et (4e) and 1. The treatment of 2 with an equivalent of 3a affords a dinuclear bis(triazolato) complex {α,α'-bis([Ru]N3C2HCO2Et)-p-xylene}[Br]2 (5) and an organic bis(triazole) complex α,α'-bis(N3C2HCO2Et)-p-xylene (6). The treatment of 2 with CF3COOH in CHCl3 at room temperature affords a mixture of N(2)-bound 1H- and 3H-4-ethoxycarbonyl triazolato complexes {[Ru]N3HC2HCO2Et}[CF3COO] (1H-7) and (3H-7) in a ratio of 5 : 2. The structures of 4e, 5 and 1H-7 were confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, Linkou, New Taipei City, Taiwan 24449, Republic of China.
| | | |
Collapse
|
134
|
Ibarra IA, Islas-Jácome A, González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 2019; 16:1402-1418. [PMID: 29238790 DOI: 10.1039/c7ob02305g] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. Multicomponent reactions (MCRs) are highly convergent one-pot processes, in which three or more reagents are combined sequentially to construct complex products, with almost all the atoms coming from the starting reagents. In this context, the syntheses of 'heterocycles' via MCR-based processes have been reviewed a number of times. However, there is not a single review (recent or otherwise) covering the synthesis of 'polyheterocycles' via a direct MCR or via a one-pot process involving MCRs coupled to further cyclizations (via ionic, metal-catalyzed, pericyclic, or free-radical-mediated cyclizations). This issue is consequently the main topic of the present review, which considers work from the last decade. The work is categorized according to the key processes involved in the syntheses of polyheterocycles, aiming to give readers an easy understanding of this MCR-based chemistry and to provide insights for further investigations. The reaction mechanisms providing novel elements to these MCR-based methods for the synthesis of polyheterocycles are also discussed.
Collapse
Affiliation(s)
- Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | | | | |
Collapse
|
135
|
Keim M, Maas G. Terminal Acetylenic Iminium Salts: Cycloaddition Reactions with Azides Leading to 1,2,3-Triazoles and Bicyclic 1,2,3-Triazolium Salts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Michael Keim
- Institute of Organic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Gerhard Maas
- Institute of Organic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
136
|
Patil PC, Tan J, Demuth DR, Luzzio FA. 'Second-generation' 1,2,3-triazole-based inhibitors of Porphyromonas gingivalis adherence to oral streptococci and biofilm formation. MEDCHEMCOMM 2019; 10:268-279. [PMID: 30881614 PMCID: PMC6390472 DOI: 10.1039/c8md00405f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022]
Abstract
This study details the design, synthesis and bioassay of ‘click’ peptidomimetic compounds which inhibit the adherence of P. gingivalis to S. gordonii, a primary step toward pathogenic colonization of the subgingival pocket.
Several ‘second-generation’ click inhibitors of the multi-species biofilm propagated by the adherence of the oral pathogen Porphyromonas gingivalis to Streptococcus gordonii were synthesized and evaluated. The design of the structures was based on the results obtained with the first-generation diphenyloxazole ‘click’ inhibitors which bear suitable hydrophobic and polar groups within a dual scaffold molecule bearing a 1,2,3-triazole spacer. The structures of the synthetic targets reported herein now consist of a triazolyl(phenylsulfonylmethyl) and a triazolyl(phenylsulfinylmethyl) spacer which joins a 4,5-diphenyloxazole with both phenyl rings bearing lipophilic substituents. The triazolyl “linker” group is formed by a click reaction between the 4-azido(phenylsulfonyl/sulfinylmethyl) oxazoles and acetylenic components having aryl groups bearing hydrophobic substituents. The 1,3,5-trisubstituted-2,4,6-triazine scaffold of the most active click compounds were modeled after the structural motif termed the VXXLL nuclear receptor (NR) box. When substituted at the 3- and 5-positions with 2- and 4-fluorophenylamino and N,N-diethylamino units, the candidates bearing the 1,3,5-trisubstituted-2,4,6-triazine scaffold formed a substantial subset of the second-generation click candidates. Four of the click products, compounds 95, 111, 115 and 122 showed inhibition of the adherence of P. gingivalis to S. gordonii with an IC50 range of 2.3–4.3 μM and only 111 exhibited cytotoxic activity against telomerase immortalized gingival keratinocytes at 60 μM. These results suggest that compounds 95, 115, 122, and possibly 111 represent the most suitable compounds to evaluate for activity in vivo.
Collapse
Affiliation(s)
- Pravin C Patil
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases , University of Louisville , School of Dentistry , 501 S. Preston St. , Louisville , Kentucky 40292 , USA .
| | - Donald R Demuth
- Department of Oral Immunology and Infectious Diseases , University of Louisville , School of Dentistry , 501 S. Preston St. , Louisville , Kentucky 40292 , USA .
| | - Frederick A Luzzio
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , USA
| |
Collapse
|
137
|
Hussen AS, Monga A, Sharma A. Regioselective Synthesis of Functionalized 1,3‐Thiazine‐4‐ones
via
Multicomponent Click Reaction Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201803634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdulkadir Shube Hussen
- D-305Medicinal Chemistry LaboratoryDepartment of ChemistryIndian Institute of technology Roorkee Roorkee 247667 India
| | - Aparna Monga
- D-305Medicinal Chemistry LaboratoryDepartment of ChemistryIndian Institute of technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- D-305Medicinal Chemistry LaboratoryDepartment of ChemistryIndian Institute of technology Roorkee Roorkee 247667 India
| |
Collapse
|
138
|
Mahmoud AG, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide-alkyne cycloaddition reaction. Dalton Trans 2019; 48:1774-1785. [PMID: 30640328 DOI: 10.1039/c8dt04771e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of water soluble copper(ii) complexes, [Cu(κO1O2N-H2L1)(H2O)2]·2H2O (2), [Cu(κO-H3L1)2(H2O)4] (3), [Cu(κO-H4L2)2(H2O)4] (5) and [Cu(H2O)6]·2H2L3·2(CH3)2NCHO (7), were prepared by the reaction of Cu(NO3)2·3H2O with sodium (Z)-2-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)benzenesulfonate, [Na(μ4-1:2κO1,2κO2,3κO3,4κO4-H3L1)]n (1; for 2 and 3), sodium (Z)-3-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)-4-hydroxybenzene-sulfonate, [Na(μ-1κO1,2κO2-H4L2)]2 (4; for 5) or sodium (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)naphthalene-1-sulfonate, [Na(μ-1κO1O2,2κO3-H2L3)(CH3OH)2]2 (6; for 7). Compounds 1-7 were fully characterized, also by single-crystal X-ray diffraction analysis, and applied as homogeneous catalysts for the azide-alkyne cycloaddition (AAC) reaction to afford 1,4-disubstituted 1,2,3-triazoles. A structure-catalytic activity relationship has been recognized for the first time on the basis of the occurrence of resonance- and charge-assisted hydrogen bond interactions (RAHB and CAHB), in charge and ligand binding modes, enabling the catalytic activity of the compounds to be ordered as follows: Cu(NO3)2≪7 (complex salt with RAHB and CAHB) < 3 (with RAHB and CAHB) < 5 (with RAHB) < 2 (neither RAHB nor CAHB). Complex 2, without such non-covalent interactions, was found to be the most efficient catalyst for the AAC reaction, affording up to 98% product yield after being placed for 15 min, at 125 °C, in a water/acetonitrile mixture under low power (10 W) MW irradiation.
Collapse
Affiliation(s)
- Abdallah G Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
139
|
Dinh Thanh N, Son Hai D, Thi Ngoc Bich V, Thi Thu Hien P, Thi Ky Duyen N, Thi Mai N, Thi Dung T, Thi Kim Van H, Ngoc Toan V, Huy NH, Thi Thanh Van T, Ngoc Toan D, Hai Dang L. Synthesis and structure of some substituted 2-amino-4-aryl-7-propargyloxy-4H-chromene-3-carbonitriles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1543779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
- General Department 4 (Ministry of Public Security), Lab of Profession Chemistry Institute of Biochemical Technology and Profession Documents , Ha Noi , Viet Nam
| | - Vu Thi Ngoc Bich
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Pham Thi Thu Hien
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Nguyen Thi Ky Duyen
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Nguyen Thi Mai
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Tran Thi Dung
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Hoàng Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
- Viet Tri University of Industry , Phu Tho , Viet Nam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
- Institute for Chemistry and Materials, Military Institute of Science and Technology , Ha Noi , Viet Nam
| | - Nguyen Hung Huy
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Tran Thi Thanh Van
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
| | - Duong Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
- Faculty of Chemistry, Thai Nguyen University of Education , Thai Nguyen , Viet Nam
| | - Le Hai Dang
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi) , Ha Noi , Viet Nam
- Thai Nguyen College of Education, Thai Nguyen University of Education , Thai Nguyen , Viet Nam
| |
Collapse
|
140
|
Ojaghi Aghbash K, Noroozi Pesyan N, Şahin E. Cu(I)-catalyzed alkyne–azide ‘click’ cycloaddition (CuAAC): a clean, efficient, and mild synthesis of new 1,4-disubstituted 1H-1,2,3-triazole-linked 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile–crystal structure. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-03723-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
141
|
Elwrfalli F, Esvan YJ, Robertson CM, Aïssa C. Regioselective cycloaddition of potassium alkynyltrifluoroborates with 3-azetidinones and 3-oxetanone by nickel-catalysed C–C bond activation. Chem Commun (Camb) 2019; 55:497-500. [DOI: 10.1039/c8cc09241a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nickel-catalysed (4+2) cycloaddtion of potassium alkynyltrifluoroborates and 3-azetidinones and 3-oxetanone gives only one regioisomer for all alkyne substituents.
Collapse
|
142
|
Husain AA, Bisht KS. Synthesis of a novel resorcin[4]arene–glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv 2019; 9:10109-10116. [PMID: 35520904 PMCID: PMC9062644 DOI: 10.1039/c9ra00972h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/05/2019] [Indexed: 11/21/2022] Open
Abstract
The Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) in aqueous media using resorcin[4]arene glycoconjugate (RG) is reported. The eight β-d-glucopyranoside moieties constructed on the resorcin[4]arene upper rim provide a pseudo-saccharide cavity that offers a suitable host environment for water-insoluble hydrophobic azido and/or alkyne substrates in water. The utility of RG was established as an efficient inverse phase transfer catalyst for the CuAAC in water as a green approach for the synthesis of 1,4-disubstituted 1,2,3-triazole species. The catalytic utility of RG (1 mol%) was demonstrated in a multicomponent one-pot CuAAC for various azido/alkyne substrates. The RG acts as a molecular host and a micro-reactor resulting in the 1,4-disubstituted 1,2,3-triazoles in excellent yield. The Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) in aqueous media using resorcin[4]arene glycoconjugate (RG) is reported.![]()
Collapse
Affiliation(s)
- Ali A. Husain
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | | |
Collapse
|
143
|
Gorbunov A, Kuznetsova J, Puchnin K, Kovalev V, Vatsouro I. Triazolated calix[4]arenes from 2-azidoethylated precursors: is there a difference in the way the triazoles are attached to narrow rims? NEW J CHEM 2019. [DOI: 10.1039/c8nj06464d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A large series of narrow-rim 4-R-1-triazolated calix[4]arenes was prepared, and these compounds were compared in terms of their cation-binding ability with the ‘inverted’ 1-R-4-triazolated calix[4]arenes.
Collapse
Affiliation(s)
- Alexander Gorbunov
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Julia Kuznetsova
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Kirill Puchnin
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Vladimir Kovalev
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Ivan Vatsouro
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- 119991 Moscow
- Russia
| |
Collapse
|
144
|
Tabey A, Audrain H, Fouquet E, Hermange P. Bioconjugated arylpalladium complexes on solid supports for a convenient last-step synthesis of 11C-labelled tracers for positron emission tomography. Chem Commun (Camb) 2019; 55:7587-7590. [DOI: 10.1039/c9cc03215k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioconjugated arylpalladium complexes anchored onto polystyrene beads provided [11C]CO-labelled compounds with excellent radiochemical purities after a simple filtration.
Collapse
Affiliation(s)
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center
- Aarhus University Hospital
- DK-8000 Aarhus
- Denmark
| | | | | |
Collapse
|
145
|
Liu Y, Chen F, Zhang K, Wang Q, Chen Y, Luo X. pH-Responsive reversibly cross-linked micelles by phenol–yne click via curcumin as a drug delivery system in cancer chemotherapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00305c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-sensitive reversibly cross-linked micelles by phenol–yne click via curcumin (Cur) using mPEG-b-PHEMA-5HA are developed by combining drug loading and cross-linking as a drug delivery system.
Collapse
Affiliation(s)
- Yuancheng Liu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Kui Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Quan Wang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
146
|
Cormier M, Fouquet E, Hermange P. Expedient synthesis of a symmetric cycloheptyne-Co2(CO)6 complex for orthogonal Huisgen cycloadditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00086k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A cycloheptyne dicobalt-carbonyl complex with a terminal alkyne was synthesized by a short procedure, and was able to react selectively in Strain Promoted Alkyne Azide Cycloaddition (SPAAC) or Copper Catalysed Alkyne Azide Cycloaddition (CuAAC) depending on the conditions.
Collapse
Affiliation(s)
- Morgan Cormier
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- 33405 Talence Cedex
- France
| | - Eric Fouquet
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- 33405 Talence Cedex
- France
| | - Philippe Hermange
- Univ. Bordeaux
- Institut des Sciences Moléculaires
- 33405 Talence Cedex
- France
| |
Collapse
|
147
|
Amini A, Fallah A, Cheng C, Tajbakhsh M. Natural phosphate-supported Cu(ii), an efficient and recyclable catalyst for the synthesis of xanthene and 1,4-disubstituted-1,2,3-triazole derivatives. RSC Adv 2018; 8:41536-41547. [PMID: 35559273 PMCID: PMC9091919 DOI: 10.1039/c8ra08260j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022] Open
Abstract
Cu(NO3)2 supported on natural phosphate, Cu(ii)/NP, was prepared by co-precipitation and applied as a heterogeneous catalyst for synthesizing xanthenes (2-3 h, 85-97%) through Knoevenagel-Michael cascade reaction of aromatic aldehydes with 1,3-cyclic diketones in ethanol under refluxing conditions. It was further used for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles (1-25 min, 95-99%) via a three-component reaction between organic halides, aromatic alkynes and sodium azide in methanol at room temperature. The proposed catalyst, Cu(ii)/NP, was characterized using X-ray fluorescence, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and inductively coupled plasma analyses. Compared to other reports in literature, the reactions took place through a simple co-precipitation, having short reaction time (<3 hours), high reaction yield (>85%), and high recyclability of catalyst (>5 times) without significant decrease in the inherent property and selectivity of catalyst. The proposed protocols provided significant economic and environmental advantages.
Collapse
Affiliation(s)
- Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University Kingswood Campus, Bld Z, Locked Bag 1797, Penrith 2751 NSW Australia +61-2-9685-9298 +61-2-404-060-787
- Department of Mechanical Engineering, Australian College of Kuwait Mishref Kuwait
| | - Azadeh Fallah
- Department of Chemistry, Payame Noor University Tehran Iran
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Chun Cheng
- Department of Materials Science and Engineering, South University of Science and Technology Shenzhen China
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, University of Mazandaran Babolsar Iran
| |
Collapse
|
148
|
K S, G U, CP RN. Azide telechelics chain extended by click reaction: Synthesis, characterization, and cross-linking. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sunitha K
- Polymers and Special Chemicals Division; Vikram Sarabhai Space Centre; Thiruvananthapuram India
| | - Unnikrishnan G
- Department of Chemistry; National Institute of Technology; Calicut India
| | - Reghunadhan Nair CP
- Department of Polymer Science and Rubber Technology; Cochin University of Science and Technology; Cochin India
| |
Collapse
|
149
|
Herzigkeit B, Flöser BM, Meißner NE, Engesser TA, Tuczek F. Click. Coordinate. Catalyze. Using CuAAC Click Ligands in Small‐Molecule Model Chemistry of Tyrosinase. ChemCatChem 2018. [DOI: 10.1002/cctc.201801606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin Herzigkeit
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Benedikt M. Flöser
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Nadja E. Meißner
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Tobias A. Engesser
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Felix Tuczek
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| |
Collapse
|
150
|
Murlykina MV, Morozova AD, Zviagin IM, Sakhno YI, Desenko SM, Chebanov VA. Aminoazole-Based Diversity-Oriented Synthesis of Heterocycles. Front Chem 2018; 6:527. [PMID: 30555815 PMCID: PMC6282055 DOI: 10.3389/fchem.2018.00527] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/11/2018] [Indexed: 02/02/2023] Open
Abstract
The comprehensive review contains the analysis of literature data concerning reactions of heterocyclization of aminoazoles and demonstrates the application of these types of transformations in diversity-oriented synthesis. The review is oriented to wide range of chemists working in the field of organic synthesis and both experimental and theoretical studies of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Maryna V Murlykina
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Alisa D Morozova
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Ievgen M Zviagin
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine.,Chemistry Faculty, Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine.,Chemistry Faculty, Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|