101
|
Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. Solution structure of RNase P RNA. RNA (NEW YORK, N.Y.) 2011; 17:1159-71. [PMID: 21531920 PMCID: PMC3096047 DOI: 10.1261/rna.2563511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/30/2011] [Indexed: 05/25/2023]
Abstract
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of MCD Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
102
|
Li D, Gössringer M, Hartmann RK. Archaeal-bacterial chimeric RNase P RNAs: towards understanding RNA's architecture, function and evolution. Chembiochem 2011; 12:1536-43. [PMID: 21574237 DOI: 10.1002/cbic.201100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Indexed: 01/18/2023]
Abstract
The higher protein content of archaeal RNase P (1 RNA+4 proteins) compared to the bacterial homologue (1 RNA+1 protein) correlates with a large loss of RNA-alone activity (i.e., in the absence of protein cofactors). Here we show, for the first time, that a catalytic (C) domain of an archaeal RNase P RNA (P RNA) can functionally replace the Escherichia coli C domain in a chimeric P RNA, to provide the essential RNase P function in E. coli cells. This adaptation was achieved by 1) three minor alterations in the archaeal C domain, 2) restoration of the L9-P1 interdomain contact that is found in bacterial and archaeal type A RNAs, and 3) installation of another interdomain contact (L18-P8) that is present in bacterial but absent in archaeal P RNAs. We conclude 1) that the C domains of bacterial and archaeal P RNAs of type A have been largely conserved since the evolutionary separation of bacteria and archaea, and 2) that the L18-P8 RNA-RNA contact has been replaced with protein-protein contacts in archaeal RNase P. Function of the chimeric P RNA in E. coli required overexpression of the E. coli RNase P protein to increase the RNA's reduced cellular levels; this was attributed to enhanced degradation of the chimeric P RNA.
Collapse
Affiliation(s)
- Dan Li
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | |
Collapse
|
103
|
Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 2011; 39:5704-14. [PMID: 21450806 PMCID: PMC3141246 DOI: 10.1093/nar/gkr126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
104
|
Cho IM, Kazakov SA, Gopalan V. Evidence for recycling of external guide sequences during cleavage of bipartite substrates in vitro by reconstituted archaeal RNase P. J Mol Biol 2011; 405:1121-7. [PMID: 21144851 PMCID: PMC3025773 DOI: 10.1016/j.jmb.2010.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
Abstract
RNA-mediated RNA cleavage events are being increasingly exploited to disrupt RNA function, an important objective in post-genomic biology. RNase P, a ribonucleoprotein enzyme that catalyzes the removal of 5'-leaders from precursor tRNAs, has previously been utilized for sequence-specific cleavage of cellular RNAs. In one of these strategies, borne out in bacterial and mammalian cell culture, an external guide sequence (EGS) RNA base-paired to a target RNA makes the latter a substrate for endogenous RNase P by rendering the bipartite target RNA-EGS complex a precursor tRNA structural mimic. In this study, we first obtained evidence that four different mesophilic and thermophilic archaeal RNase P holoenzymes, reconstituted in vitro using their respective constituent RNA and protein subunits, recognize and cleave such substrate-EGS complexes. We further demonstrate that these EGSs engage in multiple rounds of substrate recognition while assisting archaeal RNase P-mediated cleavage of a target RNA in vitro. Taken together, the EGS-based approach merits consideration as a gene knockdown tool in archaea.
Collapse
Affiliation(s)
- I-Ming Cho
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Venkat Gopalan
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
105
|
Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:145-90. [PMID: 21414588 DOI: 10.1016/b978-0-12-386043-9.00004-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria, owing to their bacterial origin, still contain their own DNA. However, the majority of bacterial genes were lost or transferred to the nuclear genome and the biogenesis of the "present-day" mitochondria mainly depends on the expression of the nuclear genome. Thus, most mitochondrial proteins and a small number of mitochondrial RNAs (mostly tRNAs) expressed from nuclear genes need to be imported into the organelle. During evolution, macromolecule import systems were universally established. The processes of protein mitochondrial import are very well described in the literature. By contrast, deciphering the mitochondrial RNA import phenomenon is still a real challenge. The purpose of this review is to present a general survey of our present knowledge in this field in different model organisms, protozoa, plants, yeast, and mammals. Questions still under debate and major challenges are discussed. Mitochondria are involved in numerous human diseases. The targeting of macromolecule to mitochondria represents a promising way to fight mitochondrial disorders and recent developments in this area of research are presented.
Collapse
|
106
|
Shapira I, Sultan K, Mehrotra B, Budman DR. Emerging role of small ribonucleic acids in gastrointestinal tumors. Crit Rev Oncol Hematol 2010; 76:173-85. [DOI: 10.1016/j.critrevonc.2010.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 01/06/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022] Open
|
107
|
Chen WY, Pulukkunat DK, Cho IM, Tsai HY, Gopalan V. Dissecting functional cooperation among protein subunits in archaeal RNase P, a catalytic ribonucleoprotein complex. Nucleic Acids Res 2010; 38:8316-27. [PMID: 20705647 PMCID: PMC3001054 DOI: 10.1093/nar/gkq668] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RNase P catalyzes the Mg2+-dependent 5′-maturation of precursor tRNAs. Biochemical studies on the bacterial holoenzyme, composed of one catalytic RNase P RNA (RPR) and one RNase P protein (RPP), have helped understand the pleiotropic roles (including substrate/Mg2+ binding) by which a protein could facilitate RNA catalysis. As a model for uncovering the functional coordination among multiple proteins that aid an RNA catalyst, we use archaeal RNase P, which comprises one catalytic RPR and at least four RPPs. Exploiting our previous finding that these archaeal RPPs function as two binary RPP complexes (POP5•RPP30 and RPP21•RPP29), we prepared recombinant RPP pairs from three archaea and established interchangeability of subunits through homologous/heterologous assemblies. Our finding that archaeal POP5•RPP30 reconstituted with bacterial and organellar RPRs suggests functional overlap of this binary complex with the bacterial RPP and highlights their shared recognition of a phylogenetically-conserved RPR catalytic core, whose minimal attributes we further defined through deletion mutagenesis. Moreover, single-turnover kinetic studies revealed that while POP5•RPP30 is solely responsible for enhancing the RPR’s rate of precursor tRNA cleavage (by 60-fold), RPP21•RPP29 contributes to increased substrate affinity (by 16-fold). Collectively, these studies provide new perspectives on the functioning and evolution of an ancient, catalytic ribonucleoprotein.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
108
|
Placido A, Sieber F, Gobert A, Gallerani R, Giegé P, Maréchal-Drouard L. Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res 2010; 38:7711-7. [PMID: 20660484 PMCID: PMC2995067 DOI: 10.1093/nar/gkq646] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare Ernesto Quagliariello, Universita' degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
109
|
Yusuf D, Marz M, Stadler PF, Hofacker IL. Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Genomics 2010; 11:432. [PMID: 20626900 PMCID: PMC2996960 DOI: 10.1186/1471-2164-11-432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Effective bioinformatics solutions are needed to tackle challenges posed by industrial-scale genome annotation. We present Bcheck, a wrapper tool which predicts RNase P RNA genes by combining the speed of pattern matching and sensitivity of covariance models. The core of Bcheck is a library of subfamily specific descriptor models and covariance models. RESULTS Scanning all microbial genomes in GenBank identifies RNase P RNA genes in 98% of 1024 microbial chromosomal sequences within just 4 hours on single CPU. Comparing to existing annotations found in 387 of the GenBank files, Bcheck predictions have more intact structure and are automatically classified by subfamily membership. For eukaryotic chromosomes Bcheck could identify the known RNase P RNA genes in 84 out of 85 metazoan genomes and 19 out of 21 fungi genomes. Bcheck predicted 37 novel eukaryotic RNase P RNA genes, 32 of which are from fungi. Gene duplication events are observed in at least 20 metazoan organisms. Scanning of meta-genomic data from the Global Ocean Sampling Expedition, comprising over 10 million sample sequences (18 Gigabases), predicted 2909 unique genes, 98% of which fall into ancestral bacteria A type of RNase P RNA and 66% of which have no close homolog to known prokaryotic RNase P RNA. CONCLUSIONS The combination of efficient filtering by means of a descriptor-based search and subsequent construction of a high-quality gene model by means of a covariance model provides an efficient method for the detection of RNase P RNA genes in large-scale sequencing data. Bcheck is implemented as webserver and can also be downloaded for local use from http://rna.tbi.univie.ac.at/bcheck.
Collapse
Affiliation(s)
- Dilmurat Yusuf
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria
| | | | | | | |
Collapse
|
110
|
Li D, Meyer MH, Willkomm DK, Keusgen M, Hartmann RK. Analysis of bacterial RNase P RNA and protein interaction by a magnetic biosensor technique. Biochimie 2010; 92:772-8. [DOI: 10.1016/j.biochi.2010.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
|
111
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Gobert A, Gutmann B, Taschner A, Gössringer M, Holzmann J, Hartmann RK, Rossmanith W, Giegé P. A single Arabidopsis organellar protein has RNase P activity. Nat Struct Mol Biol 2010; 17:740-4. [PMID: 20473316 DOI: 10.1038/nsmb.1812] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 03/19/2010] [Indexed: 12/18/2022]
Abstract
The ubiquitous endonuclease RNase P is responsible for the 5' maturation of tRNA precursors. Until the discovery of human mitochondrial RNase P, these enzymes had typically been found to be ribonucleoproteins, the catalytic activity of which is associated with the RNA component. Here we show that, in Arabidopsis thaliana mitochondria and plastids, a single protein called 'proteinaceous RNase P' (PRORP1) can perform the endonucleolytic maturation of tRNA precursors that defines RNase P activity. In addition, PRORP1 is able to cleave tRNA-like structures involved in the maturation of plant mitochondrial mRNAs. Finally, we show that Arabidopsis PRORP1 can replace the bacterial ribonucleoprotein RNase P in Escherichia coli cells. PRORP2 and PRORP3, two paralogs of PRORP1, are both localized in the nucleus.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Fernández N, Martínez-Salas E. Tailoring the switch from IRES-dependent to 5'-end-dependent translation with the RNase P ribozyme. RNA (NEW YORK, N.Y.) 2010; 16:852-862. [PMID: 20194518 PMCID: PMC2844631 DOI: 10.1261/rna.1973710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Translation initiation driven by internal ribosome entry site (IRES) elements is dependent on the structural organization of the IRES region. We have previously shown that a structural motif within the foot-and-mouth-disease virus IRES is recognized in vitro as substrate for the Synechocystis sp. RNase P ribozyme. Here we show that this structure-dependent endonuclease recognizes the IRES element in cultured cells, leading to inhibition of translation. Inhibition of IRES activity was dependent on the expression of the active ribozyme RNA subunit. Moreover, expression of the antisense sequence of the ribozyme did not inhibit IRES activity, demonstrating that stable RNA structures located upstream of the IRES element do not interfere with internal initiation. RNAs carrying defective IRES mutants that were substrates of the ribozyme in vivo revealed an increased translation of the reporter in response to the expression of the active ribozyme. In support of RNA cleavage, subsequent analysis of the translation initiation manner indicated a switch from IRES-dependent to 5'-end-dependent translation of RNase P target RNAs. We conclude that the IRES element is inactivated by expression in cis of RNase P in the cytoplasm of cultured cells, providing a promising antiviral tool to combat picornavirus infections. Furthermore, our results reinforce the essential role of the structural motif that serves as RNase P recognition motif for IRES activity.
Collapse
Affiliation(s)
- Noemi Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | |
Collapse
|
114
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
115
|
Engineering cis-telomerase RNAs that add telomeric repeats to themselves. Proc Natl Acad Sci U S A 2010; 107:4914-8. [PMID: 20194781 DOI: 10.1073/pnas.0909366107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex consisting of a protein reverse transcriptase (TERT) and an RNA subunit (TR). Telomerase normally adds telomeric DNA repeats to chromosome ends. Here, we engineer human and Tetrahymena cis-telomerase RNAs, each having a DNA primer covalently linked to its 3' end. We find that cis-telomerase synthesizes DNA with increased repeat addition processivity (RAP) but does not completely rescue the RAP defect of the L14A mutant of Tetrahymena TERT. This supports the conclusion that L14 has a function beyond binding the DNA primer and preventing dissociation during multiple rounds of repeat addition. By comparing cis-telomerases with various linker lengths, we find that a 5 nt linker gives near-optimal activity, indicating that the distance between the 3' end of the telomerase RNA pseudoknot region and the 5' end of the DNA primer is approximately 33 A. Even a 2 nt linker (approximately 14 A) gives some activity, indicating a high degree of conformational flexibility in this ribonucleoprotein complex. More generally, the cis system will allow structure-function relationships of each RNA molecule to be read directly through the reaction that it performs on itself.
Collapse
|
116
|
Tourasse NJ, Stabell FB, Kolstø AB. Structural and functional evolution of group II intron ribozymes: insights from unusual elements carrying a 3' extension. N Biotechnol 2010; 27:204-11. [PMID: 20219707 DOI: 10.1016/j.nbt.2010.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II introns are large RNA elements that interrupt genes. They are self-splicing ribozymes that catalyze their own excision and mobile retroelements that can invade new genomic DNA sites. While group II introns typically consist of six structural domains, a number of elements containing an unusual 3' extension of 53-56 nucleotides have recently been identified. Bioinformatic and functional analyses of these introns have revealed that they belong to two evolutionary subgroups and that the 3' extension has a differential effect on the splicing reactions for introns of the two subgroups, a functional difference that may be related to structural differences between the introns. In addition, there is phylogenetic evidence that some introns are mobile with their extension. The unusual introns have provided dramatic examples of the structural and functional evolution of group II ribozymes that have been able to accommodate an extra segment into their compact structure while maintaining functionality.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
117
|
Cuzic-Feltens S, Weber MHW, Hartmann RK. Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester. Nucleic Acids Res 2010; 37:7638-53. [PMID: 19793868 PMCID: PMC2794163 DOI: 10.1093/nar/gkp775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed cleavage of precursor tRNAs with an LNA, 2'-OCH(3), 2'-H or 2'-F modification at the canonical (c(0)) site by bacterial RNase P. We infer that the major function of the 2'-substituent at nt -1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c(0) site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3' -endo ribose and without the H-bond donor function of the 2'-substituent. LNA and 2'-OCH(3) suppressed processing at the major aberrant m(-)(1) site; instead, the m(+1) (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c(0) and m(+1) sites had different pH profiles, with a higher Mg(2+) requirement for c(0) versus m(+1) cleavage. The strong catalytic defect for LNA and 2'-OCH(3) supports a model where the extra methylene (LNA) or methyl group (2'-OCH(3)) causes a steric interference with a nearby bound catalytic Mg(2+) during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.
Collapse
Affiliation(s)
| | | | - Roland K. Hartmann
- *To whom correspondence should be addressed. Tel: +49 6421 2825827; Fax +49 6421 2825854;
| |
Collapse
|
118
|
McClain WH, Lai LB, Gopalan V. Trials, travails and triumphs: an account of RNA catalysis in RNase P. J Mol Biol 2010; 397:627-46. [PMID: 20100492 DOI: 10.1016/j.jmb.2010.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
Abstract
Last December marked the 20th anniversary of the Nobel Prize in Chemistry to Sidney Altman and Thomas Cech for their discovery of RNA catalysts in bacterial ribonuclease P (an enzyme catalyzing 5' maturation of tRNAs) and a self-splicing rRNA of Tetrahymena, respectively. Coinciding with the publication of a treatise on RNase P, this review provides a historical narrative, a brief report on our current knowledge, and a discussion of some research prospects on RNase P.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, College of Agriculture & Life Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
119
|
Vercruysse M, Fauvart M, Cloots L, Engelen K, Thijs IM, Marchal K, Michiels J. Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array. BMC Genomics 2010; 11:53. [PMID: 20089193 PMCID: PMC2881028 DOI: 10.1186/1471-2164-11-53] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 01/20/2010] [Indexed: 01/06/2023] Open
Abstract
Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium Rhizobium etli. Results Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Conclusions Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
120
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
121
|
Abstract
The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
122
|
Abstract
As RNAs fold to functional structures, they traverse complex energy landscapes that include many partially folded and misfolded intermediates. For structured RNAs that possess catalytic activity, this activity can provide a powerful means of monitoring folding that is complementary to biophysical approaches. RNA catalysis can be used to track accumulation of the native RNA specifically and quantitatively, readily distinguishing the native structure from intermediates that resemble it and may not be differentiated by other approaches. Here, we outline how to design and interpret experiments using catalytic activity to monitor RNA folding, and we summarize adaptations of the method that have been used to probe aspects of folding well beyond determination of the folding rates.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texasat Austin, Austin, Texas, USA
| | | | | |
Collapse
|
123
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
124
|
Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. J Mol Biol 2009; 393:1043-55. [PMID: 19733182 DOI: 10.1016/j.jmb.2009.08.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/28/2009] [Accepted: 08/30/2009] [Indexed: 01/05/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg(2+)-dependent 5' maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
125
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
126
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
127
|
Talini G, Gallori E, Maurel MC. Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 2009; 160:457-65. [PMID: 19539027 DOI: 10.1016/j.resmic.2009.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
We review natural and in vitro selected ribozymes, for which combined studies could provide us with both insight into the functions performed by ancient RNA molecules in a primitive RNA world and a hypothesis about evolutionary steps that led to the contemporary world.
Collapse
Affiliation(s)
- Giulia Talini
- Department of Astronomy and Space Science, University of Florence, Largo E. Fermi 2, 50125 Florence, Italy.
| | | | | |
Collapse
|
128
|
tRNA recognition, processing, and disease: hypotheses around an unorthodox type of RNase P in human mitochondria. Mitochondrion 2009; 9:284-8. [PMID: 19376274 DOI: 10.1016/j.mito.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 11/24/2022]
Abstract
RNase P is the endonuclease responsible for the maturation of the 5' ends of tRNAs. A catalytic RNA component was long considered the premier attribute of the enzyme family. Ignoring this heritage, human mitochondria make their RNase P of three proteins only. While one of them appears to be the metallonuclease actually responsible for phosphodiester hydrolysis, the other two have been recruited from unrelated biochemical pathways and may be critical for substrate recognition. One of them is moreover identical to a previously identified amyloid-beta-binding protein, whereby it could link tRNA processing to mitochondrial dysfunction in Alzheimer's disease.
Collapse
|
129
|
The structure and function of catalytic RNAs. ACTA ACUST UNITED AC 2009; 52:232-44. [DOI: 10.1007/s11427-009-0038-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/25/2008] [Indexed: 11/26/2022]
|
130
|
Abstract
Comparison of phylogenetically diverse ribonucleoprotein (RNP) enzymes and information about their biochemistry have stimulated hypotheses about their evolution. Instead of the canonical view, in which catalysis proceeds from ribozyme to RNP enzyme to protein enzyme, RNP enzymes and proteins are seen to share contemporary catalysis. Furthermore, the RNA components of RNP enzymes show no evidence of fading out but instead, in some cases, have elaborated new functions.
Collapse
|
131
|
Kazantsev AV, Krivenko AA, Pace NR. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA (NEW YORK, N.Y.) 2009; 15:266-76. [PMID: 19095619 PMCID: PMC2648716 DOI: 10.1261/rna.1331809] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that contains a universally conserved, catalytically active RNA component. RNase P RNA requires divalent metal ions for folding, substrate binding, and catalysis. Despite recent advances in understanding the structure of RNase P RNA, no comprehensive analysis of metal-binding sites has been reported, in part due to the poor crystallization properties of this large RNA. We have developed an abbreviated yet still catalytic construct, Bst P7Delta RNA, which contains the catalytic domain of the bacterial RNase P RNA and has improved crystallization properties. We use this mutant RNA as well as the native RNA to map metal-binding sites in the catalytic core of the bacterial RNase P RNA, by anomalous scattering in diffraction analysis. The results provide insight into the interplay between RNA structure and focalization of metal ions, and a structural basis for some previous biochemical observations with RNase P. We use electrostatic calculations to extract the potential functional significance of these metal-binding sites with respect to binding Mg(2+). The results suggest that with at least one important exception of specific binding, these sites mainly map areas of diffuse association of magnesium ions.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | |
Collapse
|
132
|
Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:393-422. [PMID: 19215778 DOI: 10.1016/s0079-6603(08)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast, trypanosome, and animal.
Collapse
Affiliation(s)
- Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
133
|
Hartmann RK, Gössringer M, Späth B, Fischer S, Marchfelder A. The making of tRNAs and more - RNase P and tRNase Z. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:319-68. [PMID: 19215776 DOI: 10.1016/s0079-6603(08)00808-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transfer-RNA (tRNA) molecules are essential players in protein biosynthesis. They are transcribed as precursors, which have to be extensively processed at both ends to become functional adaptors in protein synthesis. Two endonucleases that directly interact with the tRNA moiety, RNase P and tRNase Z, remove extraneous nucleotides on the molecule's 5'- and 3'-side, respectively. The ribonucleoprotein enzyme RNase P was identified almost 40 years ago and is considered a vestige from the "RNA world". Here, we present the state of affairs on prokaryotic RNase P, with a focus on recent findings on its role in RNA metabolism. tRNase Z was only identified 6 years ago, and we do not yet have a comprehensive understanding of its function. The current knowledge on prokaryotic tRNase Z in tRNA 3'-processing is reviewed here. A second, tRNase Z-independent pathway of tRNA 3'-end maturation involving 3'-exonucleases will also be discussed.
Collapse
Affiliation(s)
- Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
134
|
Li D, Willkomm DK, Hartmann RK. Minor changes largely restore catalytic activity of archaeal RNase P RNA from Methanothermobacter thermoautotrophicus. Nucleic Acids Res 2008; 37:231-42. [PMID: 19036794 PMCID: PMC2615603 DOI: 10.1093/nar/gkn915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The increased protein proportion of archaeal and eukaryal ribonuclease (RNase) P holoenzymes parallels a vast decrease in the catalytic activity of their RNA subunits (P RNAs) alone. We show that a few mutations toward the bacterial P RNA consensus substantially activate the catalytic (C-) domain of archaeal P RNA from Methanothermobacter, in the absence and presence of the bacterial RNase P protein. Large increases in ribozyme activity required the cooperative effect of at least two structural alterations. The P1 helix of P RNA from Methanothermobacter was found to be extended, which increases ribozyme activity (ca 200-fold) and stabilizes the tertiary structure. Activity increases of mutated archaeal C-domain variants were more pronounced in the context of chimeric P RNAs carrying the bacterial specificity (S-) domain of Escherichia coli instead of the archaeal S-domain. This could be explained by the loss of the archaeal S-domain's capacity to support tight and productive substrate binding in the absence of protein cofactors. Our results demonstrate that the catalytic capacity of archaeal P RNAs is close to that of their bacterial counterparts, but is masked by minor changes in the C-domain and, particularly, by poor function of the archaeal S-domain in the absence of archaeal protein cofactors.
Collapse
Affiliation(s)
- Dan Li
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | |
Collapse
|
135
|
Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008; 135:462-74. [PMID: 18984158 DOI: 10.1016/j.cell.2008.09.013] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
tRNAs are synthesized as immature precursors, and on their way to functional maturity, extra nucleotides at their 5' ends are removed by an endonuclease called RNase P. All RNase P enzymes characterized so far are composed of an RNA plus one or more proteins, and tRNA 5' end maturation is considered a universal ribozyme-catalyzed process. Using a combinatorial purification/proteomics approach, we identified the components of human mitochondrial RNase P and reconstituted the enzymatic activity from three recombinant proteins. We thereby demonstrate that human mitochondrial RNase P is a protein enzyme that does not require a trans-acting RNA component for catalysis. Moreover, the mitochondrial enzyme turns out to be an unexpected type of patchwork enzyme, composed of a tRNA methyltransferase, a short-chain dehydrogenase/reductase-family member, and a protein of hitherto unknown functional and evolutionary origin, possibly representing the enzyme's metallonuclease moiety. Apparently, animal mitochondria lost the seemingly ubiquitous RNA world remnant after reinventing RNase P from preexisting components.
Collapse
Affiliation(s)
- Johann Holzmann
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
136
|
Amero CD, Boomershine WP, Xu Y, Foster M. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner. Biochemistry 2008; 47:11704-10. [PMID: 18922021 PMCID: PMC2650222 DOI: 10.1021/bi8015982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5'-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentrations, four protein subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30, and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha-helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step toward understanding structure-function relationships of the archaeal RNase P holoenzyme.
Collapse
Affiliation(s)
- Carlos D Amero
- Biophysics Program, Ohio State University, Columbus OH 43210
| | | | - Yiren Xu
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| | - Mark Foster
- Biophysics Program, Ohio State University, Columbus OH 43210
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| |
Collapse
|
137
|
Xie W, Ted Brown W, Denman RB. Translational regulation by non-protein-coding RNAs: different targets, common themes. Biochem Biophys Res Commun 2008; 373:462-6. [PMID: 18590701 DOI: 10.1016/j.bbrc.2008.06.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/29/2022]
Abstract
There are several classes of small non-protein-coding RNA (npcRNA) that play important roles in cellular metabolism including mRNA decoding, RNA processing and mRNA stability. Indeed, altered expression of some of these npcRNAs has been associated with cancer, neurodegenerative diseases such as Alzheimer's disease, as well as various types of mental retardation and psychiatric disorders. The basis of this correlation is currently not understood. However, recent studies have begun to shed light on one of the mechanism(s) by which these RNAs exert their effects, namely, translational control. These data provide hope that rational treatments for these varied disorders may be in sight. Here, we review this new body of work.
Collapse
Affiliation(s)
- Wen Xie
- Department of Molecular Biology, Laboratory of Biochemical Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
138
|
Abstract
The universality of ribonuclease P (RNase P), the ribonucleoprotein essential for transfer RNA (tRNA) 5' maturation, is challenged in the archaeon Nanoarchaeum equitans. Neither extensive computational analysis of the genome nor biochemical tests in cell extracts revealed the existence of this enzyme. Here we show that the conserved placement of its tRNA gene promoters allows the synthesis of leaderless tRNAs, whose presence was verified by the observation of 5' triphosphorylated mature tRNA species. Initiation of tRNA gene transcription requires a purine, which coincides with the finding that tRNAs with a cytosine in position 1 display unusually extended 5' termini with an extra purine residue. These tRNAs were shown to be substrates for their cognate aminoacyl-tRNA synthetases. These findings demonstrate how nature can cope with the loss of the universal and supposedly ancient RNase P through genomic rearrangement at tRNA genes under the pressure of genome condensation.
Collapse
|
139
|
Pulukkunat DK, Gopalan V. Studies on Methanocaldococcus jannaschii RNase P reveal insights into the roles of RNA and protein cofactors in RNase P catalysis. Nucleic Acids Res 2008; 36:4172-80. [PMID: 18558617 PMCID: PMC2475606 DOI: 10.1093/nar/gkn360] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribonuclease P (RNase P), a ribonucleoprotein (RNP) complex required for tRNA maturation, comprises one essential RNA (RPR) and protein subunits (RPPs) numbering one in bacteria, and at least four in archaea and nine in eukarya. While the bacterial RPR is catalytically active in vitro, only select euryarchaeal and eukaryal RPRs are weakly active despite secondary structure similarity and conservation of nucleotide identity in their putative catalytic core. Such a decreased archaeal/eukaryal RPR function might imply that their cognate RPPs provide the functional groups that make up the active site. However, substrate-binding defects might mask the ability of some of these RPRs, such as that from the archaeon Methanocaldococcus jannaschii (Mja), to catalyze precursor tRNA (ptRNA) processing. To test this hypothesis, we constructed a ptRNA-Mja RPR conjugate and found that indeed it self-cleaves efficiently (k(obs), 0.15 min(-1) at pH 5.5 and 55 degrees C). Moreover, one pair of Mja RPPs (POP5-RPP30) enhanced k(obs) for the RPR-catalyzed self-processing by approximately 100-fold while the other pair (RPP21-RPP29) had no effect; both binary RPP complexes significantly reduced the monovalent and divalent ionic requirement. Our results suggest a common RNA-mediated catalytic mechanism in all RNase P and help uncover parallels in RNase P catalysis hidden by plurality in its subunit make-up.
Collapse
Affiliation(s)
- Dileep K Pulukkunat
- Ohio State Biochemistry Program and Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
140
|
Meyer IM. Predicting novel RNA-RNA interactions. Curr Opin Struct Biol 2008; 18:387-93. [PMID: 18485695 DOI: 10.1016/j.sbi.2008.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022]
Abstract
The purpose of this article is to give a brief, yet concise overview of the current computational methods for predicting novel RNA-RNA interactions, that is interactions whose characteristic features we do not yet know. We start by briefly reviewing experimentally confirmed examples of RNA-RNA interactions before introducing computational methods for predicting RNA-RNA interactions. We will focus primarily on the interactions between different RNA molecules, that is trans RNA-RNA interactions, and will only discuss methods for predicting RNA structure, that is cis-only RNA-RNA interactions, where this helps to gain a better understanding. We conclude by discussing the merits of the different approaches and provide an outlook on probably and desirable future developments in the field.
Collapse
Affiliation(s)
- Irmtraud M Meyer
- UBC Bioinformatics Centre and Department of Medical Genetics, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
141
|
Martínez-Salas E, Pacheco A, Serrano P, Fernandez N. New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol 2008; 89:611-626. [PMID: 18272751 DOI: 10.1099/vir.0.83426-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family Picornaviridae initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5' UTR. IRES elements consist of cis-acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA-RNA contacts between the 5' and 3' ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Almudena Pacheco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Paula Serrano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Noemi Fernandez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
142
|
The impact of RNA structure on picornavirus IRES activity. Trends Microbiol 2008; 16:230-7. [PMID: 18420413 PMCID: PMC7172834 DOI: 10.1016/j.tim.2008.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/16/2008] [Accepted: 01/28/2008] [Indexed: 01/16/2023]
Abstract
Internal ribosome entry site (IRES) elements consist of cis-acting regions that recruit the translation machinery to an internal position in the mRNA. The biological relevance of RNA structure-mediated mechanisms involved in internal ribosome recruitment is now emerging from the structural and functional analysis of viral IRES elements. However, because IRES elements found in genetically distant mRNAs seem to be organized in different RNA structures, the definition of the structural requirements for IRES activity is challenging and demands multidisciplinary approaches. This review discusses the latest reports that establish a relationship between RNA structure and IRES function in picornavirus genomes, the first RNAs described to contain these specialized regulatory elements.
Collapse
|
143
|
Kawamoto SA, Sudhahar CG, Hatfield CL, Sun J, Behrman EJ, Gopalan V. Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucleic Acids Res 2008; 36:697-704. [PMID: 18084035 PMCID: PMC2241863 DOI: 10.1093/nar/gkm1088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P (RNase P) is a Mg2+-dependent endoribonuclease responsible for the 5'-maturation of transfer RNAs. It is a ribonucleoprotein complex containing an essential RNA and a varying number of protein subunits depending on the source: at least one, four and nine in Bacteria, Archaea and Eukarya, respectively. Since bacterial RNase P is required for viability and differs in structure/subunit composition from its eukaryal counterpart, it is a potential antibacterial target. To elucidate the basis for our previous finding that the hexa-arginine derivative of neomycin B is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, we synthesized hexa-guanidinium and -lysyl conjugates of neomycin B and compared their inhibitory potential. Our studies indicate that side-chain length, flexibility and composition cumulatively account for the inhibitory potency of the aminoglycoside-arginine conjugates (AACs). We also demonstrate that AACs interfere with RNase P function by displacing Mg2+ ions. Moreover, our finding that an AAC can discriminate between a bacterial and archaeal (an experimental surrogate for eukaryal) RNase P holoenzyme lends promise to the design of aminoglycoside conjugates as selective inhibitors of bacterial RNase P, especially once the structural differences in RNase P from the three domains of life have been established.
Collapse
Affiliation(s)
| | | | | | | | | | - Venkat Gopalan
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
144
|
RNA processing in Aquifex aeolicus involves RNase E/G and an RNase P-like activity. Biochem Biophys Res Commun 2008; 366:457-63. [DOI: 10.1016/j.bbrc.2007.11.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022]
|
145
|
Abstract
RNA folds to a myriad of three-dimensional structures and performs an equally diverse set of functions. The ability of RNA to fold and function in vivo is all the more remarkable because, in vitro, RNA has been shown to have a strong propensity to adopt misfolded, non-functional conformations. A principal factor underlying the dominance of RNA misfolding is that local RNA structure can be quite stable even in the absence of enforcing global tertiary structure. This property allows non-native structure to persist, and it also allows native structure to form and stabilize non-native contacts or non-native topology. In recent years it has become clear that one of the central reasons for the apparent disconnect between the capabilities of RNA in vivo and its in vitro folding properties is the presence of RNA chaperones, which facilitate conformational transitions of RNA and therefore mitigate the deleterious effects of RNA misfolding. Over the past two decades, it has been demonstrated that several classes of non-specific RNA binding proteins possess profound RNA chaperone activity in vitro and when overexpressed in vivo, and at least some of these proteins appear to function as chaperones in vivo. More recently, it has been shown that certain DExD/H-box proteins function as general chaperones to facilitate folding of group I and group II introns. These proteins are RNA-dependent ATPases and have RNA helicase activity, and are proposed to function by using energy from ATP binding and hydrolysis to disrupt RNA structure and/or to displace proteins from RNA-protein complexes. This review outlines experimental studies that have led to our current understanding of the range of misfolded RNA structures, the physical origins of RNA misfolding, and the functions and mechanisms of putative RNA chaperone proteins.
Collapse
Affiliation(s)
- Rick Russell
- Department of Chemistry and Biochemistry, The Institute For Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
146
|
Homann M. Editing Reactions from the Perspective of RNA Structure. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
147
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
148
|
Affiliation(s)
- Claire Torchet
- Institut Jacques-Monod, Biochimie de l'Evolution et Adaptabilité Moléculaire, Université Paris VI, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
149
|
Sun L, Harris ME. Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA (NEW YORK, N.Y.) 2007; 13:1505-15. [PMID: 17652407 PMCID: PMC1950769 DOI: 10.1261/rna.571007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.
Collapse
Affiliation(s)
- Lei Sun
- Center for RNA Molecular Biology, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
150
|
Abstract
Major progress in the study of RNase P has resulted from crystallography of bacterial catalytic subunits and the discovery of catalytic activity in eukaryotes. Several new substrates have also been identified, primarily in bacteria but also in yeast. Our current world should be called the "RNA-protein world" rather than the "protein world".
Collapse
Affiliation(s)
- Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, CT 06511, USA.
| |
Collapse
|