101
|
Kim JH, Block DE, Shoemaker SP, Mills DA. Atypical ethanol production by carbon catabolite derepressed lactobacilli. BIORESOURCE TECHNOLOGY 2010; 101:8790-8797. [PMID: 20663662 DOI: 10.1016/j.biortech.2010.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
102
|
Improving biocatalyst performance by integrating statistical methods into protein engineering. Appl Environ Microbiol 2010; 76:6397-403. [PMID: 20709845 DOI: 10.1128/aem.00878-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed evolution and rational design were used to generate active variants of toluene-4-monooxygenase (T4MO) on 2-phenylethanol (PEA), with the aim of producing hydroxytyrosol, a potent antioxidant. Due to the complexity of the enzymatic system-four proteins encoded by six genes-mutagenesis is labor-intensive and time-consuming. Therefore, the statistical model of Nov and Wein (J. Comput. Biol. 12:247-282) was used to reduce the number of variants produced and evaluated in a lab. From an initial data set of 24 variants, with mutations at nine positions, seven double or triple mutants were identified through statistical analysis. The average activity of these mutants was 4.6-fold higher than the average activity of the initial data set. In an attempt to further improve the enzyme activity to obtain PEA hydroxylation, a second round of statistical analysis was performed. Nine variants were considered, with 3, 4, and 5 point mutations. The average activity of the variants obtained in the second statistical round was 1.6-fold higher than in the first round and 7.3-fold higher than that of the initial data set. The best variant discovered, TmoA I100A E214G D285Q, exhibited an initial oxidation rate of 4.4 ± 0.3 nmol/min/mg protein, which is 190-fold higher than the rate obtained by the wild type. This rate was also 2.6-fold higher than the activity of the wild type on the natural substrate toluene. By considering only 16 preselected mutants (out of ∼13,000 possible combinations), a highly active variant was discovered with minimum time and effort.
Collapse
|
103
|
John RP, Anisha GS, Pandey A, Nampoothiri KM. REVIEW: Genome shuffling: A new trend in improved bacterial production of lactic acid. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1089/ind.2010.6.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rojan P. John
- Institut National de la Recherche Scientifique-Eau Terre Environnement, 490, rue de la Couronne, Québec, Canada G1K 9A9
| | - GS Anisha
- Department of Zoology, Government College, Chittur, Palakkad, Kerala, India
| | - Ashok Pandey
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, Kerala, India
| | - K. Madhavan Nampoothiri
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
104
|
|
105
|
Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M. OptFlux: an open-source software platform for in silico metabolic engineering. BMC SYSTEMS BIOLOGY 2010; 4:45. [PMID: 20403172 PMCID: PMC2864236 DOI: 10.1186/1752-0509-4-45] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/19/2010] [Indexed: 11/30/2022]
Abstract
Background Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. Conclusions The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.
Collapse
Affiliation(s)
- Isabel Rocha
- IBB-Institute for Biotechnology and Bioengineering/Centre of Biological Engineering, University of Minho, 4710-057 Campus de Gualtar, Braga, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Tufvesson P, Fu W, Jensen JS, Woodley JM. Process considerations for the scale-up and implementation of biocatalysis. FOOD AND BIOPRODUCTS PROCESSING 2010. [DOI: 10.1016/j.fbp.2010.01.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
107
|
Abstract
The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology.
Collapse
Affiliation(s)
- José Manuel Otero
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | |
Collapse
|
108
|
Udit AK, Hollingsworth W, Choi K. Metal- and Metallocycle-Binding Sites Engineered into Polyvalent Virus-Like Scaffolds. Bioconjug Chem 2010; 21:399-404. [DOI: 10.1021/bc900399e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew K. Udit
- Department of Chemistry, Occidental College, 1600 Campus Road, Los Angeles, California 90041
| | - William Hollingsworth
- Department of Chemistry, Occidental College, 1600 Campus Road, Los Angeles, California 90041
| | - Kang Choi
- Department of Chemistry, Occidental College, 1600 Campus Road, Los Angeles, California 90041
| |
Collapse
|
109
|
Kim JH, Block DE, Shoemaker SP, Mills DA. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl Microbiol Biotechnol 2010; 86:1375-85. [PMID: 20084509 PMCID: PMC2854344 DOI: 10.1007/s00253-009-2407-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/09/2009] [Accepted: 12/12/2009] [Indexed: 11/24/2022]
Abstract
Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
110
|
Jach G, Soezer N, Schullehner K, Lalla B, Welters P, Mueller A. Phytomining of plant enzymes for biotechnological use of fats and oils. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
111
|
Svedendahl M, Jovanović B, Fransson L, Berglund P. Suppressed Native Hydrolytic Activity of a Lipase to Reveal Promiscuous Michael Addition Activity in Water. ChemCatChem 2009. [DOI: 10.1002/cctc.200900041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
112
|
How to overcome limitations in biotechnological processes - examples from hydroxynitrile lyase applications. Trends Biotechnol 2009; 27:599-607. [DOI: 10.1016/j.tibtech.2009.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
|
113
|
ORIGINAL RESEARCH: Biocatalytic production of fatty epoxides from rapeseed & tall oil derivatives: Process & environmental evaluation. Ind Biotechnol (New Rochelle N Y) 2009. [DOI: 10.1089/ind.2009.3.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
114
|
Shitu JO, Chartrain M, Woodley JM. Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802539046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
115
|
Celińska E, Grajek W. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv 2009; 27:715-725. [PMID: 19442714 DOI: 10.1016/j.biotechadv.2009.05.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 11/19/2022]
Abstract
Biotechnological production of 2,3-butanediol (hereafter referred to as 2,3-BD) from wastes and excessive biomass is a promising and attractive alternative for traditional chemical synthesis. In the face of scarcity of fossil fuel supplies the bio-based process is receiving a significant interest, since 2,3-BD may have multiple practical applications (e.g. production of synthetic rubber, plasticizers, fumigants, as an antifreeze agent, fuel additive, octane booster, and many others). Although the 2,3-BD pathway is well known, microorganisms able to ferment biomass to 2,3-BD have been isolated and described, and attempts of pilot scale production of this compound were made, still much has to be done in order to achieve desired profitability. This review summarizes hitherto gained knowledge and experience in biotechnological production of 2,3-BD, sources of biomass used, employed microorganisms both wild type and genetically improved strains, as well as operating conditions applied.
Collapse
Affiliation(s)
- E Celińska
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland.
| | - W Grajek
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
116
|
Romero-Garcia S, Hernández-Bustos C, Merino E, Gosset G, Martinez A. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb Cell Fact 2009; 8:23. [PMID: 19383131 PMCID: PMC2680810 DOI: 10.1186/1475-2859-8-23] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/21/2009] [Indexed: 11/15/2022] Open
Abstract
Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe) by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE) that exclusively encodes a L-lactate deshydrogenase. Conclusion This study shows that by taking advantage of the cellobiose utilization capability and osmotic stress high resistance of B. subtilis, a robust process for L-lactate production can be developed.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A,P, 510-3 Cuernavaca, Mor, 62250, México.
| | | | | | | | | |
Collapse
|
117
|
Urban RA, Bakshi BR. 1,3-Propanediol from Fossils versus Biomass: A Life Cycle Evaluation of Emissions and Ecological Resources. Ind Eng Chem Res 2009. [DOI: 10.1021/ie801612p] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert A. Urban
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210
| | - Bhavik R. Bakshi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
118
|
Wohlgemuth R. The locks and keys to industrial biotechnology. N Biotechnol 2009; 25:204-13. [PMID: 19429540 DOI: 10.1016/j.nbt.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/27/2022]
Abstract
The sustainable use of resources by Nature to synthesize the required products at the right place, when they are needed, continues to be the role model for total synthesis and production in general. The combination of molecular and engineering science and technology in the biotechnological approach needs no protecting groups at all and has therefore been established for numerous large-scale routes to both natural and synthetic products in industry. The use of biobased raw materials for chemical synthesis, and the economy of molecular transformations like atom economy and step economy are of growing importance. As safety, health and environmental issues are key drivers for process improvements in the chemical industry, the development of biocatalytic reactions or pathways replacing hazardous reagents is a major focus. The integration of the biocatalytic reaction and downstream processing with product isolation has led to a variety of in situ product recovery techniques and has found numerous successful applications. With the growing collection of biocatalytic reactions, the retrosynthetic thinking can be applied to biocatalysis as well. The introduction of biocatalytic reactions is uniquely suited to cost reductions and higher quality products, as well as to more sustainable processes. The transfer of Nature's simple and robust sensing and control principles as well as its reaction and separation organization into useful technical systems can be applied to different fermentations, biotransformations and downstream processes. Biocatalyst and pathway discovery and development is the key towards new synthetic transformations in industrial biotechnology.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Sigma-Aldrich, Research Specialities, Industriestrasse 25, 9470 Buchs, Switzerland.
| |
Collapse
|
119
|
Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 2008; 101:881-93. [PMID: 18781696 DOI: 10.1002/bit.22005] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Derivatives of Escherichia coli C were previously described for succinate production by combining the deletion of genes that disrupt fermentation pathways for alternative products (ldhA::FRT, adhE::FRT, ackA::FRT, focA-pflB::FRT, mgsA, poxB) with growth-based selection for increased ATP production. The resulting strain, KJ073, produced 1.2 mol of succinate per mol glucose in mineral salts medium with acetate, malate, and pyruvate as significant co-products. KJ073 has been further improved by removing residual recombinase sites (FRT sites) from the chromosomal regions of gene deletion to create a strain devoid of foreign DNA, strain KJ091(DeltaldhA DeltaadhE DeltaackA DeltafocA-pflB DeltamgsA DeltapoxB). KJ091 was further engineered for improvements in succinate production. Deletion of the threonine decarboxylase (tdcD; acetate kinase homologue) and 2-ketobutyrate formate-lyase (tdcE; pyruvate formate-lyase homologue) reduced the acetate level by 50% and increased succinate yield (1.3 mol mol(-1) glucose) by almost 10% as compared to KJ091 and KJ073. Deletion of two genes involved in oxaloacetate metabolism, aspartate aminotransferase (aspC) and the NAD(+)-linked malic enzyme (sfcA) (KJ122) significantly increased succinate yield (1.5 mol mol(-1) glucose), succinate titer (700 mM), and average volumetric productivity (0.9 g L(-1) h(-1)). Residual pyruvate and acetate were substantially reduced by further deletion of pta encoding phosphotransacetylase to produce KJ134 (DeltaldhA DeltaadhE DeltafocA-pflB DeltamgsA DeltapoxB DeltatdcDE DeltacitF DeltaaspC DeltasfcA Deltapta-ackA). Strains KJ122 and KJ134 produced near theoretical yields of succinate during simple, anaerobic, batch fermentations using mineral salts medium. Both may be useful as biocatalysts for the commercial production of succinate.
Collapse
Affiliation(s)
- Kaemwich Jantama
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | | | | | | | | | | |
Collapse
|
120
|
Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 2008; 75:931-6. [PMID: 19060171 DOI: 10.1128/aem.02186-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two solvent-tolerant Pseudomonas putida S12 strains, originally designed for phenol and p-coumarate production, were engineered for efficient production of p-hydroxystyrene from glucose. This was established by introduction of the genes pal and pdc encoding L-phenylalanine/L-tyrosine ammonia lyase and p-coumaric acid decarboxylase, respectively. These enzymes allow the conversion of the central metabolite L-tyrosine into p-hydroxystyrene, via p-coumarate. Degradation of the p-coumarate intermediate was prevented by inactivating the fcs gene encoding feruloyl-coenzyme A synthetase. The best-performing strain was selected and cultivated in the fed-batch mode, resulting in the formation of 4.5 mM p-hydroxystyrene at a yield of 6.7% (C-mol of p-hydroxystyrene per C-mol of glucose) and a maximum volumetric productivity of 0.4 mM h(-1). At this concentration, growth and production were completely halted due to the toxicity of p-hydroxystyrene. Product toxicity was overcome by the application of a second phase of 1-decanol to extract p-hydroxystyrene during fed-batch cultivation. This resulted in a twofold increase of the maximum volumetric productivity (0.75 mM h(-1)) and a final total p-hydroxystyrene concentration of 21 mM, which is a fourfold improvement compared to the single-phase fed-batch cultivation. The final concentration of p-hydroxystyrene in the water phase was 1.2 mM, while a concentration of 147 mM (17.6 g liter(-1)) was obtained in the 1-decanol phase. Thus, a P. putida S12 strain producing the low-value compound phenol was successfully altered for the production of the toxic value-added compound p-hydroxystyrene.
Collapse
|
121
|
Yu J, Chen LXL. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6961-6966. [PMID: 18853816 DOI: 10.1021/es7032235] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.
Collapse
Affiliation(s)
- Jian Yu
- Hawaii Natural Energy Institute, University of Hawaii, 1680 East-West Road, POSTI04, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
122
|
Tännler S, Zamboni N, Kiraly C, Aymerich S, Sauer U. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 2008; 10:216-26. [DOI: 10.1016/j.ymben.2008.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 04/22/2008] [Accepted: 06/02/2008] [Indexed: 11/27/2022]
|
123
|
Henderson RK, Jiménez-González C, Preston C, Constable DJ, Woodley JM. PEER REVIEW ORIGINAL RESEARCH: EHS & LCA assessment for 7-ACA synthesis A case study for comparing biocatalytic & chemical synthesis. Ind Biotechnol (New Rochelle N Y) 2008. [DOI: 10.1089/ind.2008.4.180] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Richard K. Henderson
- GlaxoSmithKline CEHS, Park Road, Ware, Hertfordshire SG12 0DP UK Tel. +44 1920 882968 Fax: +44 1920 884469 E-mail: , Corresponding author
| | | | | | | | - John M. Woodley
- Centre for BioProcess Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
124
|
Law H, Lewis D, McRobbie I, Woodley J. Model visualization for evaluation of biocatalytic processes. FOOD AND BIOPRODUCTS PROCESSING 2008. [DOI: 10.1016/j.fbp.2008.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
125
|
Woodley JM. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 2008; 26:321-7. [PMID: 18436317 DOI: 10.1016/j.tibtech.2008.03.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 12/01/2022]
Abstract
The pharmaceutical industry requires synthetic routes to be environmentally compatible as well as to fulfill the demands of process economics and product specification and to continually reduce development times. Biocatalysis has the potential to deliver 'greener' chemical syntheses, and in this review some of these opportunities are outlined and outstanding challenges presented. Future development will require research targeted towards increased commercial availability of key enzymes, as well as the improvement of enzyme stability and substrate repertoire, to fully realize the potential of biocatalysis for making pharmaceutical processes greener.
Collapse
Affiliation(s)
- John M Woodley
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
126
|
Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol 2008; 26:100-8. [DOI: 10.1016/j.tibtech.2007.11.006] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
|
127
|
Lütke-Eversloh T, Santos CNS, Stephanopoulos G. Perspectives of biotechnological production of l-tyrosine and its applications. Appl Microbiol Biotechnol 2007; 77:751-62. [DOI: 10.1007/s00253-007-1243-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/01/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
128
|
Shanks BH. Unleashing biocatalysis/chemical catalysis synergies for efficient biomass conversion. ACS Chem Biol 2007; 2:533-5. [PMID: 17708670 DOI: 10.1021/cb7001522] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of incorporating renewable carbon into the fuel and chemical enterprise will most likely be successful when combined systems of biocatalysts and chemical catalysts are exploited. Significant efforts in the biocatalytic release of sugars from biomass are being pursued for subsequent use in fermentation. Two recent papers demonstrate an alternative approach to converting these sugars to a liquid fuel by using chemical catalysts.
Collapse
Affiliation(s)
- Brent H Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
129
|
Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 2007; 25:417-24. [PMID: 17681626 DOI: 10.1016/j.tibtech.2007.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/24/2007] [Accepted: 07/20/2007] [Indexed: 11/23/2022]
Abstract
The isoprenoid superfamily of compounds holds great potential for delivering commercial therapeutics, neutraceuticals and fine chemicals. As such, it has attracted widespread attention and prompted research aimed at metabolic engineering of the pathway for isoprenoid overproduction. The carotenoids in particular, because of their convenient colorimetric screening properties, have facilitated the investigation of new tools for pathway optimization. Because all isoprenoids share common metabolic precursors, genetic platforms resulting from work with carotenoids can be applied to the biosynthesis of other valuable products. In this review we summarize the many tools and methods that have been developed for isoprenoid pathway engineering, and the potential of these technologies for producing other molecules of this family, especially terpenoids.
Collapse
|
130
|
Törnvall U, Hatti-Kaul R. Specialty chemicals from vegetable oils: achievements within the Greenchem research program. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/lite.200600027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
131
|
Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6:9. [PMID: 17359551 PMCID: PMC1851020 DOI: 10.1186/1475-2859-6-9] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.
Collapse
Affiliation(s)
- Pernilla Turner
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gashaw Mamo
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Eva Nordberg Karlsson
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|