101
|
Lv Y. Influence of Cognitive Neural Mechanism on Music Appreciation and Learning. Transl Neurosci 2019; 10:57-63. [PMID: 31098313 PMCID: PMC6487782 DOI: 10.1515/tnsci-2019-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
Based on the related research results of the relationship between cognitive neural mechanism and music in recent years. In this paper, we study the relationship between the cognitive neurons and music from the overlapping and separation of brain neuro-mechanism and the significance of functional relationships between the two. Through analysis, it can be seen that the cognitive neural mechanism has a certain influence on music appreciation and learning and the studies on brain-damaged patients show that the two may have separate and independent neural bases. Finally, we find the influence of sub-consciousness on decision making through the measurement of SCRs (skin conductance responses), and thus propose a decision model modified by subconscious and make an outlook for future research trends.
Collapse
Affiliation(s)
- Yang Lv
- School of Humanities, Xidian University, Xi'an 710126, China
| |
Collapse
|
102
|
Braun Janzen T, Al Shirawi MI, Rotzinger S, Kennedy SH, Bartel L. A Pilot Study Investigating the Effect of Music-Based Intervention on Depression and Anhedonia. Front Psychol 2019; 10:1038. [PMID: 31133945 PMCID: PMC6517496 DOI: 10.3389/fpsyg.2019.01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effect of a music-based intervention on depression and associated symptoms. Twenty individuals formally diagnosed with Major Depressive Disorder and in a current Major Depressive Episode (11 females and 8 males; aged between 26 and 65 years) undertook a 5 weeks intervention consisting of music listening combined with rhythmic sensory stimulation. Participants listened to a set of designed instrumental music tracks embedded with low-frequency sounds (30–70 Hz). The stimuli were delivered for 30 min, 5 times per week, using a portable consumer device with built-in stereo speakers and a low-frequency transducer, which allowed the low-frequency sounds embedded in the music to be experienced as a mild vibrotactile sensation around the lower back. Changes from baseline to post-intervention in measures of depression symptoms, sleep quality, quality of life, anhedonia, and music-reward processing were assessed with clinician-based assessments as well as self-reports and a monetary incentive behavioral task. The study results indicated that there were significant changes from baseline in measures of depression and associated symptoms, including sleep quality, quality of life, and anhedonia. However, individual differences in treatment response need to be considered. These findings corroborate previous evidence that music-based intervention, when added to standard care, is a promising adjunctive treatment for Major Depressive Disorder, and open new avenues to investigate the effect of music-based therapy to ameliorate anhedonia-specific dysfunction in major depressive disorder and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | | | - Susan Rotzinger
- Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada
| | - Lee Bartel
- Faculty of Music, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
103
|
Daikoku T. Depth and the Uncertainty of Statistical Knowledge on Musical Creativity Fluctuate Over a Composer's Lifetime. Front Comput Neurosci 2019; 13:27. [PMID: 31114493 PMCID: PMC6503096 DOI: 10.3389/fncom.2019.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
Brain models music as a hierarchy of dynamical systems that encode probability distributions and complexity (i.e., entropy and uncertainty). Through musical experience over lifetime, a human is intrinsically motivated in optimizing the internalized probabilistic model for efficient information processing and the uncertainty resolution, which has been regarded as rewords. Human's behavior, however, appears to be not necessarily directing to efficiency but sometimes act inefficiently in order to explore a maximum rewards of uncertainty resolution. Previous studies suggest that the drive for novelty seeking behavior (high uncertain phenomenon) reflects human's curiosity, and that the curiosity rewards encourage humans to create and learn new regularities. That is to say, although brain generally minimizes uncertainty of music structure, we sometimes derive pleasure from music with uncertain structure due to curiosity for novelty seeking behavior by which we anticipate the resolution of uncertainty. Few studies, however, investigated how curiosity for uncertain and novelty seeking behavior modulates musical creativity. The present study investigated how the probabilistic model and the uncertainty in music fluctuate over a composer's lifetime (all of the 32 piano sonatas by Ludwig van Beethoven). In the late periods of the composer's lifetime, the transitional probabilities (TPs) of sequential patterns that ubiquitously appear in all of his music (familiar phrase) were decreased, whereas the uncertainties of the whole structure were increased. Furthermore, these findings were prominent in higher-, rather than lower-, order models of TP distribution. This may suggest that the higher-order probabilistic model is susceptible to experience and psychological phenomena over the composer's lifetime. The present study first suggested the fluctuation of uncertainty of musical structure over a composer's lifetime. It is suggested that human's curiosity for uncertain and novelty seeking behavior may modulate optimization and creativity in human's brain.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
104
|
Abstract
Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.
Collapse
|
105
|
Abstract
In the Distancing-Embracing model, an explanation is proposed for the apparent paradox that is the enjoyment of negative emotional states in art reception. Here, we argue for the advantages of grounding the psychological dynamics described in the model in established and empirically testable frameworks of brain functioning by thinking of art reception as an embodied experience guided by predictive coding.
Collapse
|
106
|
Dhakal K, Norgaard M, Adhikari BM, Yun KS, Dhamala M. Higher Node Activity with Less Functional Connectivity During Musical Improvisation. Brain Connect 2019; 9:296-309. [DOI: 10.1089/brain.2017.0566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kiran Dhakal
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
| | | | - Bhim M. Adhikari
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
- Department of Psychiatry, Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristy S. Yun
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
- Center for Nano-Optics, Georgia State University, Atlanta, Georgia
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
107
|
Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proc Natl Acad Sci U S A 2019; 116:3310-3315. [PMID: 30728301 DOI: 10.1073/pnas.1809855116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enjoying music reliably ranks among life's greatest pleasures. Like many hedonic experiences, it engages several reward-related brain areas, with activity in the nucleus accumbens (NAc) most consistently reflecting the listener's subjective response. Converging evidence suggests that this activity arises from musical "reward prediction errors" (RPEs) that signal the difference between expected and perceived musical events, but this hypothesis has not been directly tested. In the present fMRI experiment, we assessed whether music could elicit formally modeled RPEs in the NAc by applying a well-established decision-making protocol designed and validated for studying RPEs. In the scanner, participants chose between arbitrary cues that probabilistically led to dissonant or consonant music, and learned to make choices associated with the consonance, which they preferred. We modeled regressors of trial-by-trial RPEs, finding that NAc activity tracked musically elicited RPEs, to an extent that explained variance in the individual learning rates. These results demonstrate that music can act as a reward, driving learning and eliciting RPEs in the NAc, a hub of reward- and music enjoyment-related activity.
Collapse
|
108
|
Mencke I, Omigie D, Wald-Fuhrmann M, Brattico E. Atonal Music: Can Uncertainty Lead to Pleasure? Front Neurosci 2019; 12:979. [PMID: 30670941 PMCID: PMC6331456 DOI: 10.3389/fnins.2018.00979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/07/2018] [Indexed: 01/25/2023] Open
Abstract
In recent years, the field of neuroaesthetics has gained considerable attention with music being a favored object of study. The majority of studies concerning music have, however, focused on the experience of Western tonal music (TM), which is characterized by tonal hierarchical organization, a high degree of consonance, and a tendency to provide the listener with a tonic as a reference point during the listening experience. We argue that a narrow focus on Western TM may have led to a one-sided view regarding the qualities of the aesthetic experience of music since Western art music from the 20th and 21st century like atonal music (AM) – while lacking a tonal hierarchical structure, and while being highly dissonant and hard to predict – is nevertheless enjoyed by a group of avid listeners. We propose a research focus that investigates, in particular, the experience of AM as a novel and compelling way with which to enhance our understanding of both the aesthetic appreciation of music and the role of predictive models in the context of musical pleasure. We use music theoretical analysis and music information retrieval methods to demonstrate how AM presents the listener with a highly uncertain auditory environment. Specifically, an analysis of a corpus of 100 musical segments is used to illustrate how tonal classical music and AM differ quantitatively in terms of both key and pulse clarity values. We then examine person related, extrinsic and intrinsic factors, that point to potential mechanisms underlying the appreciation and pleasure derived from AM. We argue that personality traits like “openness to experience,” the framing of AM as art, and the mere exposure effect are key components of such mechanisms. We further argue that neural correlates of uncertainty estimation could represent a central mechanism for engaging with AM and that such contexts engender a comparatively weak predictive model in the listener. Finally we argue that in such uncertain contexts, correct predictions may be more subjectively rewarding than prediction errors since they signal to the individual that their predictive model is improving.
Collapse
Affiliation(s)
- Iris Mencke
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| | - Diana Omigie
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Melanie Wald-Fuhrmann
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus, Denmark
| |
Collapse
|
109
|
Predictive Processes and the Peculiar Case of Music. Trends Cogn Sci 2019; 23:63-77. [DOI: 10.1016/j.tics.2018.10.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
110
|
Christensen JF, Lambrechts A, Tsakiris M. The Warburg Dance Movement Library-The WADAMO Library: A Validation Study. Perception 2018; 48:26-57. [PMID: 30558474 DOI: 10.1177/0301006618816631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Warburg Dance Movement Library is a validated set of 234 video clips of dance movements for empirical research in the fields of cognitive science and neuroscience of action perception, affect perception and neuroaesthetics. The library contains two categories of video clips of dance movement sequences. Of each pair, one version of the movement sequence is emotionally expressive (Clip a), while the other version of the same sequence (Clip b) is not expressive but as technically correct as the expressive version (Clip a). We sought to complement previous dance video stimuli libraries. Facial information, colour and music have been removed, and each clip has been faded in and out. We equalised stimulus length (6 seconds, 8 counts in dance theory), the dancers' clothing and video background and included both male and female dancers, and we controlled for technical correctness of movement execution. The Warburg Dance Movement Library contains both contemporary and ballet movements. Two online surveys ( N = 160) confirmed the classification into the two categories of expressivity. Four additional online surveys ( N = 80) provided beauty and liking ratings for each clip. A correlation matrix illustrates all variables of this norming study (technical correctness, expressivity, beauty, liking, luminance, motion energy).
Collapse
Affiliation(s)
| | - Anna Lambrechts
- Autism Research Group, Department of Psychology City, University of London, UK
| | - Manos Tsakiris
- The Warburg Institute, University of London, UK; Department of Psychology, Royal Holloway, University of London, UK
| |
Collapse
|
111
|
|
112
|
Dalla Bella S. Music and movement: Towards a translational approach. Neurophysiol Clin 2018; 48:377-386. [PMID: 30396753 DOI: 10.1016/j.neucli.2018.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022] Open
Abstract
Rhythmic abilities are highly widespread in the general population. Most people can extract the regular beat of music, and align their movements with it. The aim of a translational approach for music and movement is to build on current fundamental research and theories of beat perception and synchronization to devise music-based interventions, which are informed by theory. To illustrate this approach, Parkinson's disease is taken as a model, with a focus on the positive effects of rhythmic auditory cueing on walking. In Parkinson's disease, a relation is found between the success of this music-based intervention and individual differences in rhythmic abilities. Patients with relatively spared rhythmic abilities are the most likely to benefit from cueing. Moreover, rhythmic auditory cueing can be optimized by using mobile technologies (tablets and smartphones), in the form of dedicated apps or serious games. A similar translational approach to the study of music, rhythm, and movement can be extended to remediation of cognitive, speech and language functions in other patient populations, such as children and adults with neurodevelopemental disorders.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
| |
Collapse
|
113
|
Eerola T, Vuoskoski JK, Peltola HR, Putkinen V, Schäfer K. An integrative review of the enjoyment of sadness associated with music. Phys Life Rev 2018; 25:100-121. [DOI: 10.1016/j.plrev.2017.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
114
|
Sachs ME, Habibi A, Damasio A, Kaplan JT. Decoding the neural signatures of emotions expressed through sound. Neuroimage 2018; 174:1-10. [DOI: 10.1016/j.neuroimage.2018.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022] Open
|
115
|
Bella SD, Dotov D, Bardy B, de Cock VC. Individualization of music-based rhythmic auditory cueing in Parkinson's disease. Ann N Y Acad Sci 2018; 1423:308-317. [PMID: 29863778 DOI: 10.1111/nyas.13859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
Abstract
Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Department of Psychology, University of Montreal, Montreal, Canada
- EuroMov, Montpellier University, Montpellier, France
- Department of Cognitive Psychology, WSFIZ, Warsaw, Poland
| | - Dobromir Dotov
- EuroMov, Montpellier University, Montpellier, France
- LIVELab, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Benoît Bardy
- EuroMov, Montpellier University, Montpellier, France
- Department of Cognitive Psychology, WSFIZ, Warsaw, Poland
| | - Valérie Cochen de Cock
- EuroMov, Montpellier University, Montpellier, France
- Department of Neurology, Beau Soleil Clinic, Montpellier, France
| |
Collapse
|
116
|
|
117
|
Rhythmic abilities and musical training in Parkinson's disease: do they help? NPJ PARKINSONS DISEASE 2018; 4:8. [PMID: 29582000 PMCID: PMC5865140 DOI: 10.1038/s41531-018-0043-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 11/08/2022]
Abstract
Rhythmic auditory cues can immediately improve gait in Parkinson’s disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients’ rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson’s disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing (n = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response (n = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson’s disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation. Listening to rhythmic auditory cues improves the ability to walk in patients with Parkinson’s disease (PD). Previous studies have shown that music can help patients with neurological disorders synchronize their movements to a beat. An international study led by Valérie Cochen De Cock at Clinique Beau Soleil in Montpellier (France) and Simone Dalla Bella at the International Laboratory For Brain, Music and Sound Research (BRAMS) in Montreal (Canada), measured gait speed in 39 patients with PD without dementia in response to rhythmic stimulation. Twenty-two patients increased their gait speed by spontaneously synchronizing their steps to the beat. The remaining 17 patients showed no effect or significant worsening of gait performance (e.g., smaller step length). The patients who benefited the most from rhythmic cues exhibited better rhythmic skills and were more musical than the others. Assessing musical abilities may serve to identify patients who are likely to benefit from this music-based intervention and may foster individualization of the treatment.
Collapse
|
118
|
Adamos DA, Laskaris NA, Micheloyannis S. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening. J Neural Eng 2018; 15:036012. [DOI: 10.1088/1741-2552/aaac36] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
119
|
Joucla C, Nicolier M, Giustiniani J, Brunotte G, Noiret N, Monnin J, Magnin E, Pazart L, Moulin T, Haffen E, Vandel P, Gabriel D. Evidence for a neural signature of musical preference during silence. Int J Psychophysiol 2018; 125:50-56. [PMID: 29474854 DOI: 10.1016/j.ijpsycho.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 11/18/2022]
Abstract
One of the most basic and person-specific affective responses to music is liking. The present investigation sought to determine whether liking was preserved during spontaneous auditory imagery. To this purpose, we inserted two-second silent intervals into liked and disliked songs, a method known to automatically recreate a mental image of these songs. Neural correlates of musical preference were measured by high-density electroencephalography in twenty subjects who had to listen to a set of five pre-selected unknown songs the same number of times for two weeks. Time frequency analysis of the two most liked and the two most disliked songs confirmed the presence of neural responses related to liking. At the beginning of silent intervals (400-900 ms and 1000-1300 ms), significant differences in theta activity were originating from the inferior frontal and superior temporal gyrus. These two brain structures are known to work together to process various aspects of music and are also activated when measuring liking while listening to music. At the end of silent intervals (1400-1900 ms), significant alpha activity differences originating from the insula were observed, whose exact role remains to be explored. Although exposure was controlled for liked and disliked songs, liked songs were rated as more familiar, underlying the strong relationship that exists between liking, exposure, and familiarity.
Collapse
Affiliation(s)
- Coralie Joucla
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Magali Nicolier
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Julie Giustiniani
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Gaelle Brunotte
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France
| | - Nicolas Noiret
- Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France; Laboratoire de psychologie EA 3188, Université de Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Eloi Magnin
- Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France; Service de neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Lionel Pazart
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Thierry Moulin
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Emmanuel Haffen
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France
| | - Pierre Vandel
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; Service de psychiatrie de l'adulte, CHRU Besançon, F-25000 Besançon, France; Centre Mémoire de Ressource et de Recherche de Franche-Comté, CHRU Besançon, F-25000 Besançon, France
| | - Damien Gabriel
- Centre d'investigation Clinique-Innovation Technologique CIC-IT 1431, Inserm, CHRU Besançon, F-25000 Besançon, France; Neurosciences intégratives et cliniques EA 481, Univ. Franche-Comté, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
120
|
Clark CN, Golden HL, McCallion O, Nicholas JM, Cohen MH, Slattery CF, Paterson RW, Fletcher PD, Mummery CJ, Rohrer JD, Crutch SJ, Warren JD. Music models aberrant rule decoding and reward valuation in dementia. Soc Cogn Affect Neurosci 2018; 13:192-202. [PMID: 29186630 PMCID: PMC5827340 DOI: 10.1093/scan/nsx140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias.
Collapse
Affiliation(s)
- Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Oliver McCallion
- Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Miriam H Cohen
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Phillip D Fletcher
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
121
|
Christensen JF, Gomila A. Introduction: Art and the brain: From pleasure to well-being. PROGRESS IN BRAIN RESEARCH 2018; 237:xxvii-xlvi. [PMID: 29779754 DOI: 10.1016/s0079-6123(18)30032-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Empirical aesthetics in general, and neuroaesthetics in particular, have been very much influenced by Berlyne's psychobiological program. For him, aesthetic appreciation involved the brain's reward and aversion systems. From this point of view, art constitutes a set of potentially rewarding stimuli. Research has certainly made great advances in understanding how the process of artistic valuation takes places, and which brain circuits are involved in generating the pleasure we obtain from artistic practices, performances, and works. But it also suggests that pleasure is not the only effect of the arts. The evidence rather suggests that the arts have other cognitive and emotional effects which are closely related to human psychobiological health and well-being. These are: (1) attentional focus and flow, (2) affective experience, (3) emotion through imagery, (4) interpersonal communication, (5) self-intimation, and (6) social bonding. These effects are beneficial and contribute to the individual's biopsychological health and well-being. The fact that artistic practice has these effects helps explain why the arts are so important to human life, and why they developed in the first place, i.e., as ways to foster these effects. Therefore, a biopsychological science of the arts is emerging, according to which the arts can be conceptualized as an important system of external self-regulation, as a set of activities that contribute to our homeostasis and well-being.
Collapse
Affiliation(s)
- Julia F Christensen
- BIAS Team (Prof. Manos Tsakiris), The Warburg Institute, School of Advanced Study, University of London, London, United Kingdom.
| | - Antoni Gomila
- Ed. Beatriu de Pinós, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
122
|
Goh JOS, Hung HY, Su YS. A conceptual consideration of the free energy principle in cognitive maps: How cognitive maps help reduce surprise. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
123
|
Mas-Herrero E, Karhulahti M, Marco-Pallares J, Zatorre RJ, Rodriguez-Fornells A. The impact of visual art and emotional sounds in specific musical anhedonia. PROGRESS IN BRAIN RESEARCH 2018; 237:399-413. [DOI: 10.1016/bs.pbr.2018.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
124
|
Mansouri FA, Acevedo N, Illipparampil R, Fehring DJ, Fitzgerald PB, Jaberzadeh S. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci Rep 2017; 7:18096. [PMID: 29273796 PMCID: PMC5741740 DOI: 10.1038/s41598-017-18119-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. .,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.
| | - Nicola Acevedo
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Rosin Illipparampil
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Daniel J Fehring
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia
| |
Collapse
|
125
|
Elvers P, Steffens J. The Sound of Success: Investigating Cognitive and Behavioral Effects of Motivational Music in Sports. Front Psychol 2017; 8:2026. [PMID: 29209257 PMCID: PMC5702473 DOI: 10.3389/fpsyg.2017.02026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Listening to music before, during, or after sports is a common phenomenon, yet its functions and effects on performance, cognition, and behavior remain to be investigated. In this study we present a novel approach to the role of music in sports and exercise that focuses on the notion of musical self-enhancement (Elvers, 2016). We derived the following hypotheses from this framework: listening to motivational music will (i) enhance self-evaluative cognition, (ii) improve performance in a ball game, and (iii) evoke greater risk-taking behavior. To evaluate the hypotheses, we conducted a between-groups experiment (N = 150) testing the effectiveness of both an experimenter playlist and a participant-selected playlist in comparison to a no-music control condition. All participants performed a ball-throwing task developed by Decharms and Davé (1965), consisting of two parts: First, participants threw the ball from fixed distances into a funnel basket. During this task, performance was measured. In the second part, the participants themselves chose distances from the basket, which allowed their risk-taking behavior to be assessed. The results indicate that listening to motivational music led to greater risk taking but did not improve ball-throwing performance. This effect was more pronounced in male participants and among those who listened to their own playlists. Furthermore, self-selected music enhanced state self-esteem in participants who were performing well but not in those who were performing poorly. We also discuss further implications for the notion of musical self-enhancement.
Collapse
Affiliation(s)
- Paul Elvers
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Jochen Steffens
- Audio Communication Group, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
126
|
Mas-Herrero E, Dagher A, Zatorre RJ. Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nat Hum Behav 2017; 2:27-32. [PMID: 30980048 DOI: 10.1038/s41562-017-0241-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023]
Abstract
Humans have the unique capacity to experience pleasure from aesthetic stimuli, such as art and music. Recent neuroimaging findings with music have led to a model in which mesolimbic striatal circuits interact with cortical systems to generate expectancies leading to pleasure 1,2 . However, neuroimaging approaches are correlational. Here, we provide causal evidence for the model by combining transcranial magnetic stimulation over the left dorsolateral prefrontal cortex to directly modulate fronto-striatal function 3 bidirectionally together with measures of pleasure and motivation during music listening. Our results show that perceived pleasure, psychophysiological measures of emotional arousal, and the monetary value assigned to music, are all significantly increased by exciting fronto-striatal pathways, whereas inhibition of this system leads to decreases in all of these variables compared with sham stimulation. These findings support the hypothesis that fronto-striatal function causally mediates both the affective responses and motivational aspects of music-induced reward, and provide insights into how aesthetic responses emerge in the human brain.
Collapse
Affiliation(s)
- Ernest Mas-Herrero
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada.,Centre for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, QC, Canada. .,Centre for Research on Brain, Language and Music (CRBLM), Montreal, QC, Canada.
| |
Collapse
|
127
|
Motivational wheel running reverses cueing behavioural inflexibility in rodents. J Neural Transm (Vienna) 2017; 124:1635-1640. [DOI: 10.1007/s00702-017-1790-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
128
|
Stupacher J, Wood G, Witte M. Neural Entrainment to Polyrhythms: A Comparison of Musicians and Non-musicians. Front Neurosci 2017; 11:208. [PMID: 28446864 PMCID: PMC5388767 DOI: 10.3389/fnins.2017.00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
Music can be thought of as a dynamic path over time. In most cases, the rhythmic structure of this path, such as specific sequences of strong and weak beats or recurring patterns, allows us to predict what and particularly when sounds are going to happen. Without this ability we would not be able to entrain body movements to music, like we do when we dance. By combining EEG and behavioral measures, the current study provides evidence illustrating the importance of ongoing neural oscillations at beat-related frequencies-i.e., neural entrainment-for tracking and predicting musical rhythms. Participants (13 musicians and 13 non-musicians) listened to drum rhythms that switched from a quadruple rhythm to a 3-over-4 polyrhythm. After a silent period of ~2-3 s, participants had to decide whether a target stimulus was presented on time with the triple beat of the polyrhythm, too early, or too late. Results showed that neural oscillations reflected the rhythmic structure of both the simple quadruple rhythm and the more complex polyrhythm with no differences between musicians and non-musicians. During silent periods, the observation of time-frequency plots and more commonly used frequency spectra analyses suggest that beat-related neural oscillations were more pronounced in musicians compared to non-musicians. Neural oscillations during silent periods are not driven by an external input and therefore are thought to reflect top-down controlled endogenous neural entrainment. The functional relevance of endogenous neural entrainment was demonstrated by a positive correlation between the amplitude of task-relevant neural oscillations during silent periods and the number of correctly identified target stimuli. In sum, our findings add to the evidence supporting the neural resonance theory of pulse and meter. Furthermore, they indicate that beat-related top-down controlled neural oscillations can exist without external stimulation and suggest that those endogenous oscillations are strengthened by musical expertise. Finally, this study shows that the analysis of neural oscillations can be a useful tool to assess how we perceive and process complex auditory stimuli such as polyrhythms.
Collapse
Affiliation(s)
- Jan Stupacher
- Department of Psychology, University of GrazGraz, Austria
| | - Guilherme Wood
- Department of Psychology, University of GrazGraz, Austria.,BioTechMed-GrazGraz, Austria
| | - Matthias Witte
- Department of Psychology, University of GrazGraz, Austria
| |
Collapse
|
129
|
Hansen NC, Dietz MJ, Vuust P. Commentary: Predictions and the brain: how musical sounds become rewarding. Front Hum Neurosci 2017; 11:168. [PMID: 28424603 PMCID: PMC5380745 DOI: 10.3389/fnhum.2017.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Niels Chr Hansen
- Cognitive and Systematic Musicology Laboratory, School of Music, Ohio State UniversityColumbus, OH, USA.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/AalborgAarhus, Denmark
| | - Martin J Dietz
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus UniversityAarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/AalborgAarhus, Denmark
| |
Collapse
|
130
|
Reybrouck M, Eerola T. Music and Its Inductive Power: A Psychobiological and Evolutionary Approach to Musical Emotions. Front Psychol 2017; 8:494. [PMID: 28421015 PMCID: PMC5378764 DOI: 10.3389/fpsyg.2017.00494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/16/2017] [Indexed: 01/27/2023] Open
Abstract
The aim of this contribution is to broaden the concept of musical meaning from an abstract and emotionally neutral cognitive representation to an emotion-integrating description that is related to the evolutionary approach to music. Starting from the dispositional machinery for dealing with music as a temporal and sounding phenomenon, musical emotions are considered as adaptive responses to be aroused in human beings as the product of neural structures that are specialized for their processing. A theoretical and empirical background is provided in order to bring together the findings of music and emotion studies and the evolutionary approach to musical meaning. The theoretical grounding elaborates on the transition from referential to affective semantics, the distinction between expression and induction of emotions, and the tension between discrete-digital and analog-continuous processing of the sounds. The empirical background provides evidence from several findings such as infant-directed speech, referential emotive vocalizations and separation calls in lower mammals, the distinction between the acoustic and vehicle mode of sound perception, and the bodily and physiological reactions to the sounds. It is argued, finally, that early affective processing reflects the way emotions make our bodies feel, which in turn reflects on the emotions expressed and decoded. As such there is a dynamic tension between nature and nurture, which is reflected in the nature-nurture-nature cycle of musical sense-making.
Collapse
Affiliation(s)
- Mark Reybrouck
- Faculty of Arts, Musicology Research Group, KU Leuven - University of LeuvenLeuven, Belgium
| | | |
Collapse
|
131
|
Perrone-Capano C, Volpicelli F, di Porzio U. Biological bases of human musicality. Rev Neurosci 2017; 28:235-245. [PMID: 28107174 DOI: 10.1515/revneuro-2016-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022]
Abstract
Music is a universal language, present in all human societies. It pervades the lives of most human beings and can recall memories and feelings of the past, can exert positive effects on our mood, can be strongly evocative and ignite intense emotions, and can establish or strengthen social bonds. In this review, we summarize the research and recent progress on the origins and neural substrates of human musicality as well as the changes in brain plasticity elicited by listening or performing music. Indeed, music improves performance in a number of cognitive tasks and may have beneficial effects on diseased brains. The emerging picture begins to unravel how and why particular brain circuits are affected by music. Numerous studies show that music affects emotions and mood, as it is strongly associated with the brain's reward system. We can therefore assume that an in-depth study of the relationship between music and the brain may help to shed light on how the mind works and how the emotions arise and may improve the methods of music-based rehabilitation for people with neurological disorders. However, many facets of the mind-music connection still remain to be explored and enlightened.
Collapse
|
132
|
Brodal HP, Osnes B, Specht K. Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System. Front Neurosci 2017; 11:153. [PMID: 28400717 PMCID: PMC5368249 DOI: 10.3389/fnins.2017.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
Music can trigger emotional responses in a more direct way than any other stimulus. In particular, music-evoked pleasure involves brain networks that are part of the reward system. Furthermore, rhythmic music stimulates the basal ganglia and may trigger involuntary movements to the beat. In the present study, we created a continuously playing rhythmic, dance floor-like composition where the ambient noise from the MR scanner was incorporated as an additional instrument of rhythm. By treating this continuous stimulation paradigm as a variant of resting-state, the data was analyzed with stochastic dynamic causal modeling (sDCM), which was used for exploring functional dependencies and interactions between core areas of auditory perception, rhythm processing, and reward processing. The sDCM model was a fully connected model with the following areas: auditory cortex, putamen/pallidum, and ventral striatum/nucleus accumbens of both hemispheres. The resulting estimated parameters were compared to ordinary resting-state data, without an additional continuous stimulation. Besides reduced connectivity within the basal ganglia, the results indicated a reduced functional connectivity of the reward system, namely the right ventral striatum/nucleus accumbens from and to the basal ganglia and auditory network while listening to rhythmic music. In addition, the right ventral striatum/nucleus accumbens demonstrated also a change in its hemodynamic parameter, reflecting an increased level of activation. These converging results may indicate that the dopaminergic reward system reduces its functional connectivity and relinquishing its constraints on other areas when we listen to rhythmic music.
Collapse
Affiliation(s)
- Hans P Brodal
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | - Berge Osnes
- Department of Biological and Medical Psychology, University of BergenBergen, Norway; Bjørgvin District Psychiatric Centre, Haukeland University HospitalBergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of BergenBergen, Norway; Department of Clinical Engineering, Haukeland University HospitalBergen, Norway
| |
Collapse
|
133
|
Chomiak T, Watts A, Meyer N, Pereira FV, Hu B. A training approach to improve stepping automaticity while dual-tasking in Parkinson's disease: A prospective pilot study. Medicine (Baltimore) 2017; 96:e5934. [PMID: 28151878 PMCID: PMC5293441 DOI: 10.1097/md.0000000000005934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Deficits in motor movement automaticity in Parkinson's disease (PD), especially during multitasking, are early and consistent hallmarks of cognitive function decline, which increases fall risk and reduces quality of life. This study aimed to test the feasibility and potential efficacy of a wearable sensor-enabled technological platform designed for an in-home music-contingent stepping-in-place (SIP) training program to improve step automaticity during dual-tasking (DT). METHODS This was a 4-week prospective intervention pilot study. The intervention uses a sensor system and algorithm that runs off the iPod Touch which calculates step height (SH) in real-time. These measurements were then used to trigger auditory (treatment group, music; control group, radio podcast) playback in real-time through wireless headphones upon maintenance of repeated large amplitude stepping. With small steps or shuffling, auditory playback stops, thus allowing participants to use anticipatory motor control to regain positive feedback. Eleven participants were recruited from an ongoing trial (Trial Number: ISRCTN06023392). Fear of falling (FES-I), general cognitive functioning (MoCA), self-reported freezing of gait (FOG-Q), and DT step automaticity were evaluated. RESULTS While we found no significant effect of training on FES-I, MoCA, or FOG-Q, we did observe a significant group (music vs podcast) by training interaction in DT step automaticity (P<0.01). CONCLUSION Wearable device technology can be used to enable musically-contingent SIP training to increase motor automaticity for people living with PD. The training approach described here can be implemented at home to meet the growing demand for self-management of symptoms by patients.
Collapse
|
134
|
Khan A, Biddiss E. Musical Stairs: A motivational therapy tool for children with disabilities featuring automated detection of stair-climbing gait events via inertial sensors. Med Eng Phys 2017; 40:95-102. [PMID: 28110887 DOI: 10.1016/j.medengphy.2016.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Stair-climbing is a key component of rehabilitation therapies for children with physical disabilities. This paper reports on the design of a system, Musical Stairs, to provide auditory feedback during stair-climbing therapies. Musical Stairs is composed of two foot-mounted inertial sensors, a step detection algorithm, and an auditory feedback response. In Phase 1, we establish its clinical feasibility via a Wizard-of-Oz AB/BA cross-over design with 17 children, aged 4-6 years, having diverse diagnoses and gait abilities. Self-, therapist- and blinded-observer reports indicated increased motivation with auditory feedback. Phase 2 describes the construction of a database comprised of synchronized video and inertial data associated with 1568 steps up and down stairs completed by 26 children aged 4-6 years with diverse diagnoses and gait. Lastly, in Phase 3, data from 18 children in the database were used to train a rule-based step detection algorithm based on local minima in the acceleration profile and the foot's swing angle. A step detection rate of 96% [SD=3%] and false positive rate of 6% [SD=5%] were achieved with an independent test set (n=8). Recommendations for future development and evaluation are discussed.
Collapse
Affiliation(s)
- Ajmal Khan
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario M4G 1R8, Canada.
| | - Elaine Biddiss
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, Ontario M4G 1R8, Canada; The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
135
|
Pearce MT, Zaidel DW, Vartanian O, Skov M, Leder H, Chatterjee A, Nadal M. Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 11:265-79. [PMID: 26993278 DOI: 10.1177/1745691615621274] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The field of neuroaesthetics has gained in popularity in recent years but also attracted criticism from the perspectives both of the humanities and the sciences. In an effort to consolidate research in the field, we characterize neuroaesthetics as the cognitive neuroscience of aesthetic experience, drawing on long traditions of research in empirical aesthetics on the one hand and cognitive neuroscience on the other. We clarify the aims and scope of the field, identifying relations among neuroscientific investigations of aesthetics, beauty, and art. The approach we advocate takes as its object of study a wide spectrum of aesthetic experiences, resulting from interactions of individuals, sensory stimuli, and context. Drawing on its parent fields, a cognitive neuroscience of aesthetics would investigate the complex cognitive processes and functional networks of brain regions involved in those experiences without placing a value on them. Thus, the cognitive neuroscientific approach may develop in a way that is mutually complementary to approaches in the humanities.
Collapse
Affiliation(s)
- Marcus T Pearce
- School of Electronic Engineering and Computer Science, Queen Mary University of London, England
| | - Dahlia W Zaidel
- Department of Psychology, University of California, Los Angeles
| | - Oshin Vartanian
- Department of Psychology, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Martin Skov
- Copenhagen Business School and Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Helmut Leder
- Department of Basic Psychological Research and Research Methods, University of Vienna, Austria
| | - Anjan Chatterjee
- Center for Cognitive Neuroscience, Department of Neurology, University of Pennsylvania
| | - Marcos Nadal
- Department of Basic Psychological Research and Research Methods, University of Vienna, Austria
| |
Collapse
|
136
|
Abstract
Although music is ubiquitous in human societies, there are some people for whom music holds no reward value despite normal perceptual ability and preserved reward-related responses in other domains. The study of these individuals with specific musical anhedonia may be crucial to understand better the neural correlates underlying musical reward. Previous neuroimaging studies have shown that musically induced pleasure may arise from the interaction between auditory cortical networks and mesolimbic reward networks. If such interaction is critical for music-induced pleasure to emerge, then those individuals who do not experience it should show alterations in the cortical-mesolimbic response. In the current study, we addressed this question using fMRI in three groups of 15 participants, each with different sensitivity to music reward. We demonstrate that the music anhedonic participants showed selective reduction of activity for music in the nucleus accumbens (NAcc), but normal activation levels for a monetary gambling task. Furthermore, this group also exhibited decreased functional connectivity between the right auditory cortex and ventral striatum (including the NAcc). In contrast, individuals with greater than average response to music showed enhanced connectivity between these structures. Thus, our results suggest that specific musical anhedonia may be associated with a reduction in the interplay between the auditory cortex and the subcortical reward network, indicating a pivotal role of this interaction for the enjoyment of music.
Collapse
|
137
|
Patel AD, Morgan E. Exploring Cognitive Relations Between Prediction in Language and Music. Cogn Sci 2016; 41 Suppl 2:303-320. [DOI: 10.1111/cogs.12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Aniruddh D. Patel
- Department of Psychology; Tufts University
- Azrieli Program in Brain, Mind, & Consciousness; Canadian Institute for Advanced Research (CIFAR); Toronto
| | | |
Collapse
|
138
|
Oikkonen J, Kuusi T, Peltonen P, Raijas P, Ukkola-Vuoti L, Karma K, Onkamo P, Järvelä I. Creative Activities in Music--A Genome-Wide Linkage Analysis. PLoS One 2016; 11:e0148679. [PMID: 26909693 PMCID: PMC4766096 DOI: 10.1371/journal.pone.0148679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.
Collapse
Affiliation(s)
- Jaana Oikkonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tuire Kuusi
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Petri Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Kai Karma
- Sibelius Academy, University of the Arts Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
139
|
Brattico E, Bogert B, Alluri V, Tervaniemi M, Eerola T, Jacobsen T. It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Front Hum Neurosci 2016; 9:676. [PMID: 26778996 PMCID: PMC4701928 DOI: 10.3389/fnhum.2015.00676] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/30/2015] [Indexed: 01/23/2023] Open
Abstract
Emotion-related areas of the brain, such as the medial frontal cortices, amygdala, and striatum, are activated during listening to sad or happy music as well as during listening to pleasurable music. Indeed, in music, like in other arts, sad and happy emotions might co-exist and be distinct from emotions of pleasure or enjoyment. Here we aimed at discerning the neural correlates of sadness or happiness in music as opposed those related to musical enjoyment. We further investigated whether musical expertise modulates the neural activity during affective listening of music. To these aims, 13 musicians and 16 non-musicians brought to the lab their most liked and disliked musical pieces with a happy and sad connotation. Based on a listening test, we selected the most representative 18 sec excerpts of the emotions of interest for each individual participant. Functional magnetic resonance imaging (fMRI) recordings were obtained while subjects listened to and rated the excerpts. The cortico-thalamo-striatal reward circuit and motor areas were more active during liked than disliked music, whereas only the auditory cortex and the right amygdala were more active for disliked over liked music. These results discern the brain structures responsible for the perception of sad and happy emotions in music from those related to musical enjoyment. We also obtained novel evidence for functional differences in the limbic system associated with musical expertise, by showing enhanced liking-related activity in fronto-insular and cingulate areas in musicians.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University and Royal Academy of Music Aarhus/Aalborg (RAMA)Aarhus, Denmark; Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Advanced Magnetic Imaging Centre, Aalto UniversityEspoo, Finland
| | - Brigitte Bogert
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Vinoo Alluri
- Department of Music, University of JyväskyläJyväskylä, Finland; Neuroscience of Emotion and Affective Dynamics Lab, University of GeneveGeneve, Switzerland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of HelsinkiHelsinki, Finland; Cicero Learning, University of HelsinkiHelsinki, Finland
| | | | - Thomas Jacobsen
- Experimental Psychology Unit, Helmut Schmidt University/University of the Federal Armed Forces Hamburg Hamburg, Germany
| |
Collapse
|
140
|
Lappe C, Lappe M, Pantev C. Differential processing of melodic, rhythmic and simple tone deviations in musicians -an MEG study. Neuroimage 2016; 124:898-905. [DOI: 10.1016/j.neuroimage.2015.09.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/20/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
|
141
|
Furuya S, Hanakawa T. The curse of motor expertise: Use-dependent focal dystonia as a manifestation of maladaptive changes in body representation. Neurosci Res 2015; 104:112-9. [PMID: 26689332 DOI: 10.1016/j.neures.2015.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023]
Abstract
Focal task-specific dystonia (FTSD) impairs not only motor dexterity, but also somatosensory perception involved in well-trained behavioral tasks. Occupations that carry a risk of developing FTSD include musician, writer, painter, surgeon, and golfer, which are characterized by repetitive and precise motor actions over a prolonged period. Behavioral studies have uncovered various undesirable effects of FTSD on sensorimotor functions, such as a loss of independent movement control, unintended muscular co-activation, awkward limb posture, and impairment of fine discrimination of tactile and proprioceptive sensations. Studies using neuroimaging and noninvasive brain stimulation techniques have related such sensorimotor malfunctions to maladaptive neuroplastic changes in the sensorimotor system, including the primary motor and somatosensory areas, premotor area, cerebellum, and basal ganglia. In this review, we summarize recent empirical findings regarding phenomenological and pathophysiological abnormalities associated with the development of FTSD. We particularly focused on maladaptive alterations of body representations underlying the degradation of fine motor control and somatosensory perception in FTSD patients.
Collapse
Affiliation(s)
- Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Japan; Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Japan.
| | - Takashi Hanakawa
- Musical Skill and Injury Center (MuSIC), Sophia University, Japan; Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Japan.
| |
Collapse
|
142
|
Poikonen H, Alluri V, Brattico E, Lartillot O, Tervaniemi M, Huotilainen M. Event-related brain responses while listening to entire pieces of music. Neuroscience 2015; 312:58-73. [PMID: 26550950 DOI: 10.1016/j.neuroscience.2015.10.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
Brain responses to discrete short sounds have been studied intensively using the event-related potential (ERP) method, in which the electroencephalogram (EEG) signal is divided into epochs time-locked to stimuli of interest. Here we introduce and apply a novel technique which enables one to isolate ERPs in human elicited by continuous music. The ERPs were recorded during listening to a Tango Nuevo piece, a deep techno track and an acoustic lullaby. Acoustic features related to timbre, harmony, and dynamics of the audio signal were computationally extracted from the musical pieces. Negative deflation occurring around 100 milliseconds after the stimulus onset (N100) and positive deflation occurring around 200 milliseconds after the stimulus onset (P200) ERP responses to peak changes in the acoustic features were distinguishable and were often largest for Tango Nuevo. In addition to large changes in these musical features, long phases of low values that precede a rapid increase - and that we will call Preceding Low-Feature Phases - followed by a rapid increase enhanced the amplitudes of N100 and P200 responses. These ERP responses resembled those to simpler sounds, making it possible to utilize the tradition of ERP research with naturalistic paradigms.
Collapse
Affiliation(s)
- H Poikonen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland.
| | - V Alluri
- Department of Music, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | - E Brattico
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Nørrebrograde 44, DK-8000 Aarhus C, Denmark.
| | - O Lartillot
- Department of Architecture, Design and Media Technology, University of Aalborg, Rendsburggade 14, DK-9000 Aalborg, Denmark.
| | - M Tervaniemi
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Cicero Learning, P.O. Box 9 (Siltavuorenpenger 5 A), FI-00014 University of Helsinki, Finland.
| | - M Huotilainen
- Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9 (Siltavuorenpenger 1 B), FI-00014 University of Helsinki, Finland; Cicero Learning, P.O. Box 9 (Siltavuorenpenger 5 A), FI-00014 University of Helsinki, Finland; Finnish Institute of Occupational Health, Haartmaninkatu 1 A, 00250 Helsinki, Finland.
| |
Collapse
|
143
|
Li CW, Chen JH, Tsai CG. Listening to music in a risk-reward context: The roles of the temporoparietal junction and the orbitofrontal/insular cortices in reward-anticipation, reward-gain, and reward-loss. Brain Res 2015; 1629:160-70. [PMID: 26499261 DOI: 10.1016/j.brainres.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Abstract
Artificial rewards, such as visual arts and music, produce pleasurable feelings. Popular songs in the verse-chorus form provide a useful model for understanding the neural mechanisms underlying the processing of artificial rewards, because the chorus is usually the most rewarding element of a song. In this functional magnetic resonance imaging (fMRI) study, the stimuli were excerpts of 10 popular songs with a tensioned verse-to-chorus transition. We examined the neural correlates of three phases of reward processing: (1) reward-anticipation during the verse-to-chorus transition, (2) reward-gain during the first phrase of the chorus, and (3) reward-loss during the unexpected noise followed by the verse-to-chorus transition. Participants listened to these excerpts in a risk-reward context because the verse was followed by either the chorus or noise with equal probability. The results showed that reward-gain and reward-loss were associated with left- and right-biased temporoparietal junction activation, respectively. The bilateral temporoparietal junctions were active during reward-anticipation. Moreover, we observed left-biased lateral orbitofrontal activation during reward-anticipation, whereas the medial orbitofrontal cortex was activated during reward-gain. The findings are discussed in relation to the cognitive and emotional aspects of reward processing.
Collapse
Affiliation(s)
- Chia-Wei Li
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Chen-Gia Tsai
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
144
|
Fletcher PD, Downey LE, Golden HL, Clark CN, Slattery CF, Paterson RW, Schott JM, Rohrer JD, Rossor MN, Warren JD. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis. Cortex 2015; 67:95-105. [PMID: 25929717 PMCID: PMC4465962 DOI: 10.1016/j.cortex.2015.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/08/2015] [Accepted: 03/27/2015] [Indexed: 02/03/2023]
Abstract
Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music (‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease.
Collapse
Affiliation(s)
- Phillip D Fletcher
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Laura E Downey
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Martin N Rossor
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
145
|
Reybrouck M, Brattico E. Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences. Brain Sci 2015; 5:69-91. [PMID: 25807006 PMCID: PMC4390792 DOI: 10.3390/brainsci5010069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active “agent” coping in highly individual ways with the sounds. The findings concerning the neural adaptations in musicians, following long-term exposure to music, are then reviewed by keeping in mind the distinct subprocesses of a musical aesthetic experience. We conclude that these neural adaptations can be conceived of as the immediate and lifelong interactions with multisensorial stimuli (having a predominant auditory component), which result in lasting changes of the internal state of the “agent”. In a continuous loop, these changes affect, in turn, the subprocesses involved in a musical aesthetic experience, towards the final goal of achieving better perceptual, motor and proprioceptive responses to the immediate demands of the sounding environment. The resulting neural adaptations in musicians closely depend on the duration of the interactions, the starting age, the involvement of attention, the amount of motor practice and the musical genre played.
Collapse
Affiliation(s)
- Mark Reybrouck
- Section of Musicology, Faculty of Arts, KU Leuven-University of Leuven, Blijde-Inkomststraat 21, P.O. Box 3313, 3000 Leuven, Belgium.
- Faculty of Psychology and Educational Sciences, Center for Instructional Psychology and Technology, KU Leuven-University of Leuven, Dekenstraat 2, P.O. Box 3773, 3000 Leuven, Belgium.
| | - Elvira Brattico
- Helsinki Collegium for Advanced Studies, University of Helsinki, Fabianinkatu 24, P.O. Box 4, 00014 Helsinki, Finland.
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, Siltavuorenpenger 1 B, P.O. Box 9, 00014 Helsinki, Finland.
| |
Collapse
|