101
|
Cell Guidance by 3D-Gradients in Hydrogel Matrices: Importance for Biomedical Applications. MATERIALS 2009. [PMCID: PMC5445751 DOI: 10.3390/ma2031058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Concentration gradients of soluble and matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for design of biomedical scaffolds and on implant surfaces. The focus of this review is to demonstrate the importance of gradient guidance for cells as it would be desirable to direct cell growth onto/into biomedical devices. Many studies have been described that illustrate the production and characterization of surface gradients, but three dimensional (3D)-gradients that direct cellular behavior are not well investigated. Hydrogels are considered as synthetic replacements for native extracellular matrices as they share key functions such as 2D- or 3D-solid support, fibrous structure, gas- and nutrition permeability and allow storage and release of biologically active molecules. Therefore this review focuses on current studies that try to implement soluble or covalently-attached gradients of growth factors, cytokines or adhesion sequences into 3D-hydrogel matrices in order to control cell growth, orientation and migration towards a target. Such gradient architectures are especially desirable for wound healing purposes, where defined cell populations need to be recruited from the blood stream and out of the adjacent tissue, in critical bone defects, for vascular implants or neuronal guidance structures where defined cell populations should be guided by appropriate signals to reach their proper positions or target tissues in order to accomplish functional repair.
Collapse
|
102
|
The roles of multiple UNC-40 (DCC) receptor-mediated signals in determining neuronal asymmetry induced by the UNC-6 (netrin) ligand. Genetics 2009; 183:941-9. [PMID: 19704011 DOI: 10.1534/genetics.109.108654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The polarization of post-mitotic neurons is poorly understood. Preexisting spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any preestablished asymmetric cues. In Caenorhabditis elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface. There an axon forms, which is ventrally directed by UNC-6. In the absence of UNC-6, UNC-40 is equally distributed and the HSN axon travels anteriorly in response to other cues. However, we find that a single amino acid change in the UNC-40 ectodomain causes randomly oriented asymmetric UNC-40 localization and a wandering axon phenotype. With UNC-6, there is normal UNC-40 localization and axon migration. A single UNC-6 amino acid substitution enhances the mutant phenotypes, whereas UNC-6 second-site amino acid substitutions suppress the phenotypes. We propose that UNC-40 mediates multiple signals to polarize and orient asymmetry. One signal triggers the intrinsic ability of HSN to polarize and causes randomly oriented asymmetry. Concurrently, another signal biases the orientation of the asymmetry relative to the UNC-6 gradient. The UNC-40 ectodomain mutation activates the polarization signal, whereas different forms of the UNC-6 ligand produce UNC-40 conformational changes that allow or prohibit the orientation signal.
Collapse
|
103
|
Causin P, Facchetti G. Autocatalytic loop, amplification and diffusion: a mathematical and computational model of cell polarization in neural chemotaxis. PLoS Comput Biol 2009; 5:e1000479. [PMID: 19714204 PMCID: PMC2722090 DOI: 10.1371/journal.pcbi.1000479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/21/2009] [Indexed: 12/11/2022] Open
Abstract
The chemotactic response of cells to graded fields of chemical cues is a complex process that requires the coordination of several intracellular activities. Fundamental steps to obtain a front vs. back differentiation in the cell are the localized distribution of internal molecules and the amplification of the external signal. The goal of this work is to develop a mathematical and computational model for the quantitative study of such phenomena in the context of axon chemotactic pathfinding in neural development. In order to perform turning decisions, axons develop front-back polarization in their distal structure, the growth cone. Starting from the recent experimental findings of the biased redistribution of receptors on the growth cone membrane, driven by the interaction with the cytoskeleton, we propose a model to investigate the significance of this process. Our main contribution is to quantitatively demonstrate that the autocatalytic loop involving receptors, cytoplasmic species and cytoskeleton is adequate to give rise to the chemotactic behavior of neural cells. We assess the fact that spatial bias in receptors is a precursory key event for chemotactic response, establishing the necessity of a tight link between upstream gradient sensing and downstream cytoskeleton dynamics. We analyze further crosslinked effects and, among others, the contribution to polarization of internal enzymatic reactions, which entail the production of molecules with a one-to-more factor. The model shows that the enzymatic efficiency of such reactions must overcome a threshold in order to give rise to a sufficient amplification, another fundamental precursory step for obtaining polarization. Eventually, we address the characteristic behavior of the attraction/repulsion of axons subjected to the same cue, providing a quantitative indicator of the parameters which more critically determine this nontrivial chemotactic response.
Collapse
Affiliation(s)
- Paola Causin
- Department of Mathematics F Enriques, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
104
|
Abstract
Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field.
Collapse
|
105
|
Affiliation(s)
- Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
106
|
Bayesian model predicts the response of axons to molecular gradients. Proc Natl Acad Sci U S A 2009; 106:10296-301. [PMID: 19541606 DOI: 10.1073/pnas.0900715106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian "ideal observer" analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.
Collapse
|
107
|
Abstract
The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.
Collapse
|
108
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
109
|
Kunz D, Walker G, Bedoucha M, Certa U, März-Weiss P, Dimitriades-Schmutz B, Otten U. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells. BMC Genomics 2009; 10:90. [PMID: 19239705 PMCID: PMC2657914 DOI: 10.1186/1471-2164-10-90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6) and the neurotrophin (NT) Nerve Growth Factor (NGF) for neuronal differentiation. RESULTS The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes.A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold), regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold), growth differentiation factor 15 (GDF15; 80-fold), platelet-derived growth factor alpha (PDGFA; 69-fold), growth hormone releasing hormone (GHRH; 30-fold), adenylate cyclase activating polypeptide (PACAP; 20-fold) and hepatocyte growth factor (HGF; 5-fold). NGF recruits GDF15 (131-fold), transforming growth factor beta 1 (TGFB1; 101-fold) and brain-derived neurotrophic factor (BDNF; 89-fold). Both stimuli activate growth-associated protein 43 (GAP-43) indicating that PC12 cells undergo substantial neuronal differentiation.Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold) and early growth response 1 (Egr1/Zif268; 3-fold) known to play key roles in neuronal differentiation.Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell adhesion, small molecule biochemistry aiming at changing intracellular concentrations of second messengers such as Ca2+ and cAMP as well as expression of enzymes involved in posttranslational modification of proteins. CONCLUSION The current data provide novel candidate genes involved in neuronal differentiation, notably for the neuropoietic cytokine IL-6. Our findings may also have impact on the clinical treatment of peripheral nerve injury. Local application of a designer cytokine such as H-IL-6 with drastically enhanced bioactivity in combination with NTs may generate a potent reparative microenvironment.
Collapse
Affiliation(s)
- Dieter Kunz
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
110
|
Rosoff WJ, McAllister RG, Goodhill GJ, Urbach JS. Quantitative studies of neuronal chemotaxis in 3D. Methods Mol Biol 2009; 571:239-254. [PMID: 19763971 DOI: 10.1007/978-1-60761-198-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During development a variety of cell types are guided by molecular concentration gradients to form tissues and organ systems. In the nervous system, the migration and neuronal pathfinding that occurs during development is organized and driven by "guidance cues." Some of these cues are substrate bound or nondiffusible, while many are diffusible and form gradients within the developing embryo to guide neurons and neurites to their appropriate destination. There have been many approaches used to discover and characterize the multitude of guidance cues, their cognate receptors, and how these cues and receptors are regulated to achieve the highly detailed connections found in the nervous system. Here we present a method for creating precisely controlled gradients of molecular factors within a three-dimensional culture environment. The method is based on a non contact mediated delivery of biomolecules to the surface of a collagen gel. The factors are printed in a pattern on the top of a gel containing the tissue or cell type of interest embedded in the gel. The formation of the gradient is dependent upon the diffusion of the printed molecule in the gel. The concentration of the factor within the gel becomes independent of depth rapidly, and the gradient becomes smooth on a similar time scale. The gradients formed can remain relatively stable for a day or more. Moreover, the steepness and molar concentration of tropic or trophic factors within the gradient can be controlled.
Collapse
Affiliation(s)
- William J Rosoff
- Department of Physics, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
111
|
Allen J, Chilton JK. The specific targeting of guidance receptors within neurons: who directs the directors? Dev Biol 2008; 327:4-11. [PMID: 19121301 DOI: 10.1016/j.ydbio.2008.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 02/04/2023]
Abstract
Guidance molecules present in both axonal and dendritic growth cones mediate neuronal responses to extracellular cues thereby ensuring correct neurite pathfinding and development of the nervous system. Little is known though about the mechanisms employed by neurons to deliver these receptors, specifically and efficiently, to the extending growth cone. A deeper understanding of this process is crucial if guidance receptors are to be manipulated to promote nervous system repair. Studies in other polarised cells, notably epithelial, have elucidated fundamental routes to the intracellular segregation of molecules mediated by endosomal pathways. Due to their extreme complexity and specialisation, neurons appear to have built upon these generic systems to evolve sophisticated trafficking networks. A striking feature is the axon initial segment which acts like a valve to tightly regulate the flux of molecules both entering and leaving the axon. Once in the growth cone, further controls operate to enhance the retention or rejection, as appropriate, of membrane receptors. We discuss the current state of knowledge regarding the intracellular trafficking of axon guidance receptors and how this relates to their developmental roles. We highlight the various facets still to be properly elucidated and by building on existing data regarding neuronal polarity and intracellular sorting mechanisms suggest ways to fill these gaps.
Collapse
Affiliation(s)
- James Allen
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Research Way, Plymouth PL6 8BU, UK
| | | |
Collapse
|
112
|
Axon guidance: asymmetric signaling orients polarized outgrowth. Trends Cell Biol 2008; 18:597-603. [PMID: 18951796 DOI: 10.1016/j.tcb.2008.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/22/2022]
Abstract
A network of connections is established as neural circuits form between neurons. To make these connections, neurons initiate asymmetric axon outgrowth in response to extracellular guidance cues. Within the specialized growth cones of migrating axons, F-actin and microtubules asymmetrically accumulate where an axon projects forward. Although many guidance cues, receptors and intracellular signaling components that are required for axon guidance have been identified, the means by which the asymmetry is established and maintained is unclear. Here, we discuss recent studies in invertebrate and vertebrate organisms that define a signaling module comprising UNC-6 (the Caenorhabditis elegans ortholog of netrin), UNC-40 (the C. elegans ortholog of DCC), PI3K, Rac and MIG-10 (the C. elegans ortholog of lamellipodin) and we consider how this module could establish polarized outgrowth in response to guidance cues.
Collapse
|
113
|
The Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac GTPases in Caenorhabditis elegans axon guidance. Genetics 2008; 179:1957-71. [PMID: 18689885 DOI: 10.1534/genetics.108.088963] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the developing nervous system, axons are guided to their targets by the growth cone. Lamellipodial and filopodial protrusions from the growth cone underlie motility and guidance. Many molecules that control lamellipodia and filopodia formation, actin organization, and axon guidance have been identified, but it remains unclear how these molecules act together to control these events. Experiments are described here that indicate that, in Caenorhabditis elegans, two WH2-domain-containing activators of the Arp2/3 complex, WVE-1/WAVE and WSP-1/WASP, act redundantly in axon guidance and that GEX-2/Sra-1 and GEX-3/Kette, molecules that control WAVE activity, might act in both pathways. WAVE activity is controlled by Rac GTPases, and data are presented here that suggest WVE-1/WAVE and CED-10/Rac act in parallel to a pathway containing WSP-1/WASP and MIG-2/RhoG. Furthermore, results here show that the CED-10/WVE-1 and MIG-2/WSP-1 pathways act in parallel to two other molecules known to control lamellipodia and filopodia and actin organization, UNC-115/abLIM and UNC-34/Enabled. These results indicate that at least three actin-modulating pathways act in parallel to control actin dynamics and lamellipodia and filopodia formation during axon guidance (WASP-WAVE, UNC-115/abLIM, and UNC-34/Enabled).
Collapse
|
114
|
Pujic Z, Giacomantonio CE, Unni D, Rosoff WJ, Goodhill GJ. Analysis of the growth cone turning assay for studying axon guidance. J Neurosci Methods 2008; 170:220-8. [DOI: 10.1016/j.jneumeth.2008.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|