101
|
Gardner B, Doose M, Sanchez JI, Freedman AN, de Moor JS. Distribution of Genomic Testing Resources by Oncology Practice and Rurality: A Nationally Representative Study. JCO Precis Oncol 2021; 5:PO.21.00109. [PMID: 34568717 PMCID: PMC8457818 DOI: 10.1200/po.21.00109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Oncologists are increasingly using molecular profiling to inform personalized patient treatment decisions. Despite its promising utility, the integration of genomic testing into diverse clinical health care settings across geographic settings has been understudied. METHODS We used data from the National Survey of Precision Medicine in Cancer Treatment, a nationally representative sample of practicing US oncologists, to assess the availability of six genomic testing resources, including on-site pathology, contracts with outside laboratories, on-site genetic counselors, internal policies or protocols for using genomic and biomarker testing, electronic medical record alerts, and genomic or molecular tumor boards. We used multivariate logistic regression models to examine differences in the availability of each genomic testing resource by practice type and rurality while adjusting for payer mix and patient volume. RESULTS A larger proportion of multispecialty group and academic practices had genomic testing resources available compared with solo and nonacademic practices. Electronic medical record alerts were the least available resource, whereas contracts with outside laboratories were the most available resource. Compared with urban practices, there were significantly fewer practices located in rural areas that had on-site pathology, on-site genetic counselors, protocols for genomic tests, and molecular tumor boards. CONCLUSION Genomic testing resources varied by practice type and geography among a nationally representative sample of practicing oncologists. This variation has important implications for the development of interventions and policies to support the more equitable delivery of precision oncology to patients with cancer.
Collapse
Affiliation(s)
- Brittany Gardner
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD
| | - Michelle Doose
- Healthcare Delivery Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD
| | - Janeth I. Sanchez
- Healthcare Delivery Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD
| | - Andrew N. Freedman
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD
| | - Janet S. de Moor
- Healthcare Delivery Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD
| |
Collapse
|
102
|
Shetty O, Gurav M, Bapat P, Karnik N, Wagh G, Pai T, Epari S, Desai S. Moving Next-Generation Sequencing into the Clinic. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractWith an advancement in the field of molecular diagnostics, there has been a profound evolution in the testing modalities, especially in the field of oncology. In the past decade, sequencing technology has evolved drastically with the advent of high-throughput next-generation sequencing (NGS). Subsequently, the single-gene tests have been replaced by multigene panel-based assays, deep sequencing, massively parallel whole genome, whole-exome sequencing, and so on. NGS has provided molecular diagnostics professionals a wonderful tool to explore and unearth the genetic alterations, underpinning the pathophysiology of the disease. However, this development has posed new challenges which consist of the following; understanding the technology, types of platforms available, various sequencing strategies, bioinformatics and data analysis algorithm, reporting of various variants, and validation of assays and overall for developing NGS assay for clinical utility. The challenges involved sometimes impede development of these high-end assays in laboratories. The present article provides a broad overview of our journey in setting up the NGS assay in a molecular pathology laboratory at a tertiary care oncology center. We hereby describe various important points and steps to be followed while working on the NGS setup, right from its inception to final drafting of the reports, with inclusion of various validation steps. We aim at providing a beginner’s guide to set up NGS assays in the laboratory using recommended best practices and various international guidelines.
Collapse
Affiliation(s)
- Omshree Shetty
- Division of Molecular Pathology, Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mamta Gurav
- Division of Molecular Pathology, Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prachi Bapat
- Division of Molecular Pathology, Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nupur Karnik
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gauri Wagh
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Trupti Pai
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
103
|
[Variant interpretation in molecular pathology and oncology : An introduction]. DER PATHOLOGE 2021; 42:369-379. [PMID: 33938987 DOI: 10.1007/s00292-021-00938-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Increasingly extensive genomic diagnostics in cancer precision medicine require uniform evaluation criteria for the classification of variants with regard to their functional and therapeutic implications. In this review we present the most important guidelines and classification systems currently used in daily clinical practice, explain their advantages and disadvantages as well as differences and similarities, and present the step-by-step, systematic process that enables successful variant interpretation.
Collapse
|
104
|
Grill S, Klein E. Incorporating Genomic and Genetic Testing into the Treatment of Metastatic Luminal Breast Cancer. Breast Care (Basel) 2021; 16:101-107. [PMID: 34012365 PMCID: PMC8114047 DOI: 10.1159/000513800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment of patients with luminal metastatic breast cancer (MBC) has become even more complex over the last few years as molecular profiling has begun to alter disease management. It is well accepted that MBC is not curable but is treatable. Today we are able to prolong progression-free survival and partly overall survival with targeted and more individual treatment strategies adjusted according to the molecular subtype. SUMMARY Genetic and genomic testing has become therapeutically relevant in luminal MBC and is therefore an integral component within the treatment spectrum. By now, germline testing of BRCA1 and BRCA2 and somatic testing for PIK3CA mutations are inevitable elements in disease management and the current state of the art in luminal MBC patients. Furthermore, testing of ESR1 resistance mutation, ERBB2 mutation, microsatellite instability, and neurotrophic tyrosine receptor kinase (NTRK) gene fusion (mainly in secretory breast cancer) has recently gained increasing attention. However, based on the expanding role of personalized medicine, clinicians are now faced with substantial new challenges and possibly unsuspected possibilities. The following review summarizes current developments in genetic and genomic testing in luminal MBC. KEY MESSAGES In luminal MBC genomics have become an integral component within the spectrum of oncological treatment establishing novel therapeutic facilities. Further developments in treatment personalization adjusted according to the molecular subtype should become increasingly important in order to enhance the progress of de-escalation of chemotherapy in luminal MBC. However, based on the expanding role of personalized medicine, clinicians are now faced with substantial new challenges and possibly unsuspected possibilities.
Collapse
Affiliation(s)
- Sabine Grill
- Department of Gynecology and Obstetrics, Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | | |
Collapse
|
105
|
Mafficini A, Lawlor RT, Ghimenton C, Antonello D, Cantù C, Paolino G, Nottegar A, Piredda ML, Salvia R, Milella M, Dei Tos AP, Fassan M, Scarpa A, Luchini C. Solid Pseudopapillary Neoplasm of the Pancreas and Abdominal Desmoid Tumor in a Patient Carrying Two Different BRCA2 Germline Mutations: New Horizons from Tumor Molecular Profiling. Genes (Basel) 2021; 12:481. [PMID: 33810291 PMCID: PMC8065547 DOI: 10.3390/genes12040481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
This case report describes the history of a 41 year-old woman with a solid pseudopapillary neoplasm (SPN) of the pancreas and a metachronous abdominal desmoid tumor (DT) that occurred two years after the SPN surgical resection. At next-generation sequencing of 174 cancer-related genes, both neoplasms harbored a CTNNB1 somatic mutation which was different in each tumor. Moreover, two BRCA2 pathogenic mutations were found in both tumors, confirmed as germline by the sequencing of normal tissue. The BRCA2 mutations were c.631G>A, resulting in the amino-acid change p.V211I, and c.7008-2A>T, causing a splice acceptor site loss. However, as the two neoplasms showed neither loss of heterozygosity nor somatic mutation in the second BRCA2 allele, they cannot be considered as BRCA-dependent tumors. Nevertheless, this study highlights the important opportunities opened by extensive tumor molecular profiling. In this particular case, it permitted the detection of BRCA2-germline mutations, essential for addressing the necessary BRCA-related genetic counseling, surveillance, and screening for the patient and her family.
Collapse
Affiliation(s)
- Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
| | - Rita T. Lawlor
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
| | - Claudio Ghimenton
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.G.); (G.P.); (M.L.P.)
| | - Davide Antonello
- Department of Surgery, The Pancreas Institute, University of Verona, 37134 Verona, Italy; (D.A.); (R.S.)
| | - Cinzia Cantù
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
| | - Gaetano Paolino
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.G.); (G.P.); (M.L.P.)
| | - Alessia Nottegar
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
| | - Maria L. Piredda
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.G.); (G.P.); (M.L.P.)
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University of Verona, 37134 Verona, Italy; (D.A.); (R.S.)
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University of Verona, 37134 Verona, Italy;
| | - Angelo P. Dei Tos
- Department of Medicine (DIMED), Section of Pathological Anatomy, University of Padua, 35121 Padua, Italy; (A.P.D.T.); (M.F.)
| | - Matteo Fassan
- Department of Medicine (DIMED), Section of Pathological Anatomy, University of Padua, 35121 Padua, Italy; (A.P.D.T.); (M.F.)
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.G.); (G.P.); (M.L.P.)
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (A.M.); (R.T.L.); (C.C.); (A.N.); (A.S.)
| |
Collapse
|
106
|
Businello G, Galuppini F, Fassan M. The impact of recent next generation sequencing and the need for a new classification in gastric cancer. Best Pract Res Clin Gastroenterol 2021; 50-51:101730. [PMID: 33975684 DOI: 10.1016/j.bpg.2021.101730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The phenotypical and molecular heterogeneity of gastric cancer has hampered the introduction in clinical practice of a unifying classification of the disease. However, as next generation sequencing (NGS) technologies enhanced the comprehension of the molecular landscape of gastric cancer, novel molecular classification systems have been proposed, allowing the dissection of molecular tumor heterogeneity and paving the way for the development of new targeted therapies. Moreover, the use of NGS analyses in the molecular profiling of formalin-fixed paraffin-embedded (FFPE) specimens will improve patient selection for the enrolment in novel clinical trials. In conclusion, the application of NGS in precision oncology will revolutionize the diagnosis and clinical management in gastric cancer patients.
Collapse
Affiliation(s)
- Gianluca Businello
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Francesca Galuppini
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
107
|
Tarantino P, Mazzarella L, Marra A, Trapani D, Curigliano G. The evolving paradigm of biomarker actionability: Histology-agnosticism as a spectrum, rather than a binary quality. Cancer Treat Rev 2021; 94:102169. [PMID: 33652262 DOI: 10.1016/j.ctrv.2021.102169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Precision medicine is progressively revolutionizing oncology, through the identification of biomarkers predictive of treatment response in cancer patients. For three of such biomarkers, namely NTRK-fusions, microsatellite instability and high tumor mutational burden, drugs have been approved by regulatory agencies regardless of tumor histology, realizing the paradigm of histology-agnostic actionability. Several additional biomarkers are being studied in a histology-agnostic manner, and may in the future expand this list. However, most available evidence suggest that histology-agnosticism may be the extreme of a continuous spectrum of actionability, rather than a binary quality. The present review recapitulates such evidence, highlighting opportunities and challenges posed by the emergence of the spectrum of biomarker actionability in the context of a prevalently histology-based oncology.
Collapse
Affiliation(s)
- Paolo Tarantino
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy
| | | | - Antonio Marra
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy
| | | | - Giuseppe Curigliano
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy.
| |
Collapse
|
108
|
Melas M, Subbiah S, Saadat S, Rajurkar S, McDonnell KJ. The Community Oncology and Academic Medical Center Alliance in the Age of Precision Medicine: Cancer Genetics and Genomics Considerations. J Clin Med 2020; 9:E2125. [PMID: 32640668 PMCID: PMC7408957 DOI: 10.3390/jcm9072125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Recent public policy, governmental regulatory and economic trends have motivated the establishment and deepening of community health and academic medical center alliances. Accordingly, community oncology practices now deliver a significant portion of their oncology care in association with academic cancer centers. In the age of precision medicine, this alliance has acquired critical importance; novel advances in nucleic acid sequencing, the generation and analysis of immense data sets, the changing clinical landscape of hereditary cancer predisposition and ongoing discovery of novel, targeted therapies challenge community-based oncologists to deliver molecularly-informed health care. The active engagement of community oncology practices with academic partners helps with meeting these challenges; community/academic alliances result in improved cancer patient care and provider efficacy. Here, we review the community oncology and academic medical center alliance. We examine how practitioners may leverage academic center precision medicine-based cancer genetics and genomics programs to advance their patients' needs. We highlight a number of project initiatives at the City of Hope Comprehensive Cancer Center that seek to optimize community oncology and academic cancer center precision medicine interactions.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Glendora, CA 91741, USA;
| | - Siamak Saadat
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Colton, CA 92324, USA;
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Upland, CA 91786, USA;
| | - Kevin J. McDonnell
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
- Center for Precision Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|