101
|
Johnson Esua O, Cheng JH, Sun DW. Novel technique for treating grass carp (Ctenopharyngodon idella) by combining plasma functionalized liquids and Ultrasound: Effects on bacterial inactivation and quality attributes. ULTRASONICS SONOCHEMISTRY 2021; 76:105660. [PMID: 34271395 PMCID: PMC8283328 DOI: 10.1016/j.ultsonch.2021.105660] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
A novel technique for treating grass carp by combining plasma functionalized liquids and ultrasound to inactivate bacteria was developed. The effects of the plasma functionalized liquids (PFL) including plasma functionalized water (PFW) and buffer (PFB) and their respective combination with ultrasound treatment (USPFW and USPFB) on the oxidative and physical qualities of grass carp were also investigated. Individual applications of PFW and PFB significantly reduced the populations of Escherichia coli and Shewanella putrefaciens in the range of 0.31-1.18 log CFU/g, compared with the control with a reduction of 0.18 log CFU/g, while combined treatments of USPFW and USPFB presented additional reductions of 0.05-0.65 log CFU/g, with potential synergy demonstrated for PFW and ultrasound. The treatment resulted in improved biomedical index and nutritional value of fatty acids and lipids, protein structural unfolding, increased lipid oxidation and protein degradation with values within the acceptable limits, and the combined treatment was more effective for retarding the hardness reduction in grass carp, while the colour change was also significantly affected, resulting in increased whiteness. The results indicated that the combined treatments may be a promising approach to improving the quality of seafood products.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
102
|
Su J, Cavaco-Paulo A. Effect of ultrasound on protein functionality. ULTRASONICS SONOCHEMISTRY 2021; 76:105653. [PMID: 34198127 PMCID: PMC8253904 DOI: 10.1016/j.ultsonch.2021.105653] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
The review focus on the effect of ultrasound on protein functionality. The presence of transient ultrasonic mechanical waves induce various sonochemical and sonomechanical effects on a protein. Sonochemical effects include the breakage of chains and/or the modification of side groups of aminoacids. Sonomechanical modifications by enhanced molecular agitation, might lead to the transient or permanent modification of the 3D structure of the folded protein. Since the biological function of proteins depends on the maintenance of its 3D folded structure, both sonochemical and sonomechanical effects might affect its properties. A protein might maintain its 3D structure and functionality after minor sonochemical effects, however, the enhanced mass transfer by sonomechanical effects might expose internal hydrophobic residues of the protein, making protein unfolding to an irreversible denatured state. Ultrasound enhanced mass transport effects are unique pathways to change the 3D folded structure of proteins which lead to a new functionality of proteins as support shield materials during the formation microspheres. Enzymes are proteins and their reactions should be conducted in a reactor set-up where enzymes are protected from sonic waves to maximize their catalytic efficiency. In this review, focused examples on protein dispersions/emulsions and enzyme catalysis are given.
Collapse
Affiliation(s)
- Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, 214122 Wuxi, China; Key Laboratory of Eco-textiles, Jiangnan University, Ministry of Education, China; International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, 214122 Wuxi, China; Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, 214122 Wuxi, China; Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
103
|
Hussain M, Qayum A, Zhang X, Hao X, Liu L, Wang Y, Hussain K, Li X. Improvement in bioactive, functional, structural and digestibility of potato protein and its fraction patatin via ultra-sonication. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
104
|
Valorization of ultrasound assisted restructured soy protein: Impact on the quality characteristics of instant noodles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
105
|
Yang T, Wang P, Zhou Q, Wang X, Cai J, Huang M, Jiang D. Investigation on the Molecular and Physicochemical Changes of Protein and Starch of Wheat Flour during Heating. Foods 2021; 10:foods10061419. [PMID: 34207388 PMCID: PMC8233833 DOI: 10.3390/foods10061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The behaviors of starch and protein in wheat flour during heating were investigated, and the molecular changes of starch and protein and their effects on the textural characteristics were assessed. The results showed that with the increased temperature, soluble protein aggregated to insoluble high-molecular-weight protein polymers when the heating temperature exceeded 70 °C, and the aggregation of protein was mainly caused by covalent bonds of disulfide (SS) bonds. Hydrophobic interaction was the main noncovalent bond that participated in the formation of protein aggregates. The major change in the secondary structure during heating was a pronounced transition towards β-sheet-like structures. Considerable disruption of ordered structures of starch occurred at 70 °C, and starch was fully gelatinized at 80 °C. Typical starch pasting profiles of cooked flour were observed when the temperature was below 70 °C, and heat treatment decreased the pasting viscosity of the cooked flour from control to 80 °C, whereas the viscosity of the wheat flour increased in heating treatment at 90, 95 and 100 °C. The intense protein-starch interaction during heating affected the textural characteristic of flour gelation, which showed higher strength at 90, 95 and 100 °C. This study may provide a basis for improving wheat flour processing conditions and could lead to the production of new wheat products.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| |
Collapse
|
106
|
Zhang R, Xing L, Kang D, Zhou L, Wang L, Zhang W. Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins. ULTRASONICS SONOCHEMISTRY 2021; 74:105582. [PMID: 33975184 PMCID: PMC8122357 DOI: 10.1016/j.ultsonch.2021.105582] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 05/09/2023]
Abstract
The present research aimed to investigate the effects of high-intensity ultrasound (HIU, 20 kHz, 0 W, 100 W, 300 W and 500 W)-assisted vacuum tumbling (UVT) for 60 min and 120 min on the oxidation and physicochemical properties of the pork myofibrillar proteins (MPs). Compared with the vacuum tumbling (VT) groups without the HIU assistance, the carbonyl content increased, while the total sulfhydryl (SH) content was reduced with the increase of HIU power and treatment time (P < 0.05). The reactive SH content was increased significantly after treated by UVT with 300 W compared with the VT group (P < 0.05) regardless of the treatment time. Similarly, the surface hydrophobicity (S0), the intrinsic tryptophan intensity, and the solubility in the UVT group (300 W) were remarkably higher than those of the VT group (P < 0.05). In contrast, the α-helix content and the particle size of MPs significantly decreased when the HIU power was at 100 W and 300 W (P < 0.05). The results suggest that UVT treatment could change the structure and physicochemical properties of MPs accompanied by protein oxidation.
Collapse
Affiliation(s)
- Ruyu Zhang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dacheng Kang
- School of Life Sciences, Linyi University, Linyi, Shandong 276012, China
| | - Lei Zhou
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Wang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
107
|
Ma J, Zeng X, Zhou M, Cheng L, Ren D. Inhibitory effect of low-molecular-weight peptides (0-3 kDa) from Spirulina platensis on H 2O 2-induced oxidative damage in L02 human liver cells. BIORESOUR BIOPROCESS 2021; 8:36. [PMID: 38650240 PMCID: PMC10992845 DOI: 10.1186/s40643-021-00388-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Spirulina platensis protein hydrolysates were prepared by digesting protein extracts with papain, and the hydrolysates were separated into 30, 10, and 3 kDa weights using membrane ultrafiltration. The 0-3 kDa low-molecular-weight Spirulina peptides (LMWSPs) proved the highest chemical antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical (·OH) scavenging activities and total antioxidant capacity. Cellular antioxidant ability of LMWPs fractions against 2000 μg/mL H2O2 induced oxidative damage of L02 cells were investigated. The MTT assay results displayed that LMWSPs at different concentrations (0-1000 μg/mL) had proliferation effect on the L02 cells and that treatment of the L02 cells with the 1000 μg/mL LMWSPs (0-3 kDa) significantly prevented H2O2-induced oxidative damage compared with control cells. Moreover, the 2',7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe assay showed that the levels of ROS and NO were significantly lower in the experimental group that was treated with the peptides for 24 h than in the control group. Furthermore, using the corresponding kits, the treatment inhibited the reduction of SOD activity and the increase of MDA contents in the L02 cells. Therefore, LMWSPs (0-3 kDa) may have potential applications in antioxidant and liver health products.
Collapse
Affiliation(s)
- Jun Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiankun Zeng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhou
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Le Cheng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
108
|
Aiello G, Pugliese R, Rueller L, Bollati C, Bartolomei M, Li Y, Robert J, Arnoldi A, Lammi C. Assessment of the Physicochemical and Conformational Changes of Ultrasound-Driven Proteins Extracted from Soybean Okara Byproduct. Foods 2021; 10:foods10030562. [PMID: 33800391 PMCID: PMC7998950 DOI: 10.3390/foods10030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
This study was aimed at the valorization of the okara byproduct deriving form soy food manufacturing, by using ultrasound at different temperatures for extracting the residual proteins. The physicochemical and conformational changes of the extracted proteins were investigated in order to optimize the procedure. Increasing the temperature from 20 up to 80 °C greatly enhanced the yields and the protein solubility without affecting the viscosity. The protein secondary and tertiary structures were also gradually modified in a significant way. After the ultrasonication at the highest temperature, a significant morphological transition from well-defined single round structures to highly aggregated ones was observed, which was confirmed by measuring the water contact angles and wettability. After the ultrasound process, the improvement of peptides generation and the different amino acid exposition within the protein led to an increase of the antioxidant properties. The integrated strategy applied in this study allows to foster the okara protein obtained after ultrasound extraction as valuable materials for new applications.
Collapse
Affiliation(s)
- Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy;
| | - Raffaele Pugliese
- NeMO Lab., ASST Grande Ospedale Metropolitano Niguarda, 20133 Milan, Italy;
| | - Lukas Rueller
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany; (L.R.); (J.R.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (Y.L.); (A.A.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (Y.L.); (A.A.)
| | - Yuchen Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (Y.L.); (A.A.)
| | - Josef Robert
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany; (L.R.); (J.R.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (Y.L.); (A.A.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (C.B.); (M.B.); (Y.L.); (A.A.)
- Correspondence: ; Tel.: +39-025-0319-372
| |
Collapse
|
109
|
Response Surface Optimization of Enzymatic Hydrolysis of Peptides of Chinese Pecan (Carya cathayensis) and Analysis of Their Antioxidant Capacities and Structures. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
110
|
Wen J, Zhang Y, Jin H, Sui X, Jiang L. Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their In Vitro Digestion Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9796-9803. [PMID: 32786850 DOI: 10.1021/acs.jafc.0c03586] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by food-grade particles have received much attention in recent years. However, the stabilizing mechanism (e.g., structural network) in the continuous phase of HIPPEs stabilized by proteins is not well understood. In this work, we deciphered the stabilizing mechanisms that confer stability to HIPPEs produced from sunflower oil and soy protein microgels (SPMs). HIPPEs were fabricated at the protein concentrations of 1.50-2.00 wt % and oil volume fraction of 0.78-0.82. The cryo-scanning electron microscopy (cryo-SEM) observations indicated that there were two possible stabilizing mechanisms for HIPPEs at the protein concentrations of 1.50-2.00 wt %: the first is a stabilization provided by the shared monolayer of SPMs (at a protein concentration of 1.50%), and the other is stabilization provided by the distinct monolayer of SPMs (at protein concentrations of 1.75 and 2.00 wt %). The latter protein concentration created a thick network, formed by interacting SPMs, which trapped oil droplets. Results also confirmed that HIPPEs have an open-cell porous structure, forming a sponge-like morphology, where the internal phase was located. This study also investigated the digestibility of HIPPEs, suggesting a slower free fatty acid-releasing profile in in vitro intestinal digestion.
Collapse
Affiliation(s)
- Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|