101
|
Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2013; 2:20424. [PMID: 24009892 PMCID: PMC3760642 DOI: 10.3402/jev.v2i0.20424] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 12/31/2022] Open
Abstract
Several cell types, including tumour cells, secrete extracellular vesicles (EVs), and tumour-derived EVs play a role in cancer initiation and progression. These vesicles include both a common set of membrane and cytosolic proteins and origin-specific subsets of proteins that likely correlated to cell type–associated functions. To confirm the presence of EVs in the preparations, researchers have identified so-called EV marker proteins, including the tetraspanin family proteins and such cytosolic proteins as heat shock 70 kDa protein 4 (HSP70) and tumour susceptibility gene 101 (TSG101). However, studies have shown that some EV markers are not always present in all EVs, which not only complicates the identification of EVs but also precludes the quantitative evaluation of EV proteins. Thus, it is strongly required to explore well-conserved EV marker proteins that are present at similar levels, regardless of their tissue or cellular origin. In this study, we compared the presence of 11 well-known EV marker proteins by immunoblotting using EVs isolated from 4 human prostate cell lines and 5 human breast cell lines, including cancer cells with different phenotypes. We found that all the tested EVs were positive for CD9 and CD81, with similar abundance that was irrespective of the EV origin. In contrast, other EV marker proteins, such as TSG101, Rab-5b and CD63, were detected in an inconsistent manner, depending on the origin of the EVs. Thus, we propose that the detection of CD9 and/or CD81 should ensure the presence of EVs.
Collapse
Affiliation(s)
- Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan ; Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Tokyo, Japan ; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Cosme J, Liu PP, Gramolini AO. The cardiovascular exosome: current perspectives and potential. Proteomics 2013; 13:1654-9. [PMID: 23526783 DOI: 10.1002/pmic.201200441] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/25/2013] [Accepted: 02/18/2013] [Indexed: 11/08/2022]
Abstract
The exosome is a secreted microvesicle that has been shown to contain genetic material and proteins and is involved in multiple levels of cellular communication. The cardiovascular exosome proteome is a promising subproteome that warrants investigation since a detailed understanding of its role in the heart should improve our comprehension of intercellular communication in the heart, and may even assist in biomarker discovery. Indeed, uncovering the role of the exosome in cardiovascular physiology could be accomplished with the application of scientific approaches and insights gained from studies of exosomes in other fields, such as cancer biology and immunology, where much of the established knowledge of the exosome has been generated. In the present review, we discuss the relevant literature and examine areas of investigation that would bring the cardiovascular exosome to the forefront of intercellular communication in the heart.
Collapse
Affiliation(s)
- Jake Cosme
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
103
|
Williams JL, Gatson NN, Smith KM, Almad A, McTigue DM, Whitacre CC. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol 2013; 149:236-43. [PMID: 23706172 DOI: 10.1016/j.clim.2013.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 01/21/2023]
Abstract
In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), relapses are markedly reduced during pregnancy. Exosomes are lipid-bound vesicles and are more abundant in the serum during pregnancy. Using murine EAE, we demonstrate that serum exosomes suppress T cell activation, promote the maturation of oligodendrocyte precursor cells (OPC), and pregnancy exosomes facilitate OPC migration into active CNS lesions. However, exosomes derived from both pregnant and non-pregnant mice reduced the severity of established EAE. Thus, during pregnancy, serum exosomes modulate the immune and central nervous systems and contribute to pregnancy-associated suppression of EAE.
Collapse
Affiliation(s)
- Jessica L Williams
- The Ohio State University, Department of Microbial Infection and Immunity, 208 Bricker Hall, 190 North Oval Mall, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
104
|
Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013; 13:1554-71. [PMID: 23401200 DOI: 10.1002/pmic.201200329] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
Mammalian cells secrete two types of extracellular vesicles either constitutively or in a regulated manner: exosomes (50-100 nm in diameter) released from the intracellular compartment and ectosomes (also called microvesicles, 100-1000 nm in diameter) shed directly from the plasma membrane. Extracellular vesicles are bilayered proteolipids enriched with proteins, mRNAs, microRNAs, and lipids. In recent years, much data have been collected regarding the specific components of extracellular vesicles from various cell types and body fluids using proteomic, transcriptomic, and lipidomic methods. These studies have revealed that extracellular vesicles harbor specific types of proteins, mRNAs, miRNAs, and lipids rather than random cellular components. These results provide valuable information on the molecular mechanisms involved in vesicular cargo-sorting and biogenesis. Furthermore, studies of these complex extracellular organelles have facilitated conceptual advancements in the field of intercellular communication under physiological and pathological conditions as well as for disease-specific biomarker discovery. This review focuses on the proteomic, transcriptomic, and lipidomic profiles of extracellular vesicles, and will briefly summarize recent advances in the biology, function, and diagnostic potential of vesicle-specific components.
Collapse
Affiliation(s)
- Dong-Sic Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
105
|
Burnett LA, Light MM, Mehrotra P, Nowak RA. Stimulation of GPR30 increases release of EMMPRIN-containing microvesicles in human uterine epithelial cells. J Clin Endocrinol Metab 2012; 97:4613-22. [PMID: 23012390 PMCID: PMC3513528 DOI: 10.1210/jc.2012-2098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Uterine remodeling is highly dependent on the glycosylated transmembrane protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN). Previous studies indicate estradiol can increase EMMPRIN expression in uterine cells and promote subsequent induction of MMP production. OBJECTIVE The aim of this study was to investigate the role of G protein-coupled receptor 30 (GPR30) stimulation on EMMPRIN microvesicle release in the human uterine epithelial cell line hTERT-EEC (EECs). DESIGN We examined EMMPRIN release by human EECs in response to GPR30 stimulation by microvesicle isolation, Western blot, and immunocytochemistry. We employed a pharmacological approach using the GPR30-selective agonist G1 and the antagonist G15 to determine the receptor specificity of this response. RESULTS We demonstrated GPR30 expression in EECs and release of EMMPRIN in microvesicles in response to stimulation of GPR30. G1, estradiol, and cholera toxin stimulated EMMPRIN release in microvesicles as detected by Western blot and immunocytochemistry, indicating that stimulation of GPR30 can induce EMMPRIN microvesicle release. CONCLUSIONS These data indicate that EMMPRIN release in microvesicles can be mediated by stimulation of GPR30 in human EECs, suggesting that inappropriate stimulation or expression of this receptor may be significant in uterine pathology.
Collapse
MESH Headings
- Basigin/chemistry
- Basigin/metabolism
- Benzodioxoles/pharmacology
- Cell Line, Transformed
- Cholera Toxin/pharmacology
- Cyclopentanes/pharmacology
- Cytoplasmic Vesicles/drug effects
- Cytoplasmic Vesicles/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Estradiol/pharmacology
- Female
- Humans
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Quinolines/pharmacology
- Receptors, Estrogen/agonists
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Stimulation, Chemical
- Telomerase/genetics
- Uterus/cytology
- Uterus/drug effects
- Uterus/metabolism
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, 61801, USA.
| | | | | | | |
Collapse
|
106
|
[Immunological analogies between ovarian cancer and pregnancy]. ACTA ACUST UNITED AC 2012. [PMID: 23182791 DOI: 10.1016/j.jgyn.2012.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During pregnancy an environment allowing installation of tolerance toward the fetus is set up locally at the materno-fetal interface. Numerous effectors of immunity are involved in this tolerance (NK cell, T cell, Macrophages, dendritic cell). Specific mechanisms during pregnancy attract locally these immunological cells. In the decidua, they are educated toward tolerance. These mechanisms evolve during the pregnancy because at the end of the pregnancy, tolerance is broken to prepare and activate the labor. Ovarian tumors, after having surmounted the immunosurveillance, like trophoblast, chair the installation of a tolerance of their host facilitating the development of the disease. The blocking of these mechanisms of tolerance coupled with activation of mechanisms of defenses offer new perspectives in the treatment of the ovarian cancer. The authors suggest showing the analogies of the tolerance observed during ovarian cancer and pregnancy. The knowledge of the orchestration of the physiological mechanisms observed during pregnancy will offer new therapeutic targets.
Collapse
|
107
|
Abstract
It is generally assumed that cells synthesize their own intracellular enzymes. Therefore, if expression of a specific gene is silenced in a potential cancer cell, it is expected that loss of protein function will follow. A provocative study indicates an unexpected mechanism of intercellular tumor suppression, showing that PTEN (phosphatase and tensin homolog deleted from chromosome 10), a cytosolic enzyme, can be transferred between cells in exosomes to suppress signaling and proliferation in target cells.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, James Black Centre, Dundee DD1 5EH, UK.
| |
Collapse
|
108
|
Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT, Kurre P. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res 2012; 73:918-29. [PMID: 23149911 DOI: 10.1158/0008-5472.can-12-2184] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extrinsic signaling cues in the microenvironment of acute myelogenous leukemia (AML) contribute to disease progression and therapy resistance. Yet, it remains unknown how the bone marrow niche in which AML arises is subverted to support leukemic persistence at the expense of homeostatic function. Exosomes are cell membrane-derived vesicles carrying protein and RNA cargoes that have emerged as mediators of cell-cell communication. In this study, we examined the role of exosomes in developing the AML niche of the bone marrow microenvironment, investigating their biogenesis with a focus on RNA trafficking. We found that both primary AML and AML cell lines released exosome-sized vesicles that entered bystander cells. These exosomes were enriched for several coding and noncoding RNAs relevant to AML pathogenesis. Furthermore, their uptake by bone marrow stromal cells altered their secretion of growth factors. Proof-of-concept studies provided additional evidence for the canonical functions of the transferred RNA. Taken together, our findings revealed that AML exosome trafficking alters the proliferative, angiogenic, and migratory responses of cocultured stromal and hematopoietic progenitor cell lines, helping explain how the microenvironmental niche becomes reprogrammed during invasion of the bone marrow by AML.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Holder BS, Tower CL, Forbes K, Mulla MJ, Aplin JD, Abrahams VM. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology 2012; 136:184-91. [PMID: 22348442 DOI: 10.1111/j.1365-2567.2012.03568.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Envelope glycoproteins of human endogenous retrovirus (HERV), such as syncytin 1 (HERV-W), are highly expressed in the placenta and some family members have immunomodulatory properties. Placental microvesicles (MV), which are shed into the maternal circulation during pregnancy, have been demonstrated to induce immune cell activation. Therefore, the aim of this study was to investigate the immunological properties of the highly expressed placental HERV-W protein, syncytin 1, and its potential involvement in placental MV modulation of immune cell activity. The MV shed from first trimester, normal term and pre-eclamptic term placentas, and from the BeWo trophoblast cell line, all contain syncytin 1. Recombinant syncytin 1 and syncytin 1-positive BeWo trophoblast MV both induced peripheral blood mononuclear cell (PBMC) activation, indicated through production of cytokines and chemokines. Reducing syncytin 1 content in BeWo MV inhibited PBMC activation. Recombinant syncytin 1 and syncytin-1-positive BeWo MV dampened PBMC responses to lipopolysaccharide challenge. Our findings suggest that syncytin 1 is shed from the placenta into the maternal circulation in association with MV, and modulates immune cell activation and the responses of immune cells to subsequent lipopolysaccharide stimulation. These studies implicate placental MV-associated HERV in fetal regulation of the maternal immune system.
Collapse
Affiliation(s)
- Beth S Holder
- Maternal and Fetal Health Research Group, Academic Health Sciences Centre, University of Manchester, St Mary's Hospital, Manchester, UK
| | | | | | | | | | | |
Collapse
|
110
|
Braundmeier AG, Dayger CA, Mehrotra P, Belton RJ, Nowak RA. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells. Reprod Sci 2012; 19:1292-301. [PMID: 22729071 DOI: 10.1177/1933719112450332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.
Collapse
Affiliation(s)
- A G Braundmeier
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
111
|
Gercel-Taylor C, Atay S, Tullis RH, Kesimer M, Taylor DD. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem 2012; 428:44-53. [PMID: 22691960 DOI: 10.1016/j.ab.2012.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/18/2012] [Accepted: 06/01/2012] [Indexed: 01/01/2023]
Abstract
Cell-derived vesicles are recognized as essential components of intercellular communication, and many disease processes are associated with their aberrant composition and release. Circulating tumor-derived vesicles have major potential as biomarkers; however, the diagnostic use of exosomes is limited by the technology available for their objective characterization and measurement. In this study, we compare nanoparticle tracking analysis (NTA) with submicron particle analysis (SPA), dynamic light scattering (DLS), and electron microscopy (EM) to objectively define size distribution, number, and phenotype of circulating cell-derived vesicles from ovarian cancer patients. Using the NanoSight LM10 instrument, cell-derived vesicles were visualized by laser light scattering and analyzing Brownian motion of these vesicles captured by video. The NTA software calculates the size and total concentration of the vesicles in solution. Using vesicles isolated from ovarian cancer patients, we demonstrate that NTA can measure the size distributions of cell-derived vesicles comparable to other analysis instrumentation. Size determinations by NTA, SPA, and DLS were more objective and complete than that obtained with the commonly used EM approach. NTA can also define the total vesicle concentration. Furthermore, the use of fluorescent-labeled antibodies against specific markers with NTA allows the determination of the "phenotype" of the cell-derived vesicles.
Collapse
Affiliation(s)
- Cicek Gercel-Taylor
- Department of Obstetrics, Gynecology, and Women's Health, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
112
|
Hood JL, Wickline SA. A systematic approach to exosome-based translational nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:458-67. [DOI: 10.1002/wnan.1174] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
113
|
Holder BS, Tower CL, Jones CJP, Aplin JD, Abrahams VM. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod 2012; 86:103. [PMID: 22205696 DOI: 10.1095/biolreprod.111.097014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Normal pregnancy is associated with the presence of circulating placental microvesicles (MVs). Increased MV shedding and altered immune activation are seen in patients with preeclampsia, suggesting that placental MVs may play a role in the pathophysiology of this disease. Therefore, the aim of this study was to investigate the activation of peripheral blood mononuclear cells (PBMCs) by MVs shed by first-trimester, normal term, and preeclamptic term placenta. First-trimester and preeclamptic term, but not normal term, placental-derived MVs activated PBMCs, as evidenced by elevated IL1B. Significant changes were also seen with several other cytokines and chemokines, and in general when compared to normal term MVs, preeclamptic MVs induced a greater pro-inflammatory response in PBMCs. Pretreatment of PBMCs with first-trimester or normal term placental MVs resulted in a dampened IL1B response to a subsequent lipopolysaccharide (LPS) challenge. In contrast, treatment of PBMCs with preeclamptic term placental MVs exacerbated the LPS response. This was also the case for several other cytokines and chemokines. These studies suggest that placental MVs can modulate basal peripheral immune cell activation and responsiveness to LPS during normal pregnancy, and that in preeclampsia this effect is exacerbated.
Collapse
Affiliation(s)
- Beth S Holder
- Maternal and Fetal Health Research Group, University of Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
114
|
Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012; 7:1525-41. [PMID: 22619510 PMCID: PMC3356169 DOI: 10.2147/ijn.s29661] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
115
|
Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, Sadovsky Y. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod 2012; 18:417-24. [PMID: 22383544 DOI: 10.1093/molehr/gas013] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The largest gene cluster of human microRNAs (miRNAs), the chromosome 19 miRNA cluster (C19MC), is exclusively expressed in the placenta and in undifferentiated cells. The precise expression pattern and function of C19MC members are unknown. We sought to profile the relative expression of C19MC miRNAs in primary human trophoblast (PHT) cells and exosomes. Using high-throughput profiling, confirmed by PCR, we found that C19MC miRNAs are among the most abundant miRNAs in term human trophoblasts. Hypoxic stress selectively reduced miR-520c-3p expression at certain time-points with no effect on other C19MC miRNAs. Similarly, differentiation in vitro had a negligible effect on C19MC miRNAs. We found that C19MC miRNAs are the predominant miRNA species expressed in exosomes released from PHT, resembling the profile of trophoblastic cellular miRNA. Predictably, we detected the similar levels of circulating C19MC miRNAs in the serum of healthy pregnant women at term and in women with pregnancies complicated by fetal growth restriction. Our data define the relative expression levels of C19MC miRNAs in trophoblasts and exosomes, and suggest that C19MC miRNAs function in placental-maternal signaling.
Collapse
Affiliation(s)
- R B Donker
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Kosaka N, Ochiya T. Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells. Front Genet 2012; 2:97. [PMID: 22303391 PMCID: PMC3262223 DOI: 10.3389/fgene.2011.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) have been identified as a fine-tuner in a wide array of biological processes, including development, organogenesis, metabolism, and homeostasis. Deregulation of miRNAs causes diseases, especially cancer. This occurs through a variety of mechanisms, such as genetic alterations, epigenetic regulation, or altered expression of transcription factors, which target miRNAs. Recently, it was discovered that extracellular miRNAs circulate in the blood of both healthy and diseased patients. Since RNase is abundant in the bloodstream, most of the secretory miRNAs are contained in apoptotic bodies, microvesicles, and exosomes or bound to the RNA-binding proteins. However, the secretory mechanism and biological function, as well as the significance of extracellular miRNAs, remain largely unclear. In this article, we summarize the latest and most significant discoveries in recent peer-reviewed research on secretory miRNA involvement in many aspects of physiological and pathological conditions, with a special focus on cancer. In addition, we discuss a new aspect of cancer research that is revealed by the emergence of “secretory miRNA.”
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute Tokyo, Japan
| | | |
Collapse
|
117
|
Clifton VL, Stark MJ, Osei-Kumah A, Hodyl NA. Review: The feto-placental unit, pregnancy pathology and impact on long term maternal health. Placenta 2011; 33 Suppl:S37-41. [PMID: 22118870 DOI: 10.1016/j.placenta.2011.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
Pregnancy induces a number of alterations to maternal physiology to accommodate the increased demands made by the developing fetus and placenta. These alterations appear at least in part to be driven by products derived from the feto-placental unit, including microchimeric cells, as well as placental exosomes and microparticles, inducing changes to maternal physiology both during pregnancy and beyond. Further, increasing evidence suggests that some of these alterations are dependent on the sex of the fetus. Pre-eclampsia and asthma represent two common pregnancy complications that have provided valuable insight into how the feto-placental unit influences maternal physiology in a sex-specific manner. Pregnancy-induced alterations in maternal physiology may expose pre-existing subclinical pathologies and provide insight into future maternal health and disease. While most pregnancy-induced alterations to the maternal system are reversed following delivery, some can persist after parturition leading to cardiovascular, metabolic and autoimmune disease and increased risk of early mortality.
Collapse
Affiliation(s)
- V L Clifton
- The Robinson Institute, Obstetrics and Gynaecology, University of Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
118
|
Klein C, Troedsson MHT. Equine pre-implantation conceptuses express neuraminidase 2--a potential mechanism for desialylation of the equine capsule. Reprod Domest Anim 2011; 47:449-54. [PMID: 22022932 DOI: 10.1111/j.1439-0531.2011.01901.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the second and third week of pregnancy, the equine conceptus is covered by an acellular glycoprotein capsule. This capsule contains glycoproteins resembling those of the mucin family with sialic acid making up a high proportion of the carbohydrate. Coinciding with conceptus fixation, a marked decline in sialic acid content of the capsule occurs, which has been proposed to contribute to cessation of conceptus mobility. Herein, we describe the expression of neuraminidase 2 (NEU2) by pre-implantation stages of equine conceptus development. NEU2 transcript abundance was examined in conceptuses obtained 8, 10, 12, 14 and 16 days after ovulation; highest levels were observed 16 days after ovulation. Transcript abundance observed in endometrial tissue was on average 474-fold lower than in conceptus tissue. Protein expression was localized to trophoblast cells and capsular material. Functionality of NEU2 was shown using an Amplex Red reagent-based assay. NEU2, formerly known as sialidase 2, belongs to a family of enzymes that cleave sialic acid from polysaccharide chains. The expression of NEU2 described herein provides a mechanism by which the conceptus can regulate the sialic acid content of its own capsule. The timely desialylation coinciding with conceptus fixation has been suggested integral for establishment of normal pregnancy.
Collapse
Affiliation(s)
- C Klein
- Gluck Equine Research Center, Department of Veterinary Science, Lexington, KY 40546, USA.
| | | |
Collapse
|
119
|
Trophoblast deportation part II: A review of the maternal consequences of trophoblast deportation. Placenta 2011; 32:724-31. [DOI: 10.1016/j.placenta.2011.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 12/31/2022]
|
120
|
Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages. Am J Reprod Immunol 2011; 66:259-69. [PMID: 21410811 DOI: 10.1111/j.1600-0897.2011.00995.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PROBLEM Our previous studies demonstrated that trophoblast-derived exosomes induced synthesis and release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) by macrophages. The objective of this study was to characterize the mechanism and receptors associated with this induction. METHOD OF STUDY Exosomes were isolated from Sw71 trophoblast-conditioned media by ultrafiltration and ultracentrifugation. Using macrophages isolated from normal donors, cytochalasin D was used to block exosome uptake. Induction of IL-1β mRNA was investigated by qRT-PCR, pro-IL-1β protein by western immunoblotting, and mature IL-1β release by ELISA. RGD peptides were used to block fibronectin binding by macrophage α5β1 integrin. RESULTS Uptake of exosomes by macrophages was completely blocked by pre-treatment with cytochalasin D. Although induction of some cytokines (such as C4A and CCL11) requires uptake, induction of IL-1β occurred without exosome internalization. Cytochalasin D treatment did not inhibit exosome-mediated induction of IL-1β mRNA, production of the pro-protein, or release of mature IL-1β. Blocking of fibronectin binding using RGD peptides demonstrated the abrogation of exosome-mediated IL-1β production. CONCLUSION Although trophoblast-derived exosomes have been demonstrated to induce IL-1β, this is the first demonstration of IL-1β induction by exosome-associated fibronectin. Based on this pro-inflammatory role of exosome-associated fibronectin, it may represent an important general immunoregulatory mechanism.
Collapse
Affiliation(s)
- Safinur Atay
- Department of Microbiology & Immunology, University of Louisville School of Medicine, KY, USA
| | | | | |
Collapse
|