101
|
Nieto PA, Peñaloza HF, Salazar-Echegarai FJ, Castellanos RM, Opazo MC, Venegas L, Padilla O, Kalergis AM, Riedel CA, Bueno SM. Gestational Hypothyroidism Improves the Ability of the Female Offspring to Clear Streptococcus pneumoniae Infection and to Recover From Pneumococcal Pneumonia. Endocrinology 2016; 157:2217-28. [PMID: 27035652 DOI: 10.1210/en.2015-1957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal thyroid hormones are essential for proper fetal development. A deficit of these hormones during gestation has enduring consequences in the central nervous system of the offspring, including detrimental learning and impaired memory. Few studies have shown that thyroid hormone deficiency has a transient effect in the number of T and B cells in the offspring gestated under hypothyroidism; however, there are no studies showing whether maternal hypothyroidism during gestation impacts the response of the offspring to infections. In this study, we have evaluated whether adult mice gestated in hypothyroid mothers have an altered response to pneumococcal pneumonia. We observed that female mice gestated in hypothyroidism have increased survival rate and less bacterial dissemination to blood and brain after an intranasal challenge with Streptococcus pneumoniae. Further, these mice had higher amounts of inflammatory cells in the lungs and reduced production of cytokines characteristic of sepsis in spleen, blood, and brain at 48 hours after infection. Interestingly, mice gestated in hypothyroid mothers had basally increased vascular permeability in the lungs. These observations suggest that gestational hypothyroidism alters the immune response and the physiology of lungs in the offspring, increasing the resistance to respiratory bacterial infections.
Collapse
Affiliation(s)
- Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Raquel M Castellanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Maria Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Luis Venegas
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Oslando Padilla
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (P.A.N., H.F.P., F.J.S.-E., A.M.K., S.A.M.), Santiago, Chile 8331150; Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello (R.M.C.), Santiago, Chile 8370146; Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello (M.C.O., L.V., C.A.R.), Santiago, Chile 8370146; Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile (O.P.), Santiago, Chile 8330073; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064 (A.M.K., S.M.B.), Nantes, France 44093; and Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile (A.M.K.), Santiago, Chile 8330074
| |
Collapse
|
102
|
Kinch CD, Kurrasch DM, Habibi HR. Adverse morphological development in embryonic zebrafish exposed to environmental concentrations of contaminants individually and in mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:286-98. [PMID: 27107150 DOI: 10.1016/j.aquatox.2016.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 05/07/2023]
Abstract
Exposure to environmental contaminants has been linked to developmental and reproductive abnormalities leading to infertility, spontaneous abortion, reduced number of offspring, and metabolic disorders. In addition, there is evidence linking environmental contaminants and endocrine disruption to abnormal developmental rate, defects in heart and eye morphology, and alterations in behavior. Notably, these effects could not be explained by interaction with a single hormone receptor. Here, using a whole-organism approach, we investigated morphological changes to developing zebrafish caused by exposure to a number of environmental contaminants, including bisphenol A (BPA), di(2-ethylhexyl)phthalate (DEHP), nonylphenol, and fucosterol at concentrations measured in a local water body (Oldman River, AB), individually and in mixture. Exposure to nanomolar contaminant concentrations resulted in abnormal morphological development, including changes to body length, pericardia (heart), and the head. We also characterize the spatiotemporal expression profiles of estrogen, androgen, and thyroid hormone receptors to demonstrate that localization of these receptors might be mediating contaminant effects on development. Finally, we examined the effects of contaminants singly and in mixture. Combined, our results support the hypothesis that adverse effects of contaminants are not mediated by single hormone receptor signaling, and adversity of contaminants in mixture could not be predicted by simple additive effect of contaminants. The findings provide a framework for better understanding of developmental toxicity of environmental contaminants in zebrafish and other vertebrate species.
Collapse
Affiliation(s)
- Cassandra D Kinch
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada; Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
103
|
Bonett RM. An Integrative Endocrine Model for the Evolution of Developmental Timing and Life History of Plethodontids and Other Salamanders. COPEIA 2016. [DOI: 10.1643/ot-15-269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
104
|
Chu L, Li J, Liu Y, Cheng CHK. Gonadotropin Signaling in Zebrafish Ovary and Testis Development: Insights From Gene Knockout Study. Mol Endocrinol 2015; 29:1743-58. [PMID: 26452104 DOI: 10.1210/me.2015-1126] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using the transcription activator-like effectors nucleases-mediated gene knockout technology, we have previously demonstrated that LH signaling is required for oocyte maturation and ovulation but is dispensable for testis development in zebrafish. Here, we have further established the fshb and fshr knockout zebrafish lines. In females, fshb mutant is subfertile, whereas fshr mutant is infertile. Folliculogenesis is partially affected in the fshb mutant but is completely arrested at the primary growth stage in the fshr mutant. In males, fshb and fshr mutant are fertile. The fertilization rate and histological structure of the testis is not affected. However, double knockout of fshb;lhb or fshr;lhr leads to all infertile male offspring. The key steroid hormones and steroidogenic genes are dramatically decreased in double knockout mutant (fshb;lhb and fshr;lhr) but not in single knockout mutant (fshb, lhb, fshr, and lhr) males. Furthermore, we have also demonstrated the constitutive activities of both FSH receptor (FSHR) and LH receptor in zebrafish and the compensatory role of LH by cross-reacting with FSHR in the fshb;lhr double mutant, thus explaining the phenotypic discrepancy observed among the ligand/receptor mutant lines. Taken together, our data established the following models on the roles of gonadotropin signaling in zebrafish gonad development. In females, FSH signaling is mainly responsible for promoting follicular growth, whereas LH signaling is mainly responsible for stimulating oocyte maturation and ovulation. In males, the functions of FSH and LH signaling overlap, and only disruption of both FSH and LH signaling could lead to the infertile phenotype. In the absence of FSH, LH could play a compensatory role by cross-reacting with FSHR in both male and female.
Collapse
Affiliation(s)
- Lianhe Chu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Jianzhen Li
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Yun Liu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Christopher H K Cheng
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
105
|
Discovery of latitudinal gradient of triidothyronine concentrations in ectotherms as revealed from a cyprinid fish, the common roach Rutilus rutilus. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Gardell AM, Dillon DM, Smayda LC, von Hippel FA, Cresko WA, Postlethwait JH, Buck CL. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback. Gen Comp Endocrinol 2015; 219:45-52. [PMID: 25733204 PMCID: PMC4508209 DOI: 10.1016/j.ygcen.2015.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100ppm perchlorate or control water and sampled at 4-h intervals across the 24-hday and at one time-point (1100h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle.
Collapse
Affiliation(s)
- Alison M Gardell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Danielle M Dillon
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Lauren C Smayda
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | | | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| |
Collapse
|
107
|
Yu L, Han Z, Liu C. A review on the effects of PBDEs on thyroid and reproduction systems in fish. Gen Comp Endocrinol 2015; 219:64-73. [PMID: 25585150 DOI: 10.1016/j.ygcen.2014.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
The objective of this review was to summarize and discuss the effects of Polybrominated diphenyl ethers (PBDEs) on thyroid and reproduction systems in fish. We reviewed the evidences and mechanisms for PBDEs-induced thyroid and reproduction disruption, as well as the cross-talk between the two systems in fish. In thyroid disruption, we mainly paid attention to the effects of PBDEs on hypothalamic-pituitary-thyroid (HPT) axis, thyroid hormones (THs) transport and metabolism, thyroid receptors (TRs) and thyroid follicle histology. In reproduction disruption, we focused on the effects of PBDEs on steroid hormone production, expression of genes involved in steroidogenesis, and gonadal development. Despite that there is an interaction between thyroid and reproductive systems in fish, it is still remains unclear that PBDE-induced reproductive impairments are caused by direct effects on hypothalamic-pituitary-gonadal (HPG) functioning or by indirect action through cross-talk between the two systems. Future studies are needed to explore the relationships between reproductive toxicity and thyroid system disruption after PBDEs exposure.
Collapse
Affiliation(s)
- Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China.
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
108
|
Furin CG, von Hippel FA, Postlethwait JH, Buck CL, Cresko WA, O'Hara TM. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback. Gen Comp Endocrinol 2015; 219:24-35. [PMID: 25865142 PMCID: PMC4508251 DOI: 10.1016/j.ygcen.2015.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 03/15/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
Abstract
Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms.
Collapse
Affiliation(s)
- Christoff G Furin
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, 902 N. Koyukuk Dr., P.O. Box 757000, Fairbanks, AK 99775, USA.
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, 324 Huestis Hall, Eugene, OR 97403, USA.
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, 312 Pacific Hall, Eugene, OR 97403, USA.
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, P.O. Box 757750, Fairbanks, AK 99775-7750, USA.
| |
Collapse
|
109
|
Cordier S, Bouquet E, Warembourg C, Massart C, Rouget F, Kadhel P, Bataille H, Monfort C, Boucher O, Muckle G, Multigner L. Perinatal exposure to chlordecone, thyroid hormone status and neurodevelopment in infants: the Timoun cohort study in Guadeloupe (French West Indies). ENVIRONMENTAL RESEARCH 2015; 138:271-8. [PMID: 25747818 DOI: 10.1016/j.envres.2015.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/22/2015] [Accepted: 02/20/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Perinatal exposure to endocrine-disrupting chemicals may affect thyroid hormones homeostasis and impair brain development. Chlordecone, an organochlorine insecticide widely used in the French West Indies has known estrogenic and progestin properties, but no data is available, human or animal, on its action on thyroid hormone system. OBJECTIVES Our aim was to evaluate the impact of perinatal exposure to chlordecone on the thyroid hormone system of a sample of infants from the Timoun mother-child cohort in Guadeloupe and their further neurodevelopment. METHODS Chlordecone was measured in cord blood and breast milk samples. Thyroid stimulating hormone (TSH), free tri-iodothyronine (FT3), free thyroxine (FT4) were determined in child blood at 3 months (n=111). Toddlers were further assessed at 18 months using an adapted version of the Ages and Stages Questionnaire (ASQ). RESULTS Cord chlordecone was associated with an increase in TSH in boys, whereas postnatal exposure was associated with a decrease in FT3 overall, and in FT4 among girls. Higher TSH level at 3 months was positively associated with the ASQ score of fine motor development at 18 months among boys, but TSH did not modify the association between prenatal chlordecone exposure and poorer ASQ fine motor score. CONCLUSIONS Perinatal exposure to chlordecone may affect TSH and thyroid hormone levels at 3 months, differently according to the sex of the infant. This disruption however did not appear to intervene in the pathway between prenatal chlordecone exposure and fine motor child development.
Collapse
Affiliation(s)
- Sylvaine Cordier
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France.
| | - Emilie Bouquet
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France
| | - Charline Warembourg
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France
| | - Catherine Massart
- Laboratory of Hormonology, CIC-P INSERM 1414, CHU Rennes, F-35000 Rennes, France
| | - Florence Rouget
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France; Département de Pédiatrie, CHU Rennes, F-35000 Rennes, France
| | - Philippe Kadhel
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France; Pôle Parent-Enfant, Service de Gynécologie-Obstétrique, CHU Pointe-à-Pitre, BP 465, 97159 Pointe-à-Pitre, Guadeloupe
| | - Henri Bataille
- Centre d'Action Medico-Social, CHU Martinique, F-97292 Le Lamentin, Martinique
| | - Christine Monfort
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France
| | - Olivier Boucher
- Centre de recherche du Centre Hospitalier Universitaire de Québec (CHUQ), Édifice Delta 2, Bureau 600, 2875, boulevard Laurier, 6e étage, Québec, Que., Canada G1V 2M2
| | - Gina Muckle
- Centre de recherche du Centre Hospitalier Universitaire de Québec (CHUQ), Édifice Delta 2, Bureau 600, 2875, boulevard Laurier, 6e étage, Québec, Que., Canada G1V 2M2; Université Laval, 2325, rue de l'Université, Québec, Que., Canada G1V 0A6
| | - Luc Multigner
- Inserm, U1085-IRSET, F-35000 Rennes, France; University of Rennes I, F-35000 Rennes, France
| |
Collapse
|
110
|
Bolotovskiy AA, Levin BA. Thyroid hormone divergence between two closely related but ecologically diverse cyprinid fish species (Cyprinidae). BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
111
|
|
112
|
Anaya-Hernández A, Rodríguez-Castelán J, Nicolás L, Martínez-Gómez M, Jiménez-Estrada I, Castelán F, Cuevas E. Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits. Reprod Domest Anim 2014; 50:104-11. [PMID: 25405800 DOI: 10.1111/rda.12455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/19/2014] [Indexed: 12/17/2022]
Abstract
Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct.
Collapse
Affiliation(s)
- A Anaya-Hernández
- Doctorado en Neuroetología, Universidad Veracruzana, Veracruz, México
| | | | | | | | | | | | | |
Collapse
|
113
|
Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution. PLoS One 2014; 9:e111361. [PMID: 25386660 PMCID: PMC4227674 DOI: 10.1371/journal.pone.0111361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Thyroid-stimulating hormone (TSH) is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.
Collapse
|
114
|
Abstract
Acute critically ill patients experience a rapid decline in plasma free thyroid hormone levels (free triiodothyronine (FT3) and free levothyroxine (FT4)), with a marked elevation of reverse T3, recognized as the euthyroid sick syndrome (ESS) or low-T3 syndrome. The ESS is also often associated with depressed myocardial function, sometimes referred to as the 'stunned myocardium'. Its clinical effects may vary from minimal hemodynamic impairment to cardiogenic shock. Medical management may range from aspirin alone to placement of a left ventricular assist device. With adequate supportive therapy, recovery usually occurs within days or weeks. The effect of T3/T4 therapy has been studied in three conditions in which the ESS and myocardial functional depression have been documented - i) transient regional myocardial ischemia and reperfusion, ii) transient global myocardial ischemia in patients undergoing cardiac surgery on cardiopulmonary bypass, and iii) transient inadequate global myocardial perfusion in brain-dead potential organ donors. Under all three conditions, myocardial ischemia leads to rapid loss of high-energy phosphates, accumulation of myocardial tissue lactate, and probably loss of homeostasis of cytosolic calcium, which may further increase cell injury. There is an inability to generate ATP through the Krebs cycle, which reduces the high-energy phosphate pool essential for all cell ATPases. Under all three conditions, following administration of T3/T4, the myocardial dysfunction was rapidly reversed. We, therefore, cautiously advocate the use of thyroid hormonal therapy to any patient with the ESS and/or a stunned myocardium.
Collapse
Affiliation(s)
- Dimitri Novitzky
- Formerly Professor of Cardiothoracic SurgeryUniversity of South Florida, Tampa, Florida, USAThomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| | - David K C Cooper
- Formerly Professor of Cardiothoracic SurgeryUniversity of South Florida, Tampa, Florida, USAThomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
115
|
Fernández ME, Goszczynski DE, Prando AJ, Peral-García P, Baldo A, Giovambattista G, Liron JP. Assessing the association of single nucleotide polymorphisms in thyroglobulin gene with age of puberty in bulls. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:17. [PMID: 26290706 PMCID: PMC4540244 DOI: 10.1186/2055-0391-56-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022]
Abstract
Puberty is a stage of sexual development determined by the interaction of many loci and environmental factors. Identification of genes contributing to genetic variation in this character can assist with selection for early pubertal bulls, improving genetic progress in livestock breeding. Thyroid hormones play an important role in sexual development and spermatogenic function. The objective of this study was to evaluate the association between single nucleotide polymorphisms (SNPs) located in thyroglobulin(TG) gene with age of puberty in Angus bulls. Four SNPs were genotyped in 273 animals using SEQUENOM technology and the association between markers and puberty age was analyzed. Results showed a significant association (P < 0.05) between these markers and puberty age estimated at a sperm concentration of 50 million and a progressive motility of 10%. This is the first report of an association of TG polymorphisms with age of puberty in bulls, and results suggest the importance of thyroidal regulation in bovine sexual development and arrival to puberty.
Collapse
Affiliation(s)
- María Elena Fernández
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, B1900AVW, CC 296 Argentina ; Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Daniel Estanislao Goszczynski
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, B1900AVW, CC 296 Argentina ; Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Alberto José Prando
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pilar Peral-García
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, B1900AVW, CC 296 Argentina
| | - Andrés Baldo
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, B1900AVW, CC 296 Argentina
| | - Juan Pedro Liron
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, B1900AVW, CC 296 Argentina
| |
Collapse
|
116
|
Castañeda Cortés DC, Langlois VS, Fernandino JI. Crossover of the hypothalamic pituitary-adrenal/interrenal, -thyroid, and -gonadal axes in testicular development. Front Endocrinol (Lausanne) 2014; 5:139. [PMID: 25221542 PMCID: PMC4145579 DOI: 10.3389/fendo.2014.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023] Open
Abstract
Besides the well-known function of thyroid hormones (THs) for regulating metabolism, it has recently been discovered that THs are also involved in testicular development in mammalian and non-mammalian species. THs, in combination with follicle stimulating hormone, lead to androgen synthesis in Danio rerio, which results in the onset of spermatogenesis in the testis, potentially relating the hypothalamic-pituitary-thyroid (HPT) gland to the hypothalamic-pituitary-gonadal (HPG) axes. Furthermore, studies in non-mammalian species have suggested that by stimulating the thyroid-stimulating hormone (TSH), THs can be induced by corticotropin-releasing hormone. This suggests that the hypothalamic-pituitary-adrenal/interrenal gland (HPA) axis might influence the HPT axis. Additionally, it was shown that hormones pertaining to both HPT and HPA could also influence the HPG endocrine axis. For example, high levels of androgens were observed in the testis in Odonthestes bonariensis during a period of stress-induced sex-determination, which suggests that stress hormones influence the gonadal fate toward masculinization. Thus, this review highlights the hormonal interactions observed between the HPT, HPA, and HPG axes using a comparative approach in order to better understand how these endocrine systems could interact with each other to influence the development of testes.
Collapse
Affiliation(s)
- Diana C. Castañeda Cortés
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, Chascomús, Argentina
| | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Juan I. Fernandino
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, Chascomús, Argentina
| |
Collapse
|
117
|
Aromatase, estrogen receptors and brain development in fish and amphibians. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:152-62. [PMID: 25038582 DOI: 10.1016/j.bbagrm.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Abstract
Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|