101
|
Sarmiento N, Tinoco S. Gene Therapy: An Outstanding Technique For Diseases. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nearly three decades ago, the first clinical trial based on gene therapy revolutionized the scientific field by demonstrating that it was possible to genetically modify harmful or defective cells and therapeutically improve patient conditions. Since then, this technique has been implemented for the study and treatment of different diseases, many of them fatal, with the hope of achieving a "cure". Several genetic editing tools have been developed and continue to be studied to improve the effectiveness of gene therapy, in addition to a more exhaustive analysis for choosing the type of vector, which is the main cause of adverse effects. In this review, we present characteristics of the gene therapy mechanism along with the types of vectors that are used in this procedure, followed by the most important applications in the medical field and briefly we describe some limitations and prospects to study in the future.
Collapse
Affiliation(s)
- Nayade Sarmiento
- School of Biological Sciences and Engineering, YachayTech, Urcuquí. Ecuador
| | - Selena Tinoco
- School of Biological Sciences and Engineering, YachayTech, Urcuquí. Ecuador
| |
Collapse
|
102
|
Hinkel R, Klett K, Bähr A, Kupatt C. Thymosin β4-mediated protective effects in the heart. Expert Opin Biol Ther 2019; 18:121-129. [PMID: 30063857 DOI: 10.1080/14712598.2018.1490409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite recent advances in the treatment of coronary heart disease, a significant number of patients progressively develop heart failure. Reduction of infarct size after acute myocardial infarction and normalization of microvasculature in chronic myocardial ischemia could enhance cardiac survival. AREAS COVERED Induction of neovascularization using vascular growth factors has emerged as a promising novel approach for cardiac regeneration. Thymosin β4 (Tβ4) might be a promising candidate for the treatment of ischemic heart disease. It has been characterized as a major G-actin-sequestering factor regulating cell motility, migration, and differentiation. During cardiac development, Thymosin β4 seems essential for vascularization of the myocardium. In the adult organism, Thymosin β4 has anti-inflammatory properties, increases myocyte and endothelial cell survival accompanied by differentiation of epicardial progenitor cells. In chronic myocardial ischemia, Tβ4 overexpression enhances micro- and macrovasculature in the ischemic area and thereby improves myocardial function. A comparable effect is seen in diabetic and dyslipidemic pig ischemic hearts, suggesting an attractive therapeutic potential of adeno-associated virus encoding for Tβ4 for patients with ischemic heart disease. EXPERT OPINION Induction of mature micro-vessels is a prerequisite for chronic myocardial ischemia and might be achieved via a long-term overexpression of Thymosin β4.
Collapse
Affiliation(s)
- Rabea Hinkel
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,b Institut for Cardiovascular Prevention , LMU Munich , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Katharina Klett
- b Institut for Cardiovascular Prevention , LMU Munich , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Andrea Bähr
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Christian Kupatt
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| |
Collapse
|
103
|
Hytönen JP, Leppänen O, Taavitsainen J, Korpisalo P, Laidinen S, Alitalo K, Wadström J, Rissanen TT, Ylä-Herttuala S. Improved endothelialization of small-diameter ePTFE vascular grafts through growth factor therapy. VASCULAR BIOLOGY 2019; 1:1-9. [PMID: 32923945 PMCID: PMC7449264 DOI: 10.1530/vb-18-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
Abstract
Background Prosthetic vascular grafts in humans characteristically lack confluent endothelialization regardless of the duration of implantation. Use of high-porosity grafts has been proposed as a way to induce endothelialization through transgraft capillarization, although early experiments failed to show increased healing in man. Objectives We hypothesized that transduction of tissues around the prosthetic conduit with vectors encoding VEGF receptor-2 (VEGFR2) ligands would augment transinterstitial capillarization and induce luminal endothelialization of high-porosity ePTFE grafts. Methods Fifty-two NZW rabbits received 87 ePTFE uni- or bilateral end-to-end interposition grafts in carotid arteries. Rabbits were randomized to local therapy with adenoviruses encoding AdVEGF-A165, AdVEGF-A109 or control AdLacZ and analyzed at 6 and 28 days after surgery by contrast-enhanced ultrasound and histology. Results AdVEGF-A165 and AdVEGF-A109 dramatically increased perfusion in perigraft tissues at 6 days (14.2 ± 3.6 or 16.7 ± 2.6-fold increases, P < 0.05 and P < 0.01). At 28 days, the effect was no longer significantly higher than baseline. At 6 days, no luminal endothelialization was observed in any of the groups. At 28 days, AdVEGF-A109- and AdVEGF-A165-treated animals showed enhanced ingrowth of transinterstitial capillaries (66.0 ± 13.7% and 77.4 ± 15.7% of graft thickness vs 44.7 ± 24.4% in controls, P < 0.05) and improved luminal endothelialization (11.2 ± 26.3% and 11.4 ± 22.2%, AdVEGF-A109 and AdVEGF-A165 vs 0% in controls, P < 0.05). No increased stenosis was observed in the treatment groups as compared to LacZ controls. Conclusions This study suggests that transient local overexpression of VEGFR2 ligands in the peri-implant tissues at the time of graft implantation is a novel strategy to increase endothelialization of high-porosity ePTFE vascular grafts and improve the patency of small-diameter vascular prostheses.
Collapse
Affiliation(s)
- Jarkko P Hytönen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Leppänen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jouni Taavitsainen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Korpisalo
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Helsinki, Finland
| | - Jonas Wadström
- Department of Transplantation Surgery, Karolinska Hospital Huddinge, Karolinska Institute, Stockholm, Sweden
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
104
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
105
|
Bi L, Wacker BK, Dichek DA. A Rabbit Model of Durable Transgene Expression in Jugular Vein to Common Carotid Artery Interposition Grafts. J Vis Exp 2018. [PMID: 30247462 DOI: 10.3791/57231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vein graft bypass surgery is a common treatment for occlusive arterial disease; however, long-term success is limited by graft failure due to thrombosis, intimal hyperplasia, and atherosclerosis. The goal of this article is to demonstrate a method for placing bilateral venous interposition grafts in a rabbit, then transducing the grafts with a gene transfer vector that achieves durable transgene expression. The method allows the investigation of the biological roles of genes and their protein products in normal vein graft homeostasis. It also allows the testing of transgenes for the activities that could prevent vein graft failure, e.g., whether the expression of a transgene prevents the neointimal growth, reduces the vascular inflammation, or reduces atherosclerosis in rabbits fed with a high-fat diet. During an initial survival surgery, the segments of right and left external jugular vein are excised and placed bilaterally as reversed end-to-side common carotid artery interposition grafts. During a second survival surgery, performed 28 days later, each of the grafts is isolated from the circulation with vascular clips and the lumens are filled (via an arteriotomy) with a solution containing a helper-dependent adenoviral (HDAd) vector. After a 20-min incubation, the vector solution is aspirated, the arteriotomy is repaired, and flow is restored. The veins are harvested at time points dictated by individual experimental protocols. The 28-day delay between the graft placement and the transduction is necessary to ensure the adaptation of the vein graft to the arterial circulation. This adaptation avoids rapid loss of transgene expression that occurs in vein grafts transduced before or immediately after grafting. The method is unique in its ability to achieve durable, stable transgene expression in grafted veins. Compared to other large animal vein graft models, rabbits have advantages of low cost and easy handling. Compared to rodent vein graft models, rabbits have larger and easier-to-manipulate blood vessels that provide abundant tissue for analysis.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Medicine, University of Washington School of Medicine
| | - Bradley K Wacker
- Department of Medicine, University of Washington School of Medicine
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine;
| |
Collapse
|
106
|
Mendoza-Torres E, Riquelme JA, Vielma A, Sagredo AR, Gabrielli L, Bravo-Sagua R, Jalil JE, Rothermel BA, Sanchez G, Ocaranza MP, Lavandero S. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol Res 2018; 135:112-121. [DOI: 10.1016/j.phrs.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023]
|
107
|
Caporali A, Bäck M, Daemen MJ, Hoefer IE, Jones EA, Lutgens E, Matter CM, Bochaton-Piallat ML, Siekmann AF, Sluimer JC, Steffens S, Tuñón J, Vindis C, Wentzel JJ, Ylä-Herttuala S, Evans PC. Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. Cardiovasc Res 2018; 114:1411-1421. [PMID: 30016405 PMCID: PMC6106103 DOI: 10.1093/cvr/cvy184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.
Collapse
Affiliation(s)
- Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and University Hospital Stockholm, Stockholm, Sweden
- INSERM U1116, University of Lorraine, Nancy University Hospital, Nancy, France
| | - Mat J Daemen
- Department of Pathology, Academic Medical Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Imo E Hoefer
- Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003–CiM), University of Muenster, Muenster, Germany
| | - Judith C Sluimer
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Steffens
- Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - José Tuñón
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Cecile Vindis
- INSERM U1048/Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Jolanda J Wentzel
- Department of Cardiology, Biomechanics Laboratory, Erasmus MC, Rotterdam, The Netherlands
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, the INSIGNEO Institute for In Silico Medicine and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
108
|
Yuan R, Xin Q, Shi W, Liu W, Lee SM, Hoi P, Li L, Zhao J, Cong W, Chen K. Vascular endothelial growth factor gene transfer therapy for coronary artery disease: A systematic review and meta-analysis. Cardiovasc Ther 2018; 36:e12461. [PMID: 30035366 DOI: 10.1111/1755-5922.12461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Rong Yuan
- Graduate School; Beijing University of Chinese Medicine; Beijing China
- Laboratory of Cardiovascular Diseases; Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases; Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing China
| | - Weili Shi
- Laboratory of Cardiovascular Diseases; Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing China
| | - Wei Liu
- Cardiovascular Department; Beijing Hospital of TCM Affiliated to the Capital Medical University; Beijing China
| | - Simon-M. Lee
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Puiman Hoi
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Lin Li
- Laboratory of Neurodegenerative Diseases; Xuanwu Hospital; Capital Medical University; Beijing China
| | - Jun Zhao
- Traditional Chinese Medicine Department; The Affiliated Hospital of Qingdao University; Qingdao China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases; Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases; Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing China
| |
Collapse
|
109
|
Talman V, Kivelä R. Cardiomyocyte-Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Front Cardiovasc Med 2018; 5:101. [PMID: 30175102 PMCID: PMC6108380 DOI: 10.3389/fcvm.2018.00101] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
The heart is a complex organ consisting of various cell types, each of which plays an important role in both physiological and pathophysiological conditions. The cells communicate with each other through direct cell-cell interactions and paracrine signaling, and both homotypic and heterotypic cell interactions contribute to the organized structure and proper function of the heart. Cardiomyocytes (CMs) and endothelial cells (ECs) are two of the most abundant cardiac cell types and they also play central roles in both cardiac remodeling and regeneration. The postnatal cell cycle withdrawal of CMs, which takes place within days or weeks after birth, represents the major barrier for regeneration in adult mammalian hearts, as adult CMs exhibit a very low proliferative capacity. Recent evidence highlights the importance of ECs not only as the most abundant cell type in the heart but also as key players in post-infarction remodeling and regeneration. In this MiniReview, we focus on blood vascular ECs and CMs and their roles and interactions in cardiac physiology and pathologies, with a special emphasis on cardiac regeneration. We summarize the known mediators of the bidirectional CM-EC interactions and discuss the related recent advances in the development of therapies aiming to promote heart repair and regeneration targeting these two cell types.
Collapse
Affiliation(s)
- Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
110
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
111
|
Yla-Herttuala E, Laidinen S, Laakso H, Liimatainen T. Quantification of myocardial infarct area based on T RAFFn relaxation time maps - comparison with cardiovascular magnetic resonance late gadolinium enhancement, T 1ρ and T 2 in vivo. J Cardiovasc Magn Reson 2018; 20:34. [PMID: 29879996 PMCID: PMC5992705 DOI: 10.1186/s12968-018-0463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two days after myocardial infarction (MI), the infarct consists mostly on necrotic tissue, and the myocardium is transformed through granulation tissue to scar in two weeks after the onset of ischemia in mice. In the current work, we determined and optimized cardiovascular magnetic resonance (CMR) methods for the detection of MI size during the scar formation without contrast agents in mice. METHODS We characterized MI and remote areas with rotating frame relaxation time mapping including relaxation along fictitious field in nth rotating frame (RAFFn), T1ρ and T2 relaxation time mappings at 1, 3, 7, and 21 days after MI. These results were compared to late gadolinium enhancement (LGE) and Sirius Red-stained histology sections, which were obtained at day 21 after MI. RESULTS All relaxation time maps showed significant differences in relaxation time between the MI and remote area. Areas of increased signal intensities after gadolinium injection and areas with increased TRAFF2 relaxation time were highly correlated with the MI area determined from Sirius Red-stained histology sections (LGE: R2 = 0.92, P < 0.01, TRAFF2: R2 = 0.95, P < 0.001). Infarct area determined based on T1ρ relaxation time correlated highly with Sirius Red histology sections (R2 = 0.97, P < 0.01). The smallest overestimation of the LGE-defined MI area was obtained for TRAFF2 (5.6 ± 4.2%) while for T1ρ overestimation percentage was > 9% depending on T1ρ pulse power. CONCLUSION T1ρ and TRAFF2 relaxation time maps can be used to determine accurately MI area at various time points in the mouse heart. Determination of MI size based on TRAFF2 relaxation time maps could be performed without contrast agents, unlike LGE, and with lower specific absorption rate compared to on-resonance T1ρ relaxation time mapping.
Collapse
Affiliation(s)
- Elias Yla-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, Minneapolis, MN USA
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, University Hospital of Oulu, P.O. Box 50, 90029 OYS Oulu, Finland
| |
Collapse
|
112
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
113
|
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20:e3015. [PMID: 29575374 DOI: 10.1002/jgm.3015] [Citation(s) in RCA: 510] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | | | - Mohammad R Abedi
- Department of Laboratory Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
114
|
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R. Gene-Therapeutic Strategies Targeting Angiogenesis in Peripheral Artery Disease. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E31. [PMID: 29601487 PMCID: PMC6024305 DOI: 10.3390/medicines5020031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
The World Health Organization announced that cardiovascular disease is the number one cause of death globally, representing 31% of all global deaths. Coronary artery disease (CAD) affects approximately 5% of the US population aged 40 years and older. With an age-adjusted prevalence of approximately 12%, peripheral artery disease (PAD) affects at least 8 to 12 million Americans. Both CAD and PAD are caused by mainly atherosclerosis, the hardening and narrowing of arteries over the years by lipid deposition in the vascular bed. Despite the significant advances in interventions for revascularization and intensive medical care, patients with CAD or PAD who undergo percutaneous transluminal angioplasty have a persistent high rate of myocardial infarction, amputation, and death. Therefore, new therapeutic strategies are urgently needed for these patients. To overcome this unmet need, therapeutic angiogenesis using angiogenic growth factors has evolved in an attempt to stimulate the growth of new vasculature to compensate for tissue ischemia. After nearly 20 years of investigation, there is growing evidence of successful or unsuccessful gene therapy for ischemic heart and limb disease. This review will discuss basic and clinical data of therapeutic angiogenesis studies employing angiogenic growth factors for PAD patients and will draw conclusions on the basis of our current understanding of the biological processes of new vascularization.
Collapse
Affiliation(s)
- Fumihiro Sanada
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Jun Muratsu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Rei Otsu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Hideo Shimizu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
115
|
Belt H, Koponen JK, Kekarainen T, Puttonen KA, Mäkinen PI, Niskanen H, Oja J, Wirth G, Koistinaho J, Kaikkonen MU, Ylä-Herttuala S. Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Front Cardiovasc Med 2018; 5:16. [PMID: 29594149 PMCID: PMC5861200 DOI: 10.3389/fcvm.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Endothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic AMP signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells and, consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy.
Collapse
Affiliation(s)
- Heini Belt
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna K Koponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Katja A Puttonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joni Oja
- FinVector Vision Therapies Oy, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
116
|
Merentie M, Rissanen R, Lottonen-Raikaslehto L, Huusko J, Gurzeler E, Turunen MP, Holappa L, Mäkinen P, Ylä-Herttuala S. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice. PLoS One 2018; 13:e0190981. [PMID: 29351307 PMCID: PMC5774698 DOI: 10.1371/journal.pone.0190981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.
Collapse
Affiliation(s)
- Mari Merentie
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riina Rissanen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Line Lottonen-Raikaslehto
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko P. Turunen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lari Holappa
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
117
|
An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials 2018; 160:69-81. [PMID: 29396380 DOI: 10.1016/j.biomaterials.2018.01.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) leads to the mass death of cardiomyocytes accompanying with the unfavorable alternation of microenvironment, a fibrosis scar deprived of electrical communications, and the lack of blood supply in the infarcted myocardium. The three factors are inextricably intertwined and thus result in a conservative MI therapy efficacy in clinic. A holistic approach pertinently targeted to these three key points would be favorable to rebuild the heart functions. Here, an injectable conductive hydrogel was constructed via in situ Michael addition reaction between multi-armed conductive crosslinker tetraaniline-polyethylene glycol diacrylate (TA-PEG) and thiolated hyaluronic acid (HA-SH). The resultant soft conductive hydrogel with equivalent myocardial conductivity and anti-fatigue performance was loaded with plasmid DNA encoding eNOs (endothelial nitric oxide synthase) nanocomplexes and adipose derived stem cells (ADSCs) for treating MI. The TA-PEG/HA-SH/ADSCs/Gene hydrogel-based holistic system was injected into the infarcted myocardium of SD rats. We demonstrated an increased expression of eNOs in myocardial tissue the heightening of nitrite concentration, accompanied with upregulation of proangiogenic growth factors and myocardium related mRNA. The results of electrocardiography, cardiogram, and histological analysis convincingly revealed a distinct increase of ejection fraction (EF), shortened QRS interval, smaller infarction size, less fibrosis area, and higher vessel density, indicating a significant improvement of heart functions. This conception of combination approach by a conductive injectable hydrogel loaded with stem cells and gene-encoding eNOs nanoparticles will become a robust therapeutic strategy for the treatment of MI.
Collapse
|
118
|
A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:96-111. [PMID: 29296626 PMCID: PMC5744068 DOI: 10.1016/j.omtm.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023]
Abstract
Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate-yet significant-pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.
Collapse
|
119
|
Lähteenvuo J, Ylä-Herttuala S. Advances and Challenges in Cardiovascular Gene Therapy. Hum Gene Ther 2017; 28:1024-1032. [PMID: 28810808 DOI: 10.1089/hum.2017.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many promising cardiovascular gene therapy approaches have failed to fulfill expectations in clinical trials. However, 20 years of research and method development has laid a solid groundwork for future therapies, and the need for new treatment options still exists. The safety of gene therapy has been established with various viral vectors, transgenes and delivery methods. Improving success in clinical settings requires careful consideration of the translational process. This requires both improving animal models and preclinical end points, and new approach in patient recruitment and selection of clinical end points. This review focuses on bidirectional translationality from bench to bedside and back and proposes ways to improve the process. Developing a highly complex new therapy has taken an enormous amount of work and resources, but perhaps now after the hard lessons cardiovascular gene therapy is ready become a clinical reality.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- 1 A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 1 A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland .,2 Heart Center and Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
120
|
|