101
|
Cooke I, Mead O, Whalen C, Boote C, Moya A, Ying H, Robbins S, Strugnell JM, Darling A, Miller D, Voolstra CR, Adamska M. Molecular techniques and their limitations shape our view of the holobiont. ZOOLOGY 2019; 137:125695. [PMID: 31759226 DOI: 10.1016/j.zool.2019.125695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022]
Abstract
It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont.
Collapse
Affiliation(s)
- Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Oliver Mead
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Casey Whalen
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Chloë Boote
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Steven Robbins
- Australian Center for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, 4810, QLD, Australia; Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, 3083, Australia
| | - Aaron Darling
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Maja Adamska
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, 2601, Australia; Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | | |
Collapse
|
102
|
Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun 2019; 10:3092. [PMID: 31300639 PMCID: PMC6626051 DOI: 10.1038/s41467-019-10969-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated. Here we show that bacterial community structure responds in a coral host-specific manner upon cross-transplantation between reef sites with differing levels of anthropogenic impact. The coral Acropora hemprichii harbors a highly flexible microbiome that differs between each level of anthropogenic impact to which the corals had been transplanted. In contrast, the microbiome of the coral Pocillopora verrucosa remains remarkably stable. Interestingly, upon cross-transplantation to unaffected sites, we find that microbiomes become indistinguishable from back-transplanted controls, suggesting the ability of microbiomes to recover. It remains unclear whether differences to associate with bacteria flexibly reflects different holobiont adaptation mechanisms to respond to environmental change. The flexibility of corals to associate with different bacteria in different environments has not been systematically investigated. Here, the authors study bacterial community dynamics for two coral species and show that bacterial community structure responds to environmental changes in a host-specific manner.
Collapse
|
103
|
Dubé CE, Ky CL, Planes S. Microbiome of the Black-Lipped Pearl Oyster Pinctada margaritifera, a Multi-Tissue Description With Functional Profiling. Front Microbiol 2019; 10:1548. [PMID: 31333634 PMCID: PMC6624473 DOI: 10.3389/fmicb.2019.01548] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Elucidating the role of prokaryotic symbionts in mediating host physiology has emerged as an important area of research. Since oysters are the world’s most heavily cultivated bivalve molluscs, numerous studies have applied molecular techniques to understand the taxonomic and functional diversity of their associated bacteria. Here, we expand on this research by assessing the composition and putative functional profiles of prokaryotic communities from different organs/compartments of the black-lipped pearl oyster Pinctada margaritifera, a commercially important shellfish valued for cultured pearl production in the Pacific region. Seven tissues, in addition to mucous secretions, were targeted from P. margaritifera individuals: the gill, gonad, byssus gland, haemolymph, mantle, adductor muscle, mucus, and gut. Richness of bacterial Operational Taxonomic Units (OTUs) and phylogenetic diversity differed between host tissues, with mucous layers displaying the highest richness and diversity. This multi-tissues approach permitted the identification of consistent microbial members, together constituting the core microbiome of P. margaritifera, including Alpha- and Gammaproteobacteria, Flavobacteriia, and Spirochaetes. We also found a high representation of Endozoicimonaceae symbionts, indicating that they may be of particular importance to oyster health, survival and homeostasis, as in many other coral reef animals. Our study demonstrates that the microbial communities and their associated predicted functional profiles are tissue specific. Inferred physiological functions were supported by current physiological data available for the associated bacterial taxa specific to each tissue. This work provides the first baseline of microbial community composition in P. margaritifera, providing a solid foundation for future research into this commercially important species and emphasises the important effects of tissue differentiation in structuring the oyster microbiome.
Collapse
Affiliation(s)
- Caroline Eve Dubé
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| | - Chin-Long Ky
- Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia.,Ifremer, UMR 241, Centre du Pacifique, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes Pathogènes Environnements, Université de Montpellier, Montpellier, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| |
Collapse
|
104
|
Richardson MF, Munyard K, Croft LJ, Allnutt TR, Jackling F, Alshanbari F, Jevit M, Wright GA, Cransberg R, Tibary A, Perelman P, Appleton B, Raudsepp T. Chromosome-Level Alpaca Reference Genome VicPac3.1 Improves Genomic Insight Into the Biology of New World Camelids. Front Genet 2019; 10:586. [PMID: 31293619 PMCID: PMC6598621 DOI: 10.3389/fgene.2019.00586] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
The development of high-quality chromosomally assigned reference genomes constitutes a key feature for understanding genome architecture of a species and is critical for the discovery of the genetic blueprints of traits of biological significance. South American camelids serve people in extreme environments and are important fiber and companion animals worldwide. Despite this, the alpaca reference genome lags far behind those available for other domestic species. Here we produced a chromosome-level improved reference assembly for the alpaca genome using the DNA of the same female Huacaya alpaca as in previous assemblies. We generated 190X Illumina short-read, 8X Pacific Biosciences long-read and 60X Dovetail Chicago® chromatin interaction scaffolding data for the assembly, used testis and skin RNAseq data for annotation, and cytogenetic map data for chromosomal assignments. The new assembly VicPac3.1 contains 90% of the alpaca genome in just 103 scaffolds and 76% of all scaffolds are mapped to the 36 pairs of the alpaca autosomes and the X chromosome. Preliminary annotation of the assembly predicted 22,462 coding genes and 29,337 isoforms. Comparative analysis of selected regions of the alpaca genome, such as the major histocompatibility complex (MHC), the region involved in the Minute Chromosome Syndrome (MCS) and candidate genes for high-altitude adaptations, reveal unique features of the alpaca genome. The alpaca reference genome VicPac3.1 presents a significant improvement in completeness, contiguity and accuracy over VicPac2 and is an important tool for the advancement of genomics research in all New World camelids.
Collapse
Affiliation(s)
- Mark F Richardson
- Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Kylie Munyard
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Larry J Croft
- Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Theodore R Allnutt
- Bioinformatics Core Research Group, Deakin University, Geelong, VIC, Australia
| | - Felicity Jackling
- Department of Genetics, The University of Melbourne, Melbourne, VIC, Australia
| | - Fahad Alshanbari
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Matthew Jevit
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Gus A Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rhys Cransberg
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ahmed Tibary
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Polina Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Belinda Appleton
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Terje Raudsepp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
105
|
Ziegler M, Roik A, Röthig T, Wild C, Rädecker N, Bouwmeester J, Voolstra CR. Ecophysiology of Reef-Building Corals in the Red Sea. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-05802-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
106
|
Cornejo-Granados F, Calderón de la Barca AM, Torres N, Martínez-Romero E, Torres J, López-Vidal Y, Soberón X, Partida-Martínez LP, Pinto-Cardoso S, Alcaraz LD, Pardo-López L, Canizales-Quinteros S, Puente JL, Ochoa-Leyva A. Microbiome-MX 2018: microbiota and microbiome opportunities in Mexico, a megadiverse country. Res Microbiol 2019; 170:235-241. [PMID: 30922683 DOI: 10.1016/j.resmic.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022]
Abstract
A weekly conference series paired with lectures entitled "Microbiome-MX: exploring the Microbiota and Microbiome Research in Mexico" was organized to provide a multidisciplinary overview of the most recent research done in Mexico using high-throughput sequencing. Scientists and postgraduate students from several disciplines such as microbiology, bioinformatics, virology, immunology, nutrition, and medical genomics gathered to discuss state of the art in each of their respective subjects of expertise, as well as advances, applications and new opportunities on microbiota/microbiome research. In particular, high-throughput sequencing is a crucial tool to understand the challenges of a megadiverse developing country as Mexico, and moreover to know the scientific capital and capabilities available for collaboration. The conference series addressed three main topics important for Mexico: i) the complex role of microbiota in health and prevalent diseases such as obesity, diabetes, inflammatory bowel disease, tuberculosis, HIV, autoimmune diseases and gastric cancer; ii) the use of local, traditional and prehispanic products as pre/probiotics to modulate the microbiota and improve human health; and iii) the impact of the microbiota in shaping the biodiversity of economically important terrestrial and marine ecosystems. Herein, we summarize the contributions that Mexican microbiota/microbiome research is making to the global trends, describing the highlights of the conferences and lectures, rather than a review of the state-of-the-art of this research. This meeting report also presents the efforts of a multidisciplinary group of scientist to encourage collaborations and bringing this research field closer for younger generations.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Ana María Calderón de la Barca
- Departamento de Nutrición Humana, Centro de Investigación en Alimentación y Desarrollo, A.C. Astiazarán Rosas No. 46. Col. La Victoria, Hermosillo, 83304, Sonora, Mexico.
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No 15, Ciudad de México, 14080, Cd de México, Mexico.
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Cd de México, Mexico.
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, Mexico.
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Cd. México, Mexico.
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato, 36824, Mexico.
| | - Sandra Pinto-Cardoso
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4501, Colonia Sección XVI, Ciudad de México, C.P, 14080, Mexico.
| | - Luis David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Cd de México, Mexico.
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Adrián Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
107
|
Jaspers C, Fraune S, Arnold AE, Miller DJ, Bosch TCG, Voolstra CR. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. ZOOLOGY 2019; 133:81-87. [PMID: 30979392 DOI: 10.1016/j.zool.2019.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Current research highlights the importance of associated microbes in contributing to the functioning, health, and even adaptation of their animal, plant, and fungal hosts. As such, we are witnessing a shift in research that moves away from focusing on the eukaryotic host sensu stricto to research into the complex conglomerate of the host and its associated microorganisms (i.e., microbial eukaryotes, archaea, bacteria, and viruses), the so-called metaorganism, as the biological entity. While recent research supports and encourages the adoption of such an integrative view, it must be understood that microorganisms are not involved in all host processes and not all associated microorganisms are functionally important. As such, our intention here is to provide a critical review and evaluation of perspectives and limitations relevant to studying organisms in a metaorganism framework and the functional toolbox available to do so. We note that marker gene-guided approaches that primarily characterize microbial diversity are a first step in delineating associated microbes but are not sufficient to establish proof of their functional relevance. More sophisticated tools and experiments are necessary to reveal the specific functions of associated microbes. This can be accomplished through the study of metaorganisms in less complex environments, the targeted manipulation of microbial associates, or work at the mechanistic level with the toolbox available in model systems. We conclude that the metaorganism framework is a powerful new concept to help provide answers to longstanding biological questions such as the evolution and ecology of organismal complexity and the importance of organismal symbioses to ecosystem functioning. The intricacy of the metaorganism requires a holistic framework combining reductionist and integrative approaches to resolve the structure and function of its member species and to disclose the various roles that microorganisms play in the biology of their hosts.
Collapse
Affiliation(s)
- Cornelia Jaspers
- GEOMAR - Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105 Kiel, Germany; National Institute of Aquatic Resources, Technical University of Denmark, DTU Aqua, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Sebastian Fraune
- Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - A Elizabeth Arnold
- School of Plant Sciences and the Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85719, USA
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Thomas C G Bosch
- Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
108
|
Détrée C, Haddad I, Demey-Thomas E, Vinh J, Lallier FH, Tanguy A, Mary J. Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics. BMC Genomics 2019; 20:109. [PMID: 30727955 PMCID: PMC6364412 DOI: 10.1186/s12864-019-5456-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Background Colonization of deep-sea hydrothermal vents by most invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers in these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts loss on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels. Results Global proteomic and transcriptomic results evidenced a global disruption of host machinery in aposymbiotic organisms. We observed that the total number of proteins identified decreased from 1118 in symbiotic mussels to 790 in partially depleted mussels and 761 in aposymbiotic mussels. Using microarrays we identified 4300 transcripts differentially expressed between symbiont-depleted and symbiotic mussels. Among these transcripts, 799 were found differentially expressed in aposymbiotic mussels and almost twice as many in symbiont-depleted mussels as compared to symbiotic mussels. Regarding apoptotic and immune system processes – known to be largely involved in symbiotic interactions – an overall up-regulation of associated proteins and transcripts was observed in symbiont-depleted mussels. Conclusion Overall, our study showed a global impairment of host machinery and an activation of both the immune and apoptotic system following symbiont-depletion. One of the main assumptions is the involvement of symbiotic bacteria in the inhibition and regulation of immune and apoptotic systems. As such, symbiotic bacteria may increase their lifespan in gill cells while managing the defense of the holobiont against putative pathogens.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.,Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Iman Haddad
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - Emmanuelle Demey-Thomas
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - Joëlle Vinh
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - François H Lallier
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Jean Mary
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France.
| |
Collapse
|
109
|
Neave MJ, Apprill A, Aeby G, Miyake S, Voolstra CR. Microbial Communities of Red Sea Coral Reefs. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|