101
|
Boutajangout A, Leroy K, Touchet N, Authelet M, Blanchard V, Tremp G, Pradier L, Brion JP. Increased tau phosphorylation but absence of formation of neurofibrillary tangles in mice double transgenic for human tau and Alzheimer mutant (M146L) presenilin-1. Neurosci Lett 2002; 318:29-33. [PMID: 11786218 DOI: 10.1016/s0304-3940(01)02461-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurofibrillary tangles, composed of tau proteins, are a key lesion observed in sporadic forms of Alzheimer's disease and in familial forms associated with mutations of presenilin-1 (PS1). We have generated a double transgenic mouse line expressing a human tau isoform and a mutated form of PS1 (M146L) in neurons. Increased expression of the PS1 holoprotein was observed in the tau/PS1 transgenic mice and the proteolytic fragments of PS1 did not appear to be modified. A somatodendritic accumulation of the transgenic tau and an increase in tau phosphorylation were observed in both tau- and tau/PS1 transgenic mice. Neurofibrillary tangles were not observed in animals analyzed up to 17 months. Immunoprecipitation of tau from brain homogenates demonstrated its binding with active glycogen synthase kinase-3beta in control, tau- and tau/PS1 transgenic lines. These results suggest that overexpression of this Alzheimer mutant PS1 in vivo is not by itself sufficient to induce the formation of neurofibrillary tangles, even in neurons co-expressing and accumulating a human tau isoform.
Collapse
Affiliation(s)
- A Boutajangout
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Holzer M, Rödel L, Seeger G, Gärtner U, Narz F, Janke C, Heumann R, Arendt T. Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. II. Cytoskeletal proteins and dendritic morphology. Neuroscience 2002; 105:1041-54. [PMID: 11530241 DOI: 10.1016/s0306-4522(01)00246-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we analysed changes in the expression, subcellular distribution and phosphorylation state of the microtubule-associated protein tau and other cytoskeletal proteins after neurone-specific activation of the mitogen-activated protein kinase (MAPK) in the CNS in vivo. We used transgenic mice with a neurone-specific expression of activated ras protein (p21H-ras(Val12), synapsin I promoter) that is associated with an augmented activity of the MAPK. Chronic activation of MAPK cascade influenced tau protein phosphorylation, localisation and dendritic morphology. While the amount of tau protein was elevated by 9%, phospho-epitopes detected by the monoclonal antibodies AT270, 12E8 and SMI34 were increased by about 21%, 40% and 59% respectively. Steady-state levels of tau mRNA were not affected. Thus, the increase in tau protein was most likely due to stabilisation of tau protein by augmented phosphorylation. While in wild-type animals tau protein was preferentially localised in axons, a prominent immunoreactivity was found in the somatodendritic compartment of transgenic mice. This subcellular translocation typically seen in pyramidal neurones was associated with an increase in the dendritic calibre by about 30% and is paralleled by an increase in tubulin of 19%. We were unable to obtain any morphological indication of neurodegenerative processes in these animals. We suggest that the moderate increase in tau protein and phosphorylation may be part of the neuroprotective mechanism. However, further studies on aged transgenic mice will be necessary to establish potential effects on neuronal viability.
Collapse
Affiliation(s)
- M Holzer
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, Yoshiike Y, Park JM, Matsuda K, Nakao S, Sun X, Sato S, Yamaguchi H, Takashima A. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 2001; 8:1036-45. [PMID: 11741399 DOI: 10.1006/nbdi.2001.0439] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of neurofibrillary tangles (NFTs) is the most common feature in several neurodegenerative diseases, including Alzheimer's disease (AD). Here we report the formation of filamentous tau aggregations having a beta-sheet structure in transgenic mice expressing mutant human tau. These mice contain a tau gene with a mutation of the frontotemporal dementia parkinsonism (FTDP-17) type, in which valine is substituted with methionine residue 337. The aggregation of tau in these transgenic mice satisfies all histological criteria used to identify NFTs common to human neurodegenerative diseases. These mice, therefore, provide a preclinical model for the testing of therapeutic drugs for the treatment of neurodegenerative disorders that exhibit NFTs.
Collapse
Affiliation(s)
- K Tanemura
- Laboratory for Alzheimer's Disease, Neural Architecture, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lim F, Hernández F, Lucas JJ, Gómez-Ramos P, Morán MA, Avila J. FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 2001; 18:702-14. [PMID: 11749044 DOI: 10.1006/mcne.2001.1051] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The tauopathies, which include Alzheimer's disease (AD) and frontotemporal dementias, are a group of neurodegenerative disorders characterized by filamentous Tau aggregates. That Tau dysfunction can cause neurodegeneration is indicated by pathogenic tau mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). To investigate how Tau alterations provoke neurodegeneration we generated transgenic mice expressing human Tau with four tubulin-binding repeats (increased by FTDP-17 splice donor mutations) and three FTDP-17 missense mutations: G272V, P301L, and R406W. Ultrastructural analysis of mutant Tau-positive neurons revealed a pretangle appearance, with filaments of Tau and increased numbers of lysosomes displaying aberrant morphology similar to those found in AD. Lysosomal alterations were confirmed by activity analysis of the marker acid phosphatase, which was increased in both transgenic mice and transfected neuroblastoma cells. Our results show that Tau modifications can provoke lysosomal aberrations and suggest that this may be a cause of neurodegeneration in tauopathies.
Collapse
Affiliation(s)
- F Lim
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
105
|
Spillantini MG, Goedert M. Tau gene mutations and tau pathology in frontotemporal dementia and parkinsonism linked to chromosome 17. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 487:21-37. [PMID: 11403160 DOI: 10.1007/978-1-4615-1249-3_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M G Spillantini
- Brain Repair Centre and Department of Neurology, University of Cambridge, UK
| | | |
Collapse
|
106
|
Abstract
The defining neuropathological characteristics of Alzheimer's disease are abundant filamentous tau lesions and deposits of fibrillar amyloid beta peptides. Prominent filamentous tau inclusions and brain degeneration in the absence of beta-amyloid deposits are also hallmarks of neurodegenerative tauopathies exemplified by sporadic corticobasal degeneration, progressive supranuclear palsy, and Pick's disease, as well as by hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Because multiple tau gene mutations are pathogenic for FTDP-17 and tau polymorphisms appear to be genetic risk factors for sporadic progressive supranuclear palsy and corticobasal degeneration, tau abnormalities are linked directly to the etiology and pathogenesis of neurodegenerative disease. Indeed, emerging data support the hypothesis that different tau gene mutations are pathogenic because they impair tau functions, promote tau fibrillization, or perturb tau gene splicing, thereby leading to formation of biochemically and structurally distinct aggregates of tau. Nonetheless, different members of the same kindred often exhibit diverse FTDP-17 syndromes, which suggests that additional genetic or epigenetic factors influence the phenotypic manifestations of neurodegenerative tauopathies. Although these and other hypothetical mechanisms of neurodegenerative tauopathies remain to be tested and validated, transgenic models are increasingly available for this purpose, and they will accelerate discovery of more effective therapies for neurodegenerative tauopathies and related disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- V M Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
107
|
Abstract
The presence of abundant neurofibrillary lesions made of hyperphosphorylated tau proteins is the characteristic neuropathology of a subset of neurodegenerative disorders classified as "tauopathies." The discovery of mutations in the tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) constitutes convincing evidence that tau proteins play a key role in the pathogenesis of neurodegenerative disorders. Moreover, it now is known that the most common form of sporadic frontotemporal dementia (FTD), which is characterized by frontotemporal neuron loss, gliosis, and microvacuolar change, also is a tauopathy caused by a loss of tau protein expression. Thus, these discoveries have begun to change the classification and the neuropathologic diagnosis of FTD and tauopathies, as well as current understanding of the disease mechanisms underlying them. Although transgenic mice expressing wild-type human tau or variants thereof with an FTDP-17 mutation result in tau pathologies and brain degeneration similar to that seen in human tauopathies, the precise mechanisms leading to the onset and progression of neurodegenerative disorders remain incompletely understood. Here, we review current understanding of human neurodegenerative tauopathies and prospects for translative recent insights about these into therapeutic interventions to prevent or ameliorate them.
Collapse
Affiliation(s)
- Y Yoshiyama
- Center for Neurodegenerative Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, 3rd Floor Maloney, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
108
|
Abstract
Transgenic mouse models exist for the major neurodegenerative diseases, including Alzheimer's disease, tauopathy and amyotrophic lateral sclerosis. Although many of the mice do not completely replicate the human disease they are intended to model, they have provided insight into the mechanisms that underlie disease etiology. In the case of the Alzheimer's disease and amyotrophic lateral sclerosis models, the mice have also provided a therapeutic testing ground for the testing of agents that have been shown to have considerable clinical promise.
Collapse
Affiliation(s)
- K Duff
- Nathan Kline Institute, New York, New York 10962, USA.
| | | |
Collapse
|
109
|
Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293:711-4. [PMID: 11408621 DOI: 10.1126/science.1062382] [Citation(s) in RCA: 680] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The microtubule-binding protein tau has been implicated in the pathogenesis of Alzheimer's disease and related disorders. However, the mechanisms underlying tau-mediated neurotoxicity remain unclear. We created a genetic model of tau-related neurodegenerative disease by expressing wild-type and mutant forms of human tau in the fruit fly Drosophila melanogaster. Transgenic flies showed key features of the human disorders: adult onset, progressive neurodegeneration, early death, enhanced toxicity of mutant tau, accumulation of abnormal tau, and relative anatomic selectivity. However, neurodegeneration occurred without the neurofibrillary tangle formation that is seen in human disease and some rodent tauopathy models. This fly model may allow a genetic analysis of the cellular mechanisms underlying tau neurotoxicity.
Collapse
Affiliation(s)
- C W Wittmann
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Room 514, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Götz J, Nitsch RM. Compartmentalized tau hyperphosphorylation and increased levels of kinases in transgenic mice. Neuroreport 2001; 12:2007-16. [PMID: 11435938 DOI: 10.1097/00001756-200107030-00045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of neurofibrillary tangles in Alzheimer's disease is preceded by a pretangle stage of hyperphosphorylated tau. To characterize pretangle tau in vivo, we correlated, in human tau transgenic mice, levels of kinases known to phosphorylate tau in vitro with the phosphorylation of tau at specific epitopes. Levels of cyclin-dependent kinase-5 were increased in axons of CA1 pyramidal neurons, where tau was phosphorylated specifically at the AD2 epitope Ser396/Ser404. The 12E8 epitope serine262/serine356 and the AT180 epitope threonine231/serine235 were phosphorylated in dendrites, and colocalized with increased levels of glycogen synthase kinase-3. CA1 neurons phosphorylated tau at more epitopes than dentate gyrus neurons, suggesting that tau phosphorylation is cell type-specific, a possible explanation for the spatial distribution of neurofibrillary tangles.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, August Forel Str. 1, 8008 Zürich, Switzerland
| | | |
Collapse
|
111
|
Abstract
Advances in genetics and transgenic approaches have a continuous impact on our understanding of Alzheimer's disease (AD) and related disorders, especially as aspects of the histopathology and neurodegeneration can be reproduced in animal models. AD is characterized by extracellular Abeta peptide-containing plaques and neurofibrillary aggregates of hyperphosphorylated isoforms of microtubule-associated protein tau. A causal link between Abeta production, neurodegeneration and dementia has been established with the identification of familial forms of AD which are linked to mutations in the amyloid precursor protein APP, from which the Abeta peptide is derived by proteolysis. No mutations have been identified in the tau gene in AD until today. Tau filament formation, in the absence of Abeta production, is also a feature of several additional neurodegenerative diseases including progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). The identification of mutations in the tau gene which are linked to FTDP-17 established that dysfunction of tau can, as well as Abeta formation, lead to neurodegeneration and dementia. In this review, newly recognized cellular functions of tau, and the neuropathology and clinical syndrome of FTDP-17 will be presented, as well as recent advances that have been achieved in studies of transgenic mice expressing tau and AD-related kinases and phosphatases. These models link neurofibrillary lesion formation to neuronal loss, provide an in vivo model in which therapies can be assessed, and may contribute to determine the relationship between Abeta production and tau pathology.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, August Forel Strasse 1, 8008, Zürich, Switzerland.
| |
Collapse
|
112
|
Götz J, Tolnay M, Barmettler R, Chen F, Probst A, Nitsch RM. Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur J Neurosci 2001; 13:2131-40. [PMID: 11422454 DOI: 10.1046/j.0953-816x.2001.01604.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic evidence indicates that several mutations in tau, including G272V, are linked to frontotemporal dementia with parkinsonism. We expressed this mutation in mouse brains by combining a prion protein promoter-driven expression system with an autoregulatory transactivator loop that resulted in high expression of human G272V tau in neurons and in oligodendrocytes. We show that G272V tau can form filaments in murine oligodendrocytes. Electron microscopy established that the filaments were either straight or had a twisted structure; these were 17-20 nm wide and had a periodicity of approximately 75 nm. Filament formation was associated with tau phosphorylation at distinct sites, including the AT8 epitope 202/205 in vivo. Immunogold electron microscopy of sarcosyl-extracted spinal cords from G272V transgenic mice using phosphorylation-dependent antibodies AT8 or AT100 identified several sparsely gold-labelled 6-nm filaments. In the spinal cord, fibrillary inclusions were also identified by thioflavin-S fluorescent microscopy in oligodendrocytes and motor neurons. These results establish that expression of the G272V mutation in mice causes oligodendroglial fibrillary lesions that are similar to those seen in human tauopathies.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, August Forel Str. 1, 8008 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
113
|
Masliah E, Sisk A, Mallory M, Games D. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 2001; 60:357-68. [PMID: 11305871 DOI: 10.1093/jnen/60.4.357] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overexpression of mutated human amyloid precursor protein (hAPP717V-->F) under control of the platelet-derived growth factor promoter (PDAPP minigene) in transgenic (tg) mice results in plaque formation and astroglial activation similar to Alzheimer disease (AD). However, the extent of the neurofibrillary pathology in this model is less understood. In order to determine if these mice develop AD-like neurofibrillary pathology, vibratome sections from PDAPP tg mice (4- to 20-months-old) were immunolabeled with antibodies against phosphorylated tau (AT8) and phosphorylated neurofilaments (SMI 312, TA51), and analyzed by laser scanning confocal and electron microscopy. Phosphorylated neurofilament-immunoreactive dystrophic neurites in plaques were first seen in mice at 10 to 12 months of age, while phosphorylated tau-immunoreactive dystrophic neurites were observed after 14 months of age. Immunoelectron microscopic analysis revealed that phosphorylated neurofilament immunoreactivity was diffusely distributed along filamentous aggregates (12-15 nm in diameter) in the plaque dystrophic neurites, and occasionally in neuronal cell bodies. In contrast, phosphorylated tau immunoreactivity was observed as clusters distributed along filamentous structures accumulating in the dystrophic neurites and around neurotubules in the axons. However, no paired helical filaments were observed. Taken together, these studies indicate that the PDAPP tg model recapitulates early cytoskeletal pathology similar to that observed in AD.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California San Diego, La Jolla 92093-0624, USA
| | | | | | | |
Collapse
|
114
|
Götz J, Barmettler R, Ferrari A, Goedert M, Probst A, Nitsch RM. In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann N Y Acad Sci 2001; 920:126-33. [PMID: 11193141 DOI: 10.1111/j.1749-6632.2000.tb06914.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in the coding and intronic regions of the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Some of these mutations lead to an overproduction of tau isoforms with four microtubule-binding repeats, followed by the development of fibrillary lesions and selective cell death. In order to analyze the development of these neurofibrillary lesions in transgenic mice, the longest four-repeat human brain tau isoform was expressed under control of two different neuron-specific promoters. In a first model, utilizing the human Thy1 promoter, transgenic tau was hyperphosphorylated and abnormally localized to cell bodies and dendrites. In a second model, which made use of a human Thy1.2 expression vector, transgenic expression levels were much higher, and an additional phenotype was observed: Large numbers of pathologically enlarged axons containing neurofilament- and tau-immunoreactive spheroids were present, especially in spinal cord. Signs of Wallerian degeneration and neurogenic muscle atrophy were observed. Behaviorally, transgenic mice showed signs of muscle weakness. Our data show that overexpression of human four-repeat tau in itself is sufficient to lead to nerve cell dysfunction and amyotrophy. We have now extended our initial studies by introducing exonic mutations including G2t 2V and PS01L into the tau gene in order to achieve a more advanced FTDP-17 associated phenotype.
Collapse
Affiliation(s)
- J Götz
- Department of Psychiatry Research, University of Zürich, August Forel Str. 1, 8008 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
115
|
Garcia ML, Cleveland DW. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 2001; 13:41-8. [PMID: 11163132 DOI: 10.1016/s0955-0674(00)00172-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The microtubule-associated protein tau was originally identified as a protein that co-purified with tubulin in vitro, stimulated assembly of tubulin into microtubules and strongly stabilized microtubules. Recognized now as one of the most abundant axonal microtubule-associated proteins, a convergence of evidence implicates an overlapping in vivo role of tau with other axonal microtubule-associated proteins (e.g. MAP1B) in establishing microtubule stability, axon elongation and axonal structure. Missense and splice-site mutations in the human tau gene are now known to be causes of inherited frontotemporal dementia and parkinsonism linked to chromosome 17, a cognitive disorder of aging. This has provided direct evidence for the hypothesis that aberrant, filamentous assembly of tau, a frequent hallmark of a series of human cognitive diseases, including Alzheimer's disease, can directly provoke neurodegeneration.
Collapse
Affiliation(s)
- M L Garcia
- Department of Neuroscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
116
|
Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001; 20:27-39. [PMID: 11226152 PMCID: PMC140191 DOI: 10.1093/emboj/20.1.27] [Citation(s) in RCA: 685] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3beta (GSK-3beta) has been postulated to mediate Alzheimer's disease tau hyperphosphorylation, beta-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3beta in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear beta-catenin and hyperphosphorylation of tau in hippocampal neurons, the latter resulting in pretangle-like somatodendritic localization of tau. Neurons displaying somatodendritic localization of tau often show abnormal morphologies and detachment from the surrounding neuropil. Reactive astrocytosis and microgliosis were also indicative of neuronal stress and death. This was further confirmed by TUNEL and cleaved caspase-3 immunostaining of dentate gyrus granule cells. Our results demonstrate that in vivo overexpression of GSK-3beta results in neurodegeneration and suggest that these mice can be used as an animal model to study the relevance of GSK-3beta deregulation to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Pilar Gómez-Ramos
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - María A. Morán
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - René Hen
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| | - Jesús Avila
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC/Universidad Autónoma de Madrid,
Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Center for Neurobiology and Behavior, Columbia University, New York, NY, USA Corresponding author e-mail: J.J.Lucas and F.Hernández contributed equally to this work
| |
Collapse
|
117
|
Götz J, Chen F, Barmettler R, Nitsch RM. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001; 276:529-34. [PMID: 11013246 DOI: 10.1074/jbc.m006531200] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the microtubule-associated protein tau, including P301L, are genetically coupled to hereditary frontotemporal dementia with parkinsonism linked to chromosome 17. To determine whether P301L is associated with fibril formation in mice, we expressed the longest human tau isoform, human tau40, with this mutation in transgenic mice by using the neuron-specific mouse Thy1.2 promoter. We obtained mice with high expression of human P301L tau in cortical and hippocampal neurons. Accumulated tau was hyperphosphorylated and translocated from axonal to somatodendritic compartments and was accompanied by astrocytosis and neuronal apoptosis indicated by terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end-labeling staining. Moreover, P301L tau formed abnormal filaments. Electron microscopy of sarcosyl-insoluble protein extracts established that the filaments had a straight or twisted structure of variable length and were approximately 15 nm wide. Immunoelcecton microscopy showed that the tau filaments were phosphorylated at the TG3, AT100, AT8, and AD199 epitopes in vivo. In cortex, brain stem, and spinal cord, neurofibrillary tangles were also identified by thioflavin-S fluorescent microscopy and Gallyas silver stains. Together, our results show that expression of the P301L mutation in mice causes neuronal lesions that are similar to those seen in human tauopathies.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, 8008 Zürich, Switzerland.
| | | | | | | |
Collapse
|
118
|
|
119
|
Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K, Lasrado R, Vandezande K, Laenen I, Boon T, Van Lint J, Vandenheede J, Moechars D, Loos R, Van Leuven F. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 2000; 275:41340-9. [PMID: 11007782 DOI: 10.1074/jbc.m006219200] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein tau filaments in brain of patients suffering from Alzheimer's disease, frontotemporal dementia, and other tauopathies consist of protein tau that is hyperphosphorylated. The responsible kinases operating in vivo in neurons still need to be identified. Here we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) is an effective kinase for protein tau in cerebral neurons in vivo in adult GSK-3beta and GSK-3beta x human tau40 transgenic mice. Phosphorylated protein tau migrates slower during electrophoretic separation and is revealed by phosphorylation-dependent anti-tau antibodies in Western blot analysis. In addition, its capacity to bind to re-assembled paclitaxel (Taxol((R)))-stabilized microtubules is reduced, compared with protein tau isolated from mice not overexpressing GSK-3beta. Co-expression of GSK-3beta reduces the number of axonal dilations and alleviates the motoric impairment that was typical for single htau40 transgenic animals (Spittaels, K., Van den Haute, C., Van Dorpe, J., Bruynseels, K., Vandezande, K., Laenen, I., Geerts, H., Mercken, M., Sciot, R., Van Lommel, A., Loos, R., and Van Leuven, F. (1999) Am. J. Pathol. 155, 2153-2165). Although more hyperphosphorylated protein tau is available, neither an increase in insoluble protein tau aggregates nor the presence of paired helical filaments or tangles was observed. These findings could have therapeutic implications in the field of neurodegeneration, as discussed.
Collapse
Affiliation(s)
- K Spittaels
- Experimental Genetics Group, Center for Human Genetics, Flemish Institute for Biotechnology, Katholieke Universiteit Leuven, Gasthuisberg O&N 06, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Forman MS, Lee VM, Trojanowski JQ. New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J Chem Neuroanat 2000; 20:225-44. [PMID: 11207421 DOI: 10.1016/s0891-0618(00)00100-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abundant neurofibrillary lesions consisting of the microtubule associated protein tau and amyloid beta peptide deposits are the defining lesions of Alzheimer's disease. Prominent filamentous tau pathology and brain degeneration in the absence of extracellular amyloid deposition characterize a number of other neurodegenerative disorders (i.e. progressive supranuclear palsy, corticobasal degeneration, Pick's disease) collectively referred to as tauopathies. The discovery of multiple tau gene mutations that are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 in many kindreds, as well as the demonstration that tau polymorphisms are genetic risk factors for sporadic tauopathies, directly implicate tau abnormalities in the onset/progression of neurodegenerative disease. Different tau gene mutations may be pathogenic by impairing the functions of tau or by perturbing the splicing of the tau gene, thereby resulting in biochemically and structurally distinct tau aggregates. However, since specific polymorphisms and mutations in the tau gene lead to diverse phenotypes, it is plausible that additional genetic or epigenetic factors influence the clinical and pathological manifestations of both familial and sporadic tauopathies. Thus, efforts to develop animal models of tau-mediated neurodegeneration should provide further insights into the onset and progression of tauopathies as well as Alzheimer's disease, and they could accelerate research to discover more effective therapies for these disorders.
Collapse
Affiliation(s)
- M S Forman
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce Street, Maloney Building, 3rd Floor, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
121
|
Toussaint O, Baret PV, Brion JP, Cras P, Collette F, De Deyn PP, Geenen V, Kienlen-Campard P, Labeur C, Legros JJ, Nève J, Octave JN, Piérard GE, Salmon E, van den Bosch de Aguilar P P, Van der Linden M, Leuven FV, Vanfleteren J. Experimental gerontology in Belgium: from model organisms to age-related pathologies. Exp Gerontol 2000; 35:901-16. [PMID: 11121679 DOI: 10.1016/s0531-5565(00)00177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- O Toussaint
- Unit of Cellular Biochemistry, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:95-130. [PMID: 10967355 DOI: 10.1016/s0165-0173(00)00019-9] [Citation(s) in RCA: 1422] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Collapse
Affiliation(s)
- L Buée
- INSERM U422, Place de Verdun, 59045 cedex, Lille, France.
| | | | | | | | | |
Collapse
|
123
|
Friedhoff P, von Bergen M, Mandelkow EM, Mandelkow E. Structure of tau protein and assembly into paired helical filaments. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:122-32. [PMID: 10899437 DOI: 10.1016/s0925-4439(00)00038-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the past few years the systematic investigation of paired helical filament assembly from tau protein in vitro has become feasible. We review our current understanding of the structure and conformations of tau protein and how this affects tau's assembly into the pathological paired helical filaments in Alzheimer's disease.
Collapse
Affiliation(s)
- P Friedhoff
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | |
Collapse
|
124
|
Thal DR, Holzer M, Rüb U, Waldmann G, Günzel S, Zedlick D, Schober R. Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 2000; 163:98-110. [PMID: 10785448 DOI: 10.1006/exnr.2000.7380] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abnormal phosphorylation of the tau-protein is regarded as a crucial step in the formation of neurofibrillary tangles in the neuronal cell body and neuropil threads in dendrites. We studied the effects of tau-pathology on the clinical expression of dementia in 106 autopsy cases in the entorhinal region, the hippocampal stratum oriens, the stratum radiatum, and the perforant path target zone. The first cytoskeletal lesions were located in the perikarya and dendrites of the pre-alpha cells of the transentorhinal and entorhinal region. Next, abnormally phosphorylated tau-protein (PHF-tau) was found in the neuropil of the CA1-subiculum region. Thereafter, the stratum radiatum and stratum oriens began to be involved in PHF-tau pathology in Braak stage II. In the Braak stages IV and V, the stratum radiatum was completely involved, the stratum oriens increasingly so. Beginning in Braak stage III, we noted cases having PHF-tau pathology in the perforant path target zone of the outer molecular layer of the dentate gyrus. The increase of this pathology with ever greater involvement on the part of the entorhinohippocampal circuit correlated significantly not only with the Braak stages and with the neurochemically determined hippocampal content of PHF-tau but also with the degree of dementia as defined by the clinical dementia rating (CDR) scale. The affection of the stratum oriens in combination with PHF-tau pathology in the stratum radiatum and in the outer molecular layer of the dentate gyrus was encountered almost exclusively in demented individuals (CDR 1-3). These results indicate that axonal PHF-tau pathology in hippocampal pathways presumably is critical for the clinical expression of dementia and may constitute an anatomical substrate of clinically verifiable memory dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- D R Thal
- Department of Neuropathology, University of Leipzig, Leipzig, D-04103, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Hall GF, Chu B, Lee G, Yao J. Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 2000; 113 ( Pt 8):1373-87. [PMID: 10725221 DOI: 10.1242/jcs.113.8.1373] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular accumulation of tau protein and its aggregation into filamentous deposits is the intracellular hallmark of neurofibrillary degenerative diseases such as Alzheimer's Disease and familial tauopathies in which tau is now thought to play a critical pathogenic role. Until very recently, the lack of a cellular model in which human tau filaments can be experimentally generated has prevented direct investigation of the causes and consequences of tau filament formation in vivo. In this study, we show that human tau filaments formed in lamprey central neurons (ABCs) that chronically overexpress human tau resemble the ‘straight filaments’ seen in Alzheimer's Disease and other neurofibrillary conditions, and are distinguishable from neurofilaments by their ultrastructure, distribution and intracellular behavior. We also show that tau filament formation in ABCs is associated with a distinctive pattern of dendritic degeneration that closely resembles the cytopathology of human neurofibrillary degenerative disease. This pattern includes localized cytoskeletal disruption and aggregation of membranous organelles, distal dendritic beading, and the progressive loss of dendritic microtubules and synapses. These results suggest that tau filament formation may be responsible for many key cytopathological features of neurofibrillary degeneration, possibly via the loss of microtubule based intracellular transport.
Collapse
Affiliation(s)
- G F Hall
- Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | | | | | | |
Collapse
|
126
|
Duff K, Knight H, Refolo LM, Sanders S, Yu X, Picciano M, Malester B, Hutton M, Adamson J, Goedert M, Burki K, Davies P. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 2000; 7:87-98. [PMID: 10783293 DOI: 10.1006/nbdi.1999.0279] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the normal cellular function of tau and its role in pathogenesis, we have created transgenic mice that overexpress a tau transgene derived from a human PAC that contains the coding sequence, intronic regions, and regulatory regions of the human gene. All six isoforms of human tau are represented in the transgenic mouse brain at the mRNA and protein level and the human tau is distributed in neurites and at synapses, but is absent from cell bodies. A comparison between the genomic tau mice and mice that overexpress a tau cDNA transgene shows that overall, the distribution of tau is similar in the two lines, but human tau is located in the somatodendritic compartment of many neurons in the cDNA mice. Tau-immunoreactive axonal swellings were found in the spinal cords of the cDNA mice, which correlated with a hind-limb abnormality, whereas neuropathology was essentially normal in the genomic mice up to 8 months of age.
Collapse
Affiliation(s)
- K Duff
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 2000; 97:2910-5. [PMID: 10706614 PMCID: PMC16029 DOI: 10.1073/pnas.040577797] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperphosphorylation of microtubule-associated proteins such as tau and neurofilament may underlie the cytoskeletal abnormalities and neuronal death seen in several neurodegenerative diseases including Alzheimer's disease. One potential mechanism of microtubule-associated protein hyperphosphorylation is augmented activity of protein kinases known to associate with microtubules, such as cdk5 or GSK3beta. Here we show that tau and neurofilament are hyperphosphorylated in transgenic mice that overexpress human p25, an activator of cdk5. The p25 transgenic mice display silver-positive neurons using the Bielschowsky stain. Disturbances in neuronal cytoskeletal organization are apparent at the ultrastructural level. These changes are localized predominantly to the amygdala, thalamus/hypothalamus, and cortex. The p25 transgenic mice display increased spontaneous locomotor activity and differences from control in the elevated plus-maze test. The overexpression of an activator of cdk5 in transgenic mice results in increased cdk5 activity that is sufficient to produce hyperphosphorylation of tau and neurofilament as well as cytoskeletal disruptions reminiscent of Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- M K Ahlijanian
- Departments of CNS Discovery, Pathology, and Genetic Technologies, Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D, Van Leuven F. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:951-64. [PMID: 10702411 PMCID: PMC1876840 DOI: 10.1016/s0002-9440(10)64963-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/1999] [Indexed: 11/28/2022]
Abstract
Epidemiological studies have established that the epsilon 4 allele of the ApoE gene (ApoE4) constitutes an important risk factor for Alzheimer's disease and might influence the outcome of central nervous system injury. The mechanism by which ApoE4 contributes to the development of neurodegeneration remains unknown. To test one hypothesis or mode of action of ApoE, we generated transgenic mice that overexpressed human ApoE4 in different cell types in the brain, using four distinct gene promoter constructs. Many transgenic mice expressing ApoE4 in neurons developed motor problems accompanied by muscle wasting, loss of body weight, and premature death. Overexpression of human ApoE4 in neurons resulted in hyperphosphorylation of the microtubule-associated protein tau. In three independent transgenic lines from two different promoter constructs, increased phosphorylation of protein tau was correlated with ApoE4 expression levels. Hyperphosphorylation of protein tau increased with age. In the hippocampus, astrogliosis and ubiquitin-positive inclusions were demonstrated. These findings demonstrate that expression of ApoE in neurons results in hyperphosphorylation of protein tau and suggests a role for ApoE in neuronal cytoskeletal stability and metabolism.
Collapse
Affiliation(s)
- I Tesseur
- Experimental Genetics Group, Center for Human Genetics, Flemish Institute for Biotechnology, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
129
|
Schultz C, Dehghani F, Hubbard GB, Thal DR, Struckhoff G, Braak E, Braak H. Filamentous tau pathology in nerve cells, astrocytes, and oligodendrocytes of aged baboons. J Neuropathol Exp Neurol 2000; 59:39-52. [PMID: 10744034 DOI: 10.1093/jnen/59.1.39] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intracellular filamentous inclusions containing abnormally phosphorylated tau protein are hallmarks of several human neurodegenerative disorders. This study reveals tau-positive cytoskeletal abnormalities in neurons and glial cells of aged baboons. The brains of four baboons (Papio hamadryas, 20-30 yr of age) were examined using the Gallyas silver technique for neurofibrillary changes and phosphorylation-dependent anti-tau antibodies (AT8, AT100, AT270, PHF-1, TG-3). Conspicuous changes were noted in two animals, 26 and 30 yr of age. In both animals, a combination of neuronal and glial cytoskeletal pathology was seen preferentially affecting limbic brain areas, including the hippocampal formation. In the 30-yr-old animal, numerous tau-positive inclusions were seen in the granule cells of the fascia dentata. These cells even exhibited an accumulation of argyrophilic neurofibrillary tangles. The glial changes affected both astrocytes and oligodendrocytes. Tau-positive astrocytes were seen in perivascular, subpial, and subependymal locations. Tau-positive oligodendrocytes preferentially occurred in limbic fiber tracts including the entorhinal perforant path. Ultrastructurally, tau-positive straight filaments (10-14 nm) in both neurons and glial cells were revealed by anti-tau immunoelectron microscopy. This study thus indicates the potential usefulness of aged baboons for experimental investigation of neuronal and glial filamentous tau pathology. This nonhuman primate species may provide valuable information pertinent to the broad spectrum of human tauopathies.
Collapse
Affiliation(s)
- C Schultz
- Department of Anatomy, Johann-Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
130
|
Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M, Sciot R, Van Lommel A, Loos R, Van Leuven F. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:2153-65. [PMID: 10595944 PMCID: PMC1866931 DOI: 10.1016/s0002-9440(10)65533-2] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/1999] [Indexed: 10/18/2022]
Abstract
Mutations in the human tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17. Some mutations, including mutations in intron 10, induce increased levels of the functionally normal four-repeat tau protein isoform, leading to neurodegeneration. We generated transgenic mice that overexpress the four-repeat human tau protein isoform specifically in neurons. The transgenic mice developed axonal degeneration in brain and spinal cord. In the model, axonal dilations with accumulation of neurofilaments, mitochondria, and vesicles were documented. The axonopathy and the accompanying dysfunctional sensorimotor capacities were transgene-dosage related. These findings proved that merely increasing the concentration of the four-repeat tau protein isoform is sufficient to injure neurons in the central nervous system, without formation of intraneuronal neurofibrillary tangles. Evidence for astrogliosis and ubiquitination of accumulated proteins in the dilated part of the axon supported this conclusion. This transgenic model, overexpressing the longest isoform of human tau protein, recapitulates features of known neurodegenerative diseases, including Alzheimer's disease and other tauopathies. The model makes it possible to study the interaction with additional factors, to be incorporated genetically, or with other biological triggers that are implicated in neurodegeneration.
Collapse
Affiliation(s)
- K Spittaels
- Experimental Genetics Group, Center for Human Genetics, Flemish Institute for Biotechnology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Grundke-Iqbal I, Iqbal K. Tau pathology generated by overexpression of tau. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1781-5. [PMID: 10595905 PMCID: PMC1866922 DOI: 10.1016/s0002-9440(10)65494-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/1999] [Indexed: 10/18/2022]
Affiliation(s)
- I Grundke-Iqbal
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | |
Collapse
|
132
|
Affiliation(s)
- V M Lee
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
133
|
Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24:751-62. [PMID: 10595524 DOI: 10.1016/s0896-6273(00)81127-7] [Citation(s) in RCA: 462] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Filamentous tau aggregates are hallmarks of tauopathies, e.g., frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) and amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC). Since FTDP-17 tau gene mutations alter levels/functions of tau, we overexpressed the smallest human tau isoform in the CNS of transgenic (Tg) mice to model tauopathies. These mice acquired age-dependent CNS pathology similarto FTDP-17 and ALS/PDC, including insoluble, hyperphosphorylated tau and argyrophilic intraneuronal inclusions formed by tau-immunoreactive filaments. Inclusions were present in cortical and brainstem neurons but were most abundant in spinal cord neurons, where they were associated with axon degeneration, diminished microtubules (MTs), and reduced axonal transport in ventral roots, as well as spinal cord gliosis and motor weakness. These Tg mice recapitulate key features of tauopathies and provide models for elucidating mechanisms underlying diverse tauopathies, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- T Ishihara
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Goedert M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 1999; 354:1101-18. [PMID: 10434313 PMCID: PMC1692614 DOI: 10.1098/rstb.1999.0466] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.
Collapse
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
135
|
Affiliation(s)
- C Haass
- Adolf-Butenandt-Institute, Dept of Biochemistry, Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
136
|
Tolnay M, Probst A. REVIEW: tau protein pathology in Alzheimer's disease and related disorders. Neuropathol Appl Neurobiol 1999; 25:171-87. [PMID: 10417659 DOI: 10.1046/j.1365-2990.1999.00182.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abundant neurofibrillary lesions made of hyperphosphorylated microtubule-associated protein tau constitute one of the defining neuropathological features of Alzheimer's disease. However, tau containing filamentous inclusions in neurones and/or glial cells also define a number of other neurodegenerative disorders clinically characterized by dementia and/or motor syndromes. All these disorders, therefore, are grouped under the generic term of tauopathies. In the first part of this review we outline the morphological and biochemical features of some major tauopathies, e. g. Alzheimer's disease, argyrophilic grain disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. The impact of the recent finding of tau gene mutations in familial frontotemporal dementia and parkinsonism linked to chromosome 17 on other tauopathies is discussed in the second part. The review closes with a look towards a new understanding of neurodegenerative disorders characterized by filamentous nerve cell inclusions. The recent identification of the major protein component of their respective inclusions led to a surprising convergence of seemingly unrelated disorders. The new findings now allow us to classify neurodegenerative disorders with filamentous nerve cell inclusions into four main categories: (i) the tauopathies; (ii) the alpha-synucleinopathies; (iii) the polyglutamine disorders; and (iv) the iquitin disorders'. Within the proposed classification scheme, tauopathies constitute the most frequent type of disorder.
Collapse
Affiliation(s)
- M Tolnay
- Institute of Pathology, Division of Neuropathology, Basel University, Basel, Switzerland
| | | |
Collapse
|
137
|
Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease. FEBS Lett 1999; 451:39-44. [PMID: 10356980 DOI: 10.1016/s0014-5793(99)00522-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.
Collapse
Affiliation(s)
- T Kampers
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
138
|
Goedert M, Hasegawa M. The tauopathies: toward an experimental animal model. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1-6. [PMID: 9916910 PMCID: PMC1853453 DOI: 10.1016/s0002-9440(10)65242-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/1998] [Indexed: 01/10/2023]
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|