101
|
Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species. BIOMED RESEARCH INTERNATIONAL 2015; 2015:402386. [PMID: 26185755 PMCID: PMC4491563 DOI: 10.1155/2015/402386] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 05/31/2015] [Indexed: 01/01/2023]
Abstract
According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species.
Collapse
|
102
|
|
103
|
Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid Redox Signal 2015; 22:1382-424. [PMID: 25364882 PMCID: PMC4432495 DOI: 10.1089/ars.2014.6097] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. CRITICAL ISSUES In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. FUTURE DIRECTIONS Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
104
|
Zhou S, Jin J, Bai T, Sachleben LR, Cai L, Zheng Y. Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci 2015; 134:56-62. [PMID: 26044512 DOI: 10.1016/j.lfs.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/01/2015] [Accepted: 05/01/2015] [Indexed: 12/30/2022]
Abstract
Diabetes and its cardiovascular complications have been a major public health issue. These complications are mainly attributable to a severe imbalance between free radical and reactive oxygen species production and the antioxidant defense systems. Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant enzyme genes and other cyto-protective phase II detoxifying enzymes. As a result, Nrf2 has gained great attention as a promising drug target for preventing diabetic cardiovascular complications. And while animal studies have shown that several Nrf2 activators manifest a potential to efficiently prevent the diabetic complications, their use in humans has not been approved due to the lack of substantial evidence regarding safety and efficacy of the Nrf2 activation. We provide here a brief review of a few clinically-used drugs that can up-regulate Nrf2 with the potential of extending their usage to diabetic patients for the prevention of cardiovascular complications and conclude with a closer inspection of dimethyl fumarate and its mimic members.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jingpeng Jin
- Endoscopy Center China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Tao Bai
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Leroy R Sachleben
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA.
| | - Yang Zheng
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
105
|
Black AM, Armstrong EA, Scott O, Juurlink BJH, Yager JY. Broccoli sprout supplementation during pregnancy prevents brain injury in the newborn rat following placental insufficiency. Behav Brain Res 2015; 291:289-298. [PMID: 26014855 DOI: 10.1016/j.bbr.2015.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
Abstract
Chronic placental insufficiency and subsequent intrauterine growth restriction (IUGR) increase the risk of hypoxic-ischemic encephalopathy in the newborn by 40 fold. The latter, in turn, increases the risk of cerebral palsy and developmental disabilities. This study seeks to determine the effectiveness of broccoli sprouts (BrSp), a rich source of the isothiocyanate sulforaphane, as a neuroprotectant in a rat model of chronic placental insufficiency and IUGR. Placental insufficiency and IUGR was induced by bilateral uterine artery ligation (BUAL) on day E20 of gestation. Dams were fed standard chow or chow supplemented with 200mg of dried BrSp from E15 - postnatal day 14 (PD14). Controls received Sham surgery and the same dietary regime. Pups underwent neurologic reflex testing and open field testing, following which they were euthanized and their brains frozen for neuropathologic assessment. Compared to Sham, IUGR pups were delayed in attaining early reflexes and performed worse in the open field, both of which were significantly improved by maternal supplementation of BrSp (p<0.05). Neuropathology revealed diminished white matter, ventricular dilation, astrogliosis and reduction in hippocampal neurons in IUGR animals compared to Sham, whereas broccoli sprout supplementation improved outcome in all histological assessments (p<0.05). Maternal dietary supplementation with BrSp prevented the detrimental neurocognitive and neuropathologic effects of chronic intrauterine ischemia. These findings suggest a novel approach for prevention of cerebral palsy and/or developmental disabilities associated with placental insufficiency.
Collapse
Affiliation(s)
- A M Black
- Pediatric Neurosciences, Department of Pediatrics and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | - E A Armstrong
- Pediatric Neurosciences, Department of Pediatrics and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | - O Scott
- Pediatric Neurosciences, Department of Pediatrics and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | - B J H Juurlink
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatchewan, Canada
| | - J Y Yager
- Pediatric Neurosciences, Department of Pediatrics and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
106
|
Amjad AI, Parikh RA, Appleman LJ, Hahm ER, Singh K, Singh SV. Broccoli-Derived Sulforaphane and Chemoprevention of Prostate Cancer: From Bench to Bedside. ACTA ACUST UNITED AC 2015; 1:382-390. [PMID: 26557472 DOI: 10.1007/s40495-015-0034-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulforaphane (SFN) is a metabolic by product of cruciferous vegetables and is the biologically active phytochemical found in high concentrations in broccoli. It has been studied extensively for its anticancer efficacy and the underlying mechanisms using cell culture and preclinical models. The immediate precursor of SFN is glucoraphanin, a glucosinolate which requires metabolic conversion to SFN. SFN and other notable isothiocyanates, including phenethyl isothiocyanate and benzyl isothiocyanate found in various cruciferous vegetables, have also been implicated to have a chemopreventive role for breast, colon and prostate cancer. In-vitro and in-vivo anti-cancer activity of this class of compounds summarizing the past two decades of basic science research has previously been reviewed by us and others. The present review aims to focus specifically on SFN and its chemopreventive and antineoplastic activity against prostate cancer. Particular emphasis in this communication is placed on the current status of clinical research and prospects for future clinical trials with the overall objective to better understand the clinical utility of this promising chemopreventive nutraceutical in the context of mechanisms of prostate carcinogenesis.
Collapse
Affiliation(s)
- Ali I Amjad
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rahul A Parikh
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Leonard J Appleman
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kamayani Singh
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
107
|
Srovnalova A, Vanduchova A, Svecarova M, Anzenbacherova E, Tomankova V, Anzenbacher P, Dvorak Z. Effects of sulforaphane and its S- and R-enantiomers on the expression and activities of human drug-metabolizing cytochromes P450. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
108
|
Veeranki OL, Bhattacharya A, Tang L, Marshall JR, Zhang Y. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. ACTA ACUST UNITED AC 2015; 1:272-282. [PMID: 26273545 DOI: 10.1007/s40495-015-0024-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50-80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues.
Collapse
Affiliation(s)
- Omkara L Veeranki
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Arup Bhattacharya
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - James R Marshall
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Yuesheng Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
109
|
Hoffman JD, Ward WM, Loo G. Effect of antioxidants on the genotoxicity of phenethyl isothiocyanate. Mutagenesis 2015; 30:421-30. [PMID: 25681790 DOI: 10.1093/mutage/gev003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Isothiocyanates are plant-derived compounds that may be beneficial in the prevention of certain chronic diseases. Yet, by stimulating the production of reactive oxygen species (ROS), isothiocyanates can be genotoxic. Whether antioxidants influence isothiocyanate-induced genotoxicity is unclear, but this situation was clarified appreciably herein. In HCT116 cells, phenethyl isothiocyanate (PEITC) increased ROS production, which was inhibited by N-acetylcysteine (NAC) and deferoxamine (DFO) but not by ascorbic acid (ASC) and trolox (TRX) that were found to be more potent radical scavengers. Surprisingly, ASC and TRX each intensified the DNA damage that was caused by PEITC, but neither ASC nor TRX by themselves caused any DNA damage. In contrast, NAC and DFO each not only attenuated PEITC-induced DNA damage but also attenuated the antioxidant-intensified, PEITC-induced DNA damage. To determine if the DNA damage could be related to possible changes in the major antioxidant defence system, glutathione (GSH) was investigated. PEITC lowered GSH levels, which was prevented by NAC, whereas ASC, TRX and DFO neither inhibited nor enhanced the GSH-lowering effect of PEITC. The GSH synthesis inhibitor, buthionine sulphoxime, intensified PEITC-induced DNA damage, although by itself buthionine sulphoxime did not directly cause DNA damage. The principal findings suggest that ASC and TRX make PEITC more genotoxic, which might be exploited in killing cancer cells as one approach in killing cancer cells is to extensively damage their DNA so as to initiate apoptosis.
Collapse
Affiliation(s)
- Jared D Hoffman
- Department of Nutrition, Cellular and Molecular Nutrition Research Laboratory, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - William M Ward
- Department of Nutrition, Cellular and Molecular Nutrition Research Laboratory, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - George Loo
- Department of Nutrition, Cellular and Molecular Nutrition Research Laboratory, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
110
|
Platz S, Piberger AL, Budnowski J, Herz C, Schreiner M, Blaut M, Hartwig A, Lamy E, Hanske L, Rohn S. Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC–MS–MS. Anal Bioanal Chem 2015; 407:1819-29. [DOI: 10.1007/s00216-015-8482-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/04/2015] [Accepted: 01/10/2015] [Indexed: 12/01/2022]
|
111
|
UAE-HPLC-UV: New Contribution for Fast Determination of Total Isothiocyanates in Brassicaceae Vegetables. J CHEM-NY 2015. [DOI: 10.1155/2015/294601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Total isothiocyanates content (ITC) is considered a good indicator of bioactive compounds responsible for beneficial effects related to Brassicaceae vegetables.Analytical performance is a critical factor for routine analysis in plant tissues. The extraction technique for isolating phytochemicals from Brassicaceae vegetables is currently the bottleneck of the methodology. The aim of this work was to optimize this step in the analytical process. Fast and less expensive alternative, based on ultrasound-assisted extraction technique (UAE) for direct extraction of GLS into an aqueous phase and further analysis of the hydrolysis product, was optimized. Full factorial (2k) design followed by Central Composite Design (CCD) was used to obtain the optimum extraction conditions. Selected conditions were homogenization time (9 min); ultrasound bath time (5 min); and sample-to-solvent ratio (1 : 5 w/v mg mL−1). The proposed analytical methodology exhibits satisfactory analytical performance in terms of linearity, precision (RSD < 2.4%), and limits of detection (26 nmol g−1 w.w.). The new analytical methodology was applied to cauliflower, cabbage, watercress, and broccoli samples with recoveries higher than 86%. The UAE extraction technique was showed to be efficient for real samples analysis leading to sensible, selective, and reproducible methodology for ITC analysis.
Collapse
|
112
|
Bao Y, Wang W, Zhou Z, Sun C. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention. PLoS One 2014; 9:e114764. [PMID: 25532034 PMCID: PMC4273949 DOI: 10.1371/journal.pone.0114764] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/13/2014] [Indexed: 01/16/2023] Open
Abstract
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint.
Collapse
Affiliation(s)
- Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- Department of Cardiovascular Medicine, Affiliated hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Changhao Sun
- School of Public Health, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
113
|
Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells. Cell Death Dis 2014; 5:e1534. [PMID: 25412312 PMCID: PMC4260753 DOI: 10.1038/cddis.2014.495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells.
Collapse
|
114
|
Heber D, Li Z, Garcia-Lloret M, Wong AM, Lee TYA, Thames G, Krak M, Zhang Y, Nel A. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct 2014; 5:35-41. [PMID: 24287881 DOI: 10.1039/c3fo60277j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of oxidative stress by ambient air pollution particles contributes to the development of allergic sensitization and asthma, as demonstrated by intranasal challenge with well-characterized diesel exhaust particle (DEP) suspensions in humans. This effect is due to the presence of redox active organic chemicals in DEP, and can be suppressed by antioxidants and inducers of phase II enzymes in animals. In this communication, we determined whether the administration of a standardized broccoli sprout extract (BSE), which contains a reproducible amount of the sulforaphane (SFN) precursor, glucoraphanin, could be used to suppress the nasal inflammatory response in human subjects challenged with 300 μg of an aqueous DEP suspension (equivalent to daily PM exposure levels on a Los Angeles freeway). SFN is capable of inducing an antioxidant and phase II response via activation of the nuclear transcription factor (erythroid-derived 2)-like 2 (Nrf2). Previous studies have shown that 70-90% SFN delivered by BSE is absorbed, metabolized, and excreted in humans. An initial intranasal challenge with DEP in 29 human subjects was used to characterize the magnitude of the inflammatory response. Following a 4 week washout, a BSE that delivers a reproducible and standardized dose of 100 μmol SFN in mango juice was administered daily for four days. The nasal DEP challenge was repeated and lavage fluid collected to perform white blood cell (WBC) counts. The average nasal WBC increased by 66% over the initial screening levels and by 85% over the control levels 24 hours after DEP exposure. However, total cell counts decreased by 54% when DEP challenge was preceded by daily BSE administration for 4 days (p < 0.001). Since the SFN dose in these studies is equivalent to the consumption of 100-200 g broccoli, our study demonstrates the potential preventive and therapeutic potential of broccoli or broccoli sprouts rich in glucoraphanin for reducing the impact of particulate pollution on allergic disease and asthma.
Collapse
Affiliation(s)
- David Heber
- UCLA Center for Human Nutrition and the Division of NanoMedicine, David Geffen School of Medicine at UCLA, 900 Veteran Avenue, Room 12-217, 12-217 Warren Hall, Box 951742, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Choi EJ, Zhang P, Kwon H. Determination of goitrogenic metabolites in the serum of male wistar rat fed structurally different glucosinolates. Toxicol Res 2014; 30:109-16. [PMID: 25071920 PMCID: PMC4112061 DOI: 10.5487/tr.2014.30.2.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/20/2022] Open
Abstract
Glucosinolates (GLSs) are abundant in cruciferous vegetables and reported to have anti thyroidal effects. Four GLSs (sinigrin, progoitrin, glucoerucin, and glucotropaeolin) were administered orally to rats, and the breakdown products of GLSs (GLS-BPs: thiocyanate ions, cyanide ions, organic isothiocyanates, organic nitriles, and organic thiocyanates) were measured in serum. Thiocyanate ions were measured by colorimetric method, and cyanide ions were measured with CI-GC-MS. Organic isothiocyanates and their metabolites were measured with the cyclocondensation assay. Organic nitriles and organic thiocyanates were measured with EI-GC-MS. In all treatment groups except for progoitrin, thiocyanate ions were the highest among the five GLS-BPs. In the progoitrin treated group, a high concentration of organic isothiocyanates (goitrin) was detected. In the glucoerucin treated group, a relatively low amount of goitrogenic substances was observed. The metabolism to thiocyanate ions happened within five hours of the administration, and the distribution of GLSs varied with the side chain. GLSs with side chains that can form stable carbocation seemed to facilitate the degradation reaction and produce a large amount of goitrogenic thiocyanate ions. Because goitrogenic metabolites can be formed without myrosinase, the inactivation of myrosinase during cooking would have no effect on the anti-nutritional effect of GLSs in cruciferous vegetables.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Ping Zhang
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Hoonjeong Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea ; Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
116
|
Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J, Chen TY, Qian GS, Carmella SG, Hecht SS, Kensler TW. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 2014; 7:813-823. [PMID: 24913818 DOI: 10.1158/1940-6207.capr-14-0103] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Broccoli sprouts are a convenient and rich source of the glucosinolate, glucoraphanin, which can generate the chemopreventive agent, sulforaphane, an inducer of glutathione S-transferases (GST) and other cytoprotective enzymes. A broccoli sprout-derived beverage providing daily doses of 600 μmol glucoraphanin and 40 μmol sulforaphane was evaluated for magnitude and duration of pharmacodynamic action in a 12-week randomized clinical trial. Two hundred and ninety-one study participants were recruited from the rural He-He Township, Qidong, in the Yangtze River delta region of China, an area characterized by exposures to substantial levels of airborne pollutants. Exposure to air pollution has been associated with lung cancer and cardiopulmonary diseases. Urinary excretion of the mercapturic acids of the pollutants, benzene, acrolein, and crotonaldehyde, were measured before and during the intervention using liquid chromatography tandem mass spectrometry. Rapid and sustained, statistically significant (P ≤ 0.01) increases in the levels of excretion of the glutathione-derived conjugates of benzene (61%), acrolein (23%), but not crotonaldehyde, were found in those receiving broccoli sprout beverage compared with placebo. Excretion of the benzene-derived mercapturic acid was higher in participants who were GSTT1-positive than in the null genotype, irrespective of study arm assignment. Measures of sulforaphane metabolites in urine indicated that bioavailability did not decline over the 12-week daily dosing period. Thus, intervention with broccoli sprouts enhances the detoxication of some airborne pollutants and may provide a frugal means to attenuate their associated long-term health risks.
Collapse
Affiliation(s)
- Patricia A Egner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jian-Guo Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Adam T Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jin-Bing Wang
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Kevin H Kensler
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Lisa P Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Alvaro Muñoz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jamie L Johnson
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - John D Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jed W Fahey
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Paul Talalay
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Jian Zhu
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Tao-Yang Chen
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Geng-Sun Qian
- Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200 China
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas W Kensler
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
117
|
Antioxidative Activity of Water Soluble Polysaccharide in Pumpkin Fruits (Cucurbita maximaDuchesne). Biosci Biotechnol Biochem 2014; 73:1416-8. [DOI: 10.1271/bbb.80529] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
118
|
Nallasamy P, Si H, Babu PVA, Pan D, Fu Y, Brooke EAS, Shah H, Zhen W, Zhu H, Liu D, Li Y, Jia Z. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway. J Nutr Biochem 2014; 25:824-33. [PMID: 24880493 DOI: 10.1016/j.jnutbio.2014.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 01/10/2023]
Abstract
Sulforaphane, a naturally occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 and adhesion molecules including soluble vascular adhesion molecule-1 and soluble E-selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced nuclear factor (NF)-κB transcriptional activity, Inhibitor of NF-κB alpha (IκBα) degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers' delicate organization, as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced vascular adhesion molecule-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway.
Collapse
Affiliation(s)
- Palanisamy Nallasamy
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Hongwei Si
- Department of Family and Consumer Sciences, College of Agriculture, Human and Natural Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | - Dengke Pan
- Department of Gene and Cell Engineering, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yu Fu
- Departments of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24062, USA
| | - Elizabeth A S Brooke
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Halley Shah
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Wei Zhen
- Departments of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24062, USA
| | - Hong Zhu
- Department of Pharmacology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Dongmin Liu
- Departments of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24062, USA.
| | - Yunbo Li
- Department of Pharmacology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA.
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
119
|
Baier SR, Zbasnik R, Schlegel V, Zempleni J. Off-target effects of sulforaphane include the derepression of long terminal repeats through histone acetylation events. J Nutr Biochem 2014; 25:665-8. [PMID: 24746830 DOI: 10.1016/j.jnutbio.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/26/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022]
Abstract
Sulforaphane is a naturally occurring isothiocyanate in cruciferous vegetables. Sulforaphane inhibits histone deacetylases, leading to the transcriptional activation of genes including tumor suppressor genes. The compound has attracted considerable attention in the chemoprevention of prostate cancer. Here we tested the hypothesis that sulforaphane is not specific for tumor suppressor genes but also activates loci such as long terminal repeats (LTRs), which might impair genome stability. Studies were conducted using chemically pure sulforaphane in primary human IMR-90 fibroblasts and in broccoli sprout feeding studies in healthy adults. Sulforaphane (2.0 μM) caused an increase in LTR transcriptional activity in cultured cells. Consumption of broccoli sprouts (34, 68 or 102 g) by human volunteers caused a dose dependent elevation in LTR mRNA in circulating leukocytes, peaking at more than a 10-fold increase. This increase in transcript levels was associated with an increase in histone H3 K9 acetylation marks in LTR 15 in peripheral blood mononuclear cells from subjects consuming sprouts. Collectively, this study suggests that sulforaphane has off-target effects that warrant further investigation when recommending high levels of sulforaphane intake, despite its promising activities in chemoprevention.
Collapse
Affiliation(s)
- Scott R Baier
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Vicki Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE
| | - Janos Zempleni
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE.
| |
Collapse
|
120
|
Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
121
|
Nguyen B, Luong L, Naase H, Vives M, Jakaj G, Finch J, Boyle J, Mulholland JW, Kwak JH, Pyo S, de Luca A, Athanasiou T, Angelini G, Anderson J, Haskard DO, Evans PC. Sulforaphane pretreatment prevents systemic inflammation and renal injury in response to cardiopulmonary bypass. J Thorac Cardiovasc Surg 2014; 148:690-697.e3. [PMID: 24521949 DOI: 10.1016/j.jtcvs.2013.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Systemic inflammatory responses are a major cause of morbidity and mortality in patients undergoing cardiac surgery with cardiopulmonary bypass. However, the underlying molecular mechanisms for systemic inflammation in response to cardiopulmonary bypass are poorly understood. METHODS A porcine model was established to study the signaling pathways that promote systemic inflammation in response to cardiac surgery with cardiopulmonary bypass under well-controlled experimental conditions. The influence of sulforaphane, an anti-inflammatory compound derived from green vegetables, on inflammation and injury in response to cardiopulmonary bypass was also studied. Intracellular staining and flow cytometry were performed to measure phosphorylation of p38 mitogen-activated protein kinase and the transcription factor nuclear factor-κB in granulocytes and mononuclear cells. RESULTS Surgery with cardiopulmonary bypass for 1 to 2 hours enhanced phosphorylation of p38 (2.5-fold) and nuclear factor-κB (1.6-fold) in circulating mononuclear cells. Cardiopulmonary bypass also modified granulocytes by activating nuclear factor-κB (1.6-fold), whereas p38 was not altered. Histologic analyses revealed that cardiopulmonary bypass promoted acute tubular necrosis. Pretreatment of animals with sulforaphane reduced p38 (90% reduction) and nuclear factor-κB (50% reduction) phosphorylation in leukocytes and protected kidneys from injury. CONCLUSIONS Systemic inflammatory responses after cardiopulmonary bypass were associated with activation of p38 and nuclear factor-κB pathways in circulating leukocytes. Inflammatory responses to cardiopulmonary bypass can be reduced by sulforaphane, which reduced leukocyte activation and protected against renal injury.
Collapse
Affiliation(s)
- Bao Nguyen
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Le Luong
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Hatam Naase
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Marc Vives
- Department of Anaesthesia, Toronto General Hospital, Toronto, Ontario, Canada
| | - Gentjan Jakaj
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathan Finch
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Joseph Boyle
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John W Mulholland
- Department of Clinical Perfusion Science, Hammersmith Hospital, London, United Kingdom
| | - Jong-hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Seoul, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Seoul, Republic of Korea
| | - Amalia de Luca
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thanos Athanasiou
- Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gianni Angelini
- Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jon Anderson
- Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Dorian O Haskard
- BHF Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul C Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
122
|
Perez HL, Junnotula V, Knecht D, Nie H, Sanchez Y, Boehm JC, Booth-Genthe C, Yan H, Davis R, Callahan JF. Analytical approaches for quantification of a Nrf2 pathway activator: overcoming bioanalytical challenges to support a toxicity study. Analyst 2014; 139:1902-12. [DOI: 10.1039/c3an02216a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the Nrf2 stress pathway is known to play an important role in the defense mechanism against electrophilic and oxidative damage to biological macromolecules (DNA, lipids, and proteins).
Collapse
Affiliation(s)
- Hermes Licea Perez
- Bioanalytical Science and Toxicokinetics
- Platform Science and Technology
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Venkatraman Junnotula
- Bioanalytical Science and Toxicokinetics
- Platform Science and Technology
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Dana Knecht
- Bioanalytical Science and Toxicokinetics
- Platform Science and Technology
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Hong Nie
- Respiratory Stress & Repair DPU
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Yolanda Sanchez
- Respiratory Stress & Repair DPU
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Jeffrey C. Boehm
- Respiratory Stress & Repair DPU
- GlaxoSmithkline Pharmaceuticals
- , USA
| | | | - Hongxing Yan
- Respiratory Stress & Repair DPU
- GlaxoSmithkline Pharmaceuticals
- , USA
| | - Roderick Davis
- Respiratory Stress & Repair DPU
- GlaxoSmithkline Pharmaceuticals
- , USA
| | | |
Collapse
|
123
|
Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 2013; 58:875-83. [PMID: 24170324 DOI: 10.1002/mnfr.201300377] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 11/11/2022]
Abstract
SCOPE Certain myrosinase-positive human gut bacteria can metabolize glucosinolates (GSLs) to produce isothiocyanates (ITC) as chemopreventive agents. We investigated glucoerucin, glucoiberin, and glucoraphanin (present in broccoli) metabolism by human gut strains. METHODS AND RESULTS All tested bacteria metabolized glucoerucin to completion within 16 h to erucin and erucin nitrile (NIT). Lactobacillus agilis R16 metabolized only 10% of glucoiberin and glucoraphanin with no detectable products. Enterococcus casseliflavus CP1, however, metabolized 40-50% of glucoiberin and glucoraphanin producing relatively low concentrations of iberin and sulforaphane. Interestingly, Escherichia coli VL8 metabolized 80-90% of glucoiberin and glucoraphanin and also bioconverted glucoraphanin and glucoiberin to glucoerucin and glucoiberverin, respectively, producing erucin, erucin NIT, iberverin, and iberverin NIT from the two GSLs. The putative reductase enzyme in the cell-free extracts of this bacterium required both Mg(2+) and NAD(P)H as cofactors for bioconversion. The cell-free extract of E. coli VL8 containing the reductase enzyme was able to reduce both the GSL glucoraphanin and its hydrolysis product sulforaphane to glucoerucin and erucin/erucin NIT, respectively. CONCLUSION The composition and metabolic activity of the human gut bacteria can indirectly impact on the potential chemopreventive effects of GSL-derived metabolites.
Collapse
Affiliation(s)
- Vijitra Luang-In
- Imperial College London, Division of Cell and Molecular Biology, London, UK
| | | | | | | | | | | |
Collapse
|
124
|
Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev 2013; 71:709-26. [PMID: 24147970 DOI: 10.1111/nure.12060] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cruciferous vegetables are widely acknowledged to provide chemopreventive benefits in humans, but they are not generally consumed at levels that effect significant change in biomarkers of health. Because consumers have embraced the notion that dietary supplements may prevent disease, this review considers whether an appropriately validated sulforaphane-yielding broccoli sprout supplement may deliver clinical benefit. The crucifer-derived bioactive phytochemical sulforaphane is a significant inducer of nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that activates the cell's endogenous defenses via a battery of cytoprotective genes. For a broccoli sprout supplement to demonstrate bioactivity in vivo, it must retain both the sulforaphane-yielding precursor compound, glucoraphanin, and the activity of glucoraphanin's intrinsic myrosinase enzyme. Many broccoli sprout supplements are myrosinase inactive, but current labeling does not reflect this. For the benefit of clinicians and consumers, this review summarizes the findings of in vitro studies and clinical trials, interpreting them in the context of clinical relevance. Standardization of sulforaphane nomenclature and assay protocols will be necessary to remove inconsistency and ambiguity in the labeling of currently available broccoli sprout products.
Collapse
Affiliation(s)
- Christine A Houghton
- School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
125
|
Parsons JK, Pierce JP, Natarajan L, Newman VA, Barbier L, Mohler J, Rock CL, Heath DD, Guru K, Jameson MB, Li H, Mirheydar H, Holmes MA, Marshall J. A randomized pilot trial of dietary modification for the chemoprevention of noninvasive bladder cancer: the dietary intervention in bladder cancer study. Cancer Prev Res (Phila) 2013; 6:971-8. [PMID: 23867158 PMCID: PMC3857028 DOI: 10.1158/1940-6207.capr-13-0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological data suggest robust associations of high vegetable intake with decreased risks of bladder cancer incidence and mortality, but translational prevention studies have yet to be conducted. We designed and tested a novel intervention to increase vegetable intake in patients with noninvasive bladder cancer. We randomized 48 patients aged 50 to 80 years with biopsy-proven noninvasive (Ta, T1, or carcinoma in situ) urothelial cell carcinoma to telephone- and Skype-based dietary counseling or a control condition that provided print materials only. The intervention behavioral goals promoted seven daily vegetable servings, with at least two of these as cruciferous vegetables. Outcome variables were self-reported diet and plasma carotenoid and 24-hour urinary isothiocyanate (ITC) concentrations. We used two-sample t tests to assess between-group differences at 6-month follow-up. After 6 months, intervention patients had higher daily intakes of vegetable juice (P = 0.02), total vegetables (P = 0.02), and cruciferous vegetables (P = 0.07); lower daily intakes of energy (P = 0.007), fat (P = 0.002) and energy from fat (P = 0.06); and higher plasma α-carotene concentrations (P = 0.03). Self-reported cruciferous vegetable intake correlated with urinary ITC concentrations at baseline (P < 0.001) and at 6 months (P = 0.03). Although urinary ITC concentrations increased in the intervention group and decreased in the control group, these changes did not attain between-group significance (P = 0.32). In patients with noninvasive bladder cancer, our novel intervention induced diet changes associated with protective effects against bladder cancer. These data show the feasibility of implementing therapeutic dietary modifications to prevent recurrent and progressive bladder cancer.
Collapse
Affiliation(s)
- J Kellogg Parsons
- Division of Urologic Oncology, Moores UCSD Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093-0987, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Li Y, Zhang T, Li X, Zou P, Schwartz SJ, Sun D. Kinetics of sulforaphane in mice after consumption of sulforaphane-enriched broccoli sprout preparation. Mol Nutr Food Res 2013; 57:2128-36. [PMID: 23929742 DOI: 10.1002/mnfr.201300210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
SCOPE Sulforaphane (SF) is a natural isothiocyanate in broccoli sprouts with cancer chemopreventive activity. This study is aimed to use different methods to develop broccoli sprout preparations to compare their ability to deliver SF to the mice and to evaluate the kinetics and biodistribution of SF. METHODS AND RESULTS The SF-enriched sprout preparation generated by two-step procedure (quick-steaming followed by myrosinase treatment) contained the highest level of SF, which was 11 and 5 times higher than the freeze-dried fresh broccoli sprouts and the quick-steamed, freeze-dried broccoli sprouts, respectively. After oral administration of 2.5 mg/g body weight of the broccoli sprout preparations, SF was quickly absorbed and distributed throughout the tissues. The SF-rich preparation resulted in the highest exposure, with peak plasma SF concentration of 337 ng/mL, which is 6.0 times and 2.6 times higher compared to the other two preparations. A whole body physiologically based pharmacokinetic model (developed with ADAPT 5 software) suggests that distribution of SF is perfusion-limited in all organs. CONCLUSION This study provides a broccoli sprout preparation that can serve as a good source of SF, and the model can be utilized to guide the dose designed for the use of broccoli sprout preparation in chemoprevention.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health and Nutrition Sciences, Montclair State University, Montclair, NJ, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
127
|
Li Y, Zhang T. Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol 2013; 9:1097-103. [DOI: 10.2217/fon.13.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have supported the protective effects of broccoli and broccoli sprouts against cancer. The chemopreventive properties of sulforaphane, which is derived from the principal glucosinolate of broccoli and broccoli sprouts, have been extensively studied. Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn lots of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF-κB, SHH, epithelial–mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results. In this article, we focus on the effects of sulforaphane on CSCs and self-renewal pathways, as well as giving a brief review of recent human studies using broccoli sprout preparations.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health & Nutrition Sciences, Montclair State University, University Hall 4190, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Tao Zhang
- Drug Metabolism & Pharmacokinetics, Novartis Institute for Biomedical Research, Novartis Pharmaceutical Corporation, East Hanover, NJ 07936, USA
| |
Collapse
|
128
|
Martínez-Hernández GB, Gómez PA, García-Talavera NV, Artés-Hernández F, Monedero-Saiz T, Sánchez-Álvarez C, Artés F. Human metabolic fate of glucosinolates from kailan-hybrid broccoli. Differences between raw and microwaved consumption. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Budnowski J, Hanschen FS, Lehmann C, Haack M, Brigelius-Flohé R, Kroh LW, Blaut M, Rohn S, Hanske L. A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Anal Biochem 2013; 441:199-207. [PMID: 23872004 DOI: 10.1016/j.ab.2013.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
Various analytical methods have been established to quantify isothiocyanates (ITCs) that derive from glucosinolate hydrolysis. However, to date there is no valid method applicable to pharmacokinetic studies that detects both glucosinolates and ITCs. A specific derivatization procedure was developed for the determination of ITCs based on the formation of a stable N-(tert-butoxycarbonyl)-L-cysteine methyl ester derivative, which can be measured by high-performance liquid chromatography with ultraviolet detection after extraction with ethylacetate. The novel method, which is also applicable to the indirect determination of glucosinolates after their hydrolysis by myrosinase, was established for the simultaneous determination of glucoraphanin and sulforaphane. By derivatization, the sensitivity of ITC detection was increased 2.5-fold. Analytical recoveries from urine and plasma were greater than 75% and from feces were approximately 50%. The method showed intra- and interday variations of less than 11 and 13%, respectively. Applicability of the method was demonstrated in mice that received various doses of glucoraphanin or that were fed a glucoraphanin-rich diet. Besides glucoraphanin and sulforaphane, glucoerucin and erucin were detected in urine and feces of mice. The novel method provides an essential tool for the analysis of bioactive glucosinolates and their hydrolysis products and, thus, will contribute to the elucidation of their bioavailability.
Collapse
Affiliation(s)
- Julia Budnowski
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest. Vascul Pharmacol 2013; 59:44-51. [PMID: 23810908 DOI: 10.1016/j.vph.2013.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis.
Collapse
|
131
|
Korenori Y, Tanigawa S, Kumamoto T, Qin S, Daikoku Y, Miyamori K, Nagai M, Hou DX. Modulation of Nrf2/Keap1 system by Wasabi 6-methylthiohexyl isothiocyanate in ARE-mediated NQO1 expression. Mol Nutr Food Res 2013; 57:854-64. [PMID: 23390006 DOI: 10.1002/mnfr.201200689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022]
Abstract
SCOPE 6-Methylthiohexyl isothiocyanate (6-MTITC), one of the major bioactive ingredients in Japanese Wasabi, has revealed cytoprotective and cancer chemopreventive effects. This study aims to clarify the molecular mechanisms how 6-MTITC modulates nuclear factor E2-related factor 2 (Nrf2)/Kelchlike ECH-associating protein 1 (Keap1) system in antioxidant-responsive element (ARE)-mediated nicotinamide adenine dinucleotide phosphate (NADP): quinone oxidoreductase 1 (NQO1) expression. METHODS AND RESULTS HepG2 cells were treated with 6-MTITC with varying time and dose. NQO1, Nrf2, and Keap1 proteins were detected by Western blotting. ARE transactivation was detected by electrophilic mobility shift assay and reporter gene assay. Nuclear localization of Nrf2 was determined by immunocytochemistry assay. Ubiquitination of Nrf2 and Keap1 was detected using immunoprecipitation after treatment with MG132. Small interfering RNA was used to knockdown Nrf2 or Keap1. The results revealed that 6-MTITC modulated Nrf2/ARE pathway by stimulating Keap1 modification, and inhibiting Nrf2 ubiquitination and protein turnover. These actions finally increased nuclear Nrf2 accumulation and ARE-binding activity. Moreover, silencing Nrf2 markedly reduced ARE-driven activity induced by 6-MTITC. CONCLUSION 6-MTITC modulated ARE-driven NQO1 expression by stabilizing Nrf2 with enhanced Keap1 modification and decreased Nrf2 degradation.
Collapse
Affiliation(s)
- Yoshimi Korenori
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Ganin H, Rayo J, Amara N, Levy N, Krief P, Meijler MM. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20196h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sulforaphane and erucin, two natural isothiocyanates that are highly abundant in broccoli and other cruciferous vegetables, were found to strongly inhibit quorum sensing and virulence in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Hadas Ganin
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| | - Josep Rayo
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| | - Neri Amara
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| | - Niva Levy
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| | - Pnina Krief
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| | - Michael M. Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Be'er-Sheva 84105
- Israel
| |
Collapse
|
133
|
Gillespie S, Gavins FNE. Phytochemicals: countering risk factors and pathological responses associated with ischaemia reperfusion injury. Pharmacol Ther 2012; 138:38-45. [PMID: 23269179 DOI: 10.1016/j.pharmthera.2012.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 01/20/2023]
Abstract
Plant derived non-nutritive molecules, known as phytochemicals, have been investigated for their ability to provide protection against inflammation. Emerging studies of several vasculopathies (e.g. atherosclerosis, hypertension) provide novel data to support these anti-inflammatory effects and offer evidence for involvement of host pathways. Fundamental mechanisms of action are common amongst these compounds, and furthermore, the administration of these phytochemicals activates host defence pathways innately present to protect cells from oxidative stress. This review will elucidate the real benefit of therapeutic intervention with these phytochemicals for vasculopathies, and associated ischaemia reperfusion injury in both the heart and brain.
Collapse
|
134
|
SAWAI YASUSHI, MURATA HIROAKI, HORII MOTOYUKI, KOTO KAZUTAKA, MATSUI TAKAAKI, HORIE NAOYUKI, TSUJI YOSHIRO, ASHIHARA EISHI, MAEKAWA TAIRA, KUBO TOSHIKAZU, FUSHIKI SHINJI. Effectiveness of sulforaphane as a radiosensitizer for murine osteosarcoma cells. Oncol Rep 2012; 29:941-5. [DOI: 10.3892/or.2012.2195] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/19/2012] [Indexed: 11/05/2022] Open
|
135
|
Suppipat K, Park CS, Shen Y, Zhu X, Lacorazza HD. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. PLoS One 2012; 7:e51251. [PMID: 23251470 PMCID: PMC3521002 DOI: 10.1371/journal.pone.0051251] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1), and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.
Collapse
Affiliation(s)
- Koramit Suppipat
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ye Shen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiao Zhu
- Summer Medical and Research Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
136
|
Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 2012; 23:691-8. [PMID: 22704055 DOI: 10.1016/j.jnutbio.2012.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/21/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.
Collapse
|
137
|
Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 2012; 56:1906-16. [PMID: 23109475 DOI: 10.1002/mnfr.201200225] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/09/2022]
Abstract
SCOPE Sulforaphane (a potent anticarcinogenic isothiocyanate derived from glucoraphanin) is widely considered responsible for the protective effects of broccoli consumption. Broccoli is typically purchased fresh or frozen and cooked before consumption. We compared the bioavailability and metabolism of sulforaphane from portions of lightly cooked fresh or frozen broccoli, and investigated the bioconversion of sulforaphane to erucin. METHODS AND RESULTS Eighteen healthy volunteers consumed broccoli soups produced from fresh or frozen broccoli florets that had been lightly cooked and sulforaphane thio-conjugates quantified in plasma and urine. Sulforaphane bioavailability was about tenfold higher for the soups made from fresh compared to frozen broccoli, and the reduction was shown to be due to destruction of myrosinase activity by the commercial blanching-freezing process. Sulforaphane appeared in plasma and urine in its free form and as several thio-conjugates forms. Erucin N-acetyl-cysteine conjugate was a significant urinary metabolite, and it was shown that human gut microflora can produce sulforaphane, erucin, and their nitriles from glucoraphanin. CONCLUSION The short period of blanching used to produce commercial frozen broccoli destroys myrosinase and substantially reduces sulforaphane bioavailability. Sulforaphane was converted to erucin and excreted in urine, and it was shown that human colonic flora were capable of this conversion.
Collapse
Affiliation(s)
- Shikha Saha
- Institute of Food Research, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(κ) B and microRNA-155. J Cell Mol Med 2012; 16:836-43. [PMID: 21692985 PMCID: PMC3822852 DOI: 10.1111/j.1582-4934.2011.01367.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, the underlying mechanisms of the potential anti-inflammatory properties of allyl-isothiocyanate (AITC) were analysed in vitro and in vivo. Murine RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) were supplemented with increasing concentrations of AITC. In addition, C57BL/6 mice (n= 10 per group) were fed a pro-inflammatory high-fat diet and AITC was administered orally via gavage for 7 days. Biomarkers of inflammation were determined both in cultured cells and in mice. AITC significantly decreased tumour necrosis factor α mRNA levels and its secretion in LPS stimulated RAW264.7 macrophages. Furthermore, gene expression of other pro-inflammatory markers including interleukin-1β and inducible nitric oxide synthase were down-regulated following AITC treatment. AITC decreased nuclear p65 protein levels, a subunit of the transcription factor NF-κB. Importantly, our data indicate that AITC significantly attenuated microRNA-155 levels in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. The anti-inflammatory effects of AITC were accompanied by an increase in Nrf2 nuclear translocation and consequently by an increase of mRNA and protein levels of the Nrf2 target gene heme-oxygenase 1. AITC was slightly less potent than sulforaphane (used as a positive control) in down-regulating inflammation in LPS-stimulated macrophages. A significant increase in nuclear Nrf2 and heme-oxygenase 1 gene expression and only a moderate down-regulation of interleukin-1β and microRNA-155 levels due to AITC was found in mouse liver. Present data suggest that AITC exhibits potent anti-inflammatory activity in cultured macrophages in vitro but has only little anti-inflammatory activity in mice in vivo.
Collapse
Affiliation(s)
- Anika Eva Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Kiel, Germany.
| | | | | | | | | |
Collapse
|
139
|
Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2012; 85:689-703. [PMID: 23103569 DOI: 10.1016/j.bcp.2012.10.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed.
Collapse
|
140
|
Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT, Talalay P. Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 2012; 29:2576-86. [PMID: 22853439 DOI: 10.1089/neu.2012.2474] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI.
Collapse
Affiliation(s)
- Andrea L Benedict
- Lewis B. and Dorothy Cullman Chemoprotection Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Peñas E, Pihlava J, Vidal-Valverde C, Frias J. Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
142
|
Loganathan S, Kandala PK, Gupta P, Srivastava SK. Inhibition of EGFR-AKT axis results in the suppression of ovarian tumors in vitro and in preclinical mouse model. PLoS One 2012; 7:e43577. [PMID: 22952709 PMCID: PMC3428303 DOI: 10.1371/journal.pone.0043577] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer.
Collapse
Affiliation(s)
- Sivakumar Loganathan
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania, United States of America
| | - Prabodh K. Kandala
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Sanjay K. Srivastava
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- * E-mail:
| |
Collapse
|
143
|
Doudican NA, Wen SY, Mazumder A, Orlow SJ. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol Rep 2012; 28:1851-8. [PMID: 22922937 PMCID: PMC3981004 DOI: 10.3892/or.2012.1977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022] Open
Abstract
Persistent paraprotein production in plasma cells necessitates a highly developed rough endoplasmic reticulum (ER) that is unusually susceptible to perturbations in protein synthesis. This biology is believed to account for the exquisite sensitivity of multiple myeloma (MM) to the proteasomal inhibitor bortezomib (BTZ). Despite remarkable response rates to BTZ in MM, BTZ carries the potential for serious side-effects and development of resistance. We, therefore, sought to identify therapeutic combinations that effectively disrupt proteostasis in order to provide new potential treatments for MM. We found that sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, inhibits TNFα-induced Iκβ proteasomal degradation in a manner similar to BTZ. Like BTZ, sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide (ATO), an agent with clinical activity in MM. ATO and sulforaphane co-treatment augmented apoptotic induction as demonstrated by cleavage of caspase-3, -4 and PARP. The enhanced apoptotic response was dependent upon production of reactive oxygen species (ROS) as demonstrated by glutathione depletion and partial inhibition of the apoptotic cascade after pretreatment with the radical scavenger N-acetyl-cysteine (NAC). Combination treatment resulted in enhanced ER stress signaling and activation of the unfolded protein response (UPR), indicative of perturbation of proteostasis. Specifically, combination treatment caused elevated expression of the molecular chaperone HSP90 (heat shock protein 90) along with increased PERK (protein kinase RNA-like endoplasmic reticulum kinase) and eIF2α phosphorylation and XBP1 (X-box binding protein 1) splicing, key indicators of UPR activation. Moreover, increased splicing of XBP1 was apparent upon combination treatment compared to treatment with either agent alone. Sulforaphane in combination with ATO effectively disrupts protein homeostasis through ROS generation and induction of ER stress to culminate in inhibition of protein secretion and apoptotic induction in MM. Our results suggest that sulforaphane deserves further investigation in combination with ATO in the treatment of MM.
Collapse
Affiliation(s)
- Nicole A Doudican
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016 , USA
| | | | | | | |
Collapse
|
144
|
Zhang Y. The 1,2-benzenedithiole-based cyclocondensation assay: a valuable tool for the measurement of chemopreventive isothiocyanates. Crit Rev Food Sci Nutr 2012; 52:525-32. [PMID: 22452732 DOI: 10.1080/10408398.2010.503288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Many naturally occurring isothiocyanates (ITCs) show highly promising chemopreventive activities. Humans are commonly exposed to these compounds through the consumption of cruciferous vegetables which are the main source of dietary ITCs. Dietary ITCs may play an important role in cancer prevention and in the well-recognized cancer preventive activities of cruciferous vegetables. A generic analytical method, namely the 1,2-benzenedithiol-based cyclocondensation assay, was previously developed for quantitation of ITCs and their in vivo metabolites. This method has been widely used and has contributed greatly to research on chemoprevention by ITCs. In this article, the discovery and development of the cyclocondensation assay are recapitulated, and its sensitivity and specificity as well as its advantages and limitations are scrutinized. Moreover, detailed discussion is also provided to show how this assay has been used to advance our understanding of the cancer chemopreventive potential and the mechanism of action of ITCs.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
145
|
Barrera LN, Cassidy A, Wang W, Wei T, Belshaw NJ, Johnson IT, Brigelius-Flohé R, Bao Y. TrxR1 and GPx2 are potently induced by isothiocyanates and selenium, and mutually cooperate to protect Caco-2 cells against free radical-mediated cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1914-24. [PMID: 22820176 DOI: 10.1016/j.bbamcr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/03/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Currently, there is significant interest in the field of diet-gene interactions and the mechanisms by which food compounds regulate gene expression to modify cancer susceptibility. From a nutrition perspective, two key components potentially exert cancer chemopreventive effects: isothiocyanates (ITCs), present in cruciferous vegetables, and selenium (Se) which, as selenocysteine, is an integral part of selenoproteins. However, the role of these compounds in the expression of key selenoenzymes once the cancer process has been initiated still needs elucidation. Therefore, this investigation examined the effect of two forms of selenium, selenium-methylselenocysteine and sodium selenite, both individually and in combination with two ITCs, sulforaphane or iberin, on the expression of the two selenoenzymes, thioredoxin reductase 1 (TrxR1) and gastrointestinal glutathione peroxidase (GPx2), which are targets of ITCs, in Caco-2 cells. Co-treatment with both ITCs and Se induced expression of TrxR1 and GPx2 more than either compound alone. Moreover, pre-treatment of cells with ITC+Se enhanced cytoprotection against H(2)O(2)-induced cell death through a ROS-dependent mechanism. Furthermore, a single and double knockdown of TrxR1 and/or GPx2 suggested that both selenoproteins were responsible for protecting against H(2)O(2)-induced cell death. Together, these data shed new light on the mechanism of interactions between ITC and Se in which translational expression of the enhanced transcripts by the former is dependent on an adequate Se supply, resulting in a cooperative antioxidant protective effect against cell death.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Kesic MJ, Meyer M, Bauer R, Jaspers I. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLoS One 2012; 7:e35108. [PMID: 22496898 PMCID: PMC3322171 DOI: 10.1371/journal.pone.0035108] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022] Open
Abstract
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.
Collapse
Affiliation(s)
- Matthew J Kesic
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill, North Carolina, United States of America.
| | | | | | | |
Collapse
|
147
|
Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention. Br J Nutr 2012; 109:25-32. [PMID: 22464629 DOI: 10.1017/s0007114512000657] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring sulforaphane (SF) has been extensively studied for cancer prevention. However, little is known as to which organs may be most affected by this agent, which impedes its further development. In the present study, SF was administered to rats orally either in a single dose or once daily for 7 d. Tissue distribution of SF was measured by a HPLC-based method. Glutathione S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two well-known cytoprotective phase 2 enzymes, were measured using biochemical assays to assess tissue response to SF. SF was delivered to different organs in vastly different concentrations. Tissue uptake of SF was the greatest in the stomach, declining rapidly in the descending gastro-intestinal tract. SF was rapidly eliminated through urinary excretion, and urinary concentrations of SF equivalents were 2-4 orders of magnitude higher than those of plasma. Indeed, tissue uptake level of SF in the bladder was second only to that in the stomach. Tissue levels of SF in the colon, prostate and several other organs were very low, compared to those in the bladder and stomach. Moreover, induction levels of GST and NQO1 varied by 3- to 6-fold among the organs of SF-treated rats, though not strictly correlated with tissue exposure to SF. Thus, there is profound organ specificity in tissue exposure and response to dietary SF, suggesting that the potential chemopreventive benefit of dietary SF may differ significantly among organs. These findings may provide a basis for prioritising organs for further chemopreventive study of SF.
Collapse
|
148
|
Li Y, Karagöz GE, Seo YH, Zhang T, Jiang Y, Yu Y, Duarte AMS, Schwartz SJ, Boelens R, Carroll K, Rüdiger SGD, Sun D. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem 2012; 23:1617-26. [PMID: 22444872 DOI: 10.1016/j.jnutbio.2011.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022]
Abstract
Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic cancer cell growth in vitro with IC(50)s of around 10-15 μM and induced apoptosis. In pancreatic cancer xenograft mouse model, administration of sulforaphane showed remarkable inhibition of tumor growth without apparent toxicity noticed. We found that sulforaphane induced the degradation of heat shock protein 90 (Hsp90) client proteins and blocked the interaction of Hsp90 with its cochaperone p50(Cdc37) in pancreatic cancer cells. Using nuclear magnetic resonance spectroscopy (NMR) with an isoleucine-specific labeling strategy, we overcame the protein size limit of conventional NMR and studied the interaction of sulforaphane with full-length Hsp90 dimer (170 kDa) in solution. NMR revealed multiple chemical shifts in sheet 2 and the adjacent loop in Hsp90 N-terminal domain after incubation of Hsp90 with sulforaphane. Liquid chromatography coupled to mass spectrometry further mapped a short peptide in this region that was tagged with sulforaphane. These data suggest a new mechanism of sulforaphane that disrupts protein-protein interaction in Hsp90 complex for its chemopreventive activity.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, University of Michigan, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Tan XL, Marquardt G, Massimi AB, Shi M, Han W, Spivack SD. High-throughput library screening identifies two novel NQO1 inducers in human lung cells. Am J Respir Cell Mol Biol 2012; 46:365-71. [PMID: 22021338 PMCID: PMC3326428 DOI: 10.1165/rcmb.2011-0301oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/19/2011] [Indexed: 01/18/2023] Open
Abstract
Many phytochemicals possess antioxidant and cancer-preventive properties, some putatively through antioxidant response element-mediated phase II metabolism, entailing mutagen/oxidant quenching. In our recent studies, however, most candidate phytochemical agents were not potent in inducing phase II genes in normal human lung cells. In this study, we applied a messenger RNA (mRNA)-specific gene expression-based high throughput in vitro screening approach to discover new, potent plant-derived phase II inducing chemopreventive agents. Primary normal human bronchial epithelial (NHBE) cells and immortalized human bronchial epithelial cells (HBECs) were exposed to 800 individual compounds in the MicroSource Natural Products Library. At a level achievable in humans by diet (1.0 μM), 2,3-dihydroxy-4-methoxy-4'-ethoxybenzophenone (DMEBP), triacetylresveratrol (TRES), ivermectin, sanguinarine sulfate, and daunorubicin induced reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1 (NQO1) mRNA and protein expression in NHBE cells. DMEBP and TRES were the most attractive agents as coupling potency and low toxicity for induction of NQO1 (mRNA level, ≥3- to 10.8-fold that of control; protein level, ≥ two- to fourfold that of control). Induction of glutathione S-transferase pi mRNA expression was modest, and none was apparent for glutathione S-transferase pi protein expression. Measurements of reactive oxygen species and glutathione/oxidized glutathione ratio showed an antioxidant effect for DMEBP, but no definite effect was found for TRES in NHBE cells. Exposure of NHBE cells to H(2)O(2) induced nuclear translocation of nuclear factor erythroid 2-related factor 2, but this translocation was not significantly inhibited by TRES and DMEBP. These studies show that potency and low toxicity may align for two potential NQO1-inducing agents, DMEBP and TRES.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- M.D. Department of Health Science Research, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Shan Y, Lin N, Yang X, Tan J, Zhao R, Dong S, Wang S. Sulphoraphane inhibited the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 through MyD88-dependent toll-like receptor-4 pathway in cultured endothelial cells. Nutr Metab Cardiovasc Dis 2012; 22:215-222. [PMID: 20880684 DOI: 10.1016/j.numecd.2010.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Chronic inflammation plays pivotal roles in both cancer and cardiovascular diseases. A large body of evidence suggests that high intake of cruciferous vegetables is closely related with low risk of these disorders. However, the underlying mechanisms of protection are not fully understood. The aim of this study is to test the protective effects of an isothiocyanate sulphoraphane on inflammatory injury and related regulation pathways in cultured endothelial cells. METHODS AND RESULTS The expressions of adhesion molecules were determined by TaqMan real-time polymerase chain reaction (PCR) and Western blot analysis. Nuclear factor-kappa B (NF-кB) translocation was detected by immunofluorescent hybridisation. Other proteins were measured by Western blot analysis. The results demonstrated that sulphoraphane significantly suppresses the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 stimulated by lipopolysaccharide (LPS) both at the transcriptional and translational levels. In addition, sulphoraphane inhibited the translocation of NF-кB into the nucleus. Sulphoraphane decreased the phosphorylation of extra-cellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), while further blockade and activation using individually specific agents confirm that p38 MAPK and JNK are mainly involved. Interestingly, sulphoraphane down-regulated Toll-like receptor (TLR)-4, a receptor of LPS located on the membrane. In addition, MyD88, an effector downstream TLR-4 signal pathway was subsequently attenuated. CONCLUSION Taken all together, adhesion molecules are confirmed to be the novel targets of sulphoraphane in preventing inflammatory insult to endothelial cells. Sulphoraphane suppressed TLR-4 followed by MyD88 and downstream factors such as p38 MAPK and JNK, ultimately blocking NF-кB translocation and the subsequent expression of adhesion molecules. These data suggested a novel inflammatory pathway mediated by sulphoraphane.
Collapse
Affiliation(s)
- Y Shan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University 150081, 157 Baojian Road, Nangang District, China
| | | | | | | | | | | | | |
Collapse
|