101
|
Irmer H, Höhfeld J. Characterization of functional domains of the eukaryotic co-chaperone Hip. J Biol Chem 1997; 272:2230-5. [PMID: 8999928 DOI: 10.1074/jbc.272.4.2230] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The homo-oligomeric Hip protein cooperates with the 70-kDa heat shock cognate Hsc70 in the folding of newly synthesized polypeptide chains and in the conformational regulation of signaling molecules known to interact with Hsc70 and Hsp90. In order to further assess the role of Hip during protein biogenesis, a structure-function analysis of the Hip protein was initiated. By employing the yeast two-hybrid system, the Hsc70-binding site of Hip was mapped to a domain comprising multiple tetratricopeptide repeats and flanking charged alpha-helices. Affinity chromatography confirmed direct interaction of isolated Hip fragments and protein fusions bearing this region with the ATPase domain of Hsc70 in an ATP- and salt-dependent manner. Contact of Hip with the ATPase domain appears to be mediated primarily by the positively charged alpha-helix following the tetratricopeptide repeats. Furthermore, a domain required for homo-oligomerization was identified at the extreme amino terminus of Hip.
Collapse
Affiliation(s)
- H Irmer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
102
|
Lässle M, Blatch GL, Kundra V, Takatori T, Zetter BR. Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinases. J Biol Chem 1997; 272:1876-84. [PMID: 8999875 DOI: 10.1074/jbc.272.3.1876] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently isolated the cDNA for the murine homologue of the stress-inducible phosphoprotein STI1 (also known as IEF SSP 3521 or p60). STI1 was previously shown to be 2-fold up-regulated in MRC-5 fibroblasts upon viral transformation and to exist in a macromolecular complex with heat shock proteins of the HSP 70 and 90 families. By peptide-sequencing we have identified the two heat shock proteins that bind to murine STI1 (mSTI1) as HSC 70 and HSP 84/86. We describe two separate binding regions within mSTI1 for the two heat shock proteins. In the presence of cell extracts, the N-terminal region of mSTI1 binds preferentially to HSC 70, whereas the C-terminal portion of the molecule promotes the binding of HSP 84/86. Heat treatment caused a strong induction of mSTI1 message without affecting the steady-state level of the protein significantly. In addition, heat treatment led to changes in the isoform-composition of mSTI1. pp70(s6k), pp90(rsk), and mitogen-activated protein kinase-activated protein kinase 2 were tested as possible STI1 kinases in vitro using recombinant mSTI1 as a substrate: only pp90(rsk) was able to phosphorylate recombinant mSTI1. In vitro kinase assays using casein kinase II suggest serine 189 to be a likely phosphorylation site in mSTI1.
Collapse
Affiliation(s)
- M Lässle
- Department of Cell Biology and Surgery, Harvard Medical School and Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
103
|
Duina AA, Chang HC, Marsh JA, Lindquist S, Gaber RF. A cyclophilin function in Hsp90-dependent signal transduction. Science 1996; 274:1713-5. [PMID: 8939862 DOI: 10.1126/science.274.5293.1713] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cpr6 and Cpr7, the Saccharomyces cerevisiae homologs of cyclophilin-40 (CyP-40), were shown to form complexes with Hsp90, a protein chaperone that functions in several signal transduction pathways. Deletion of CPR7 caused severe growth defects when combined with mutations that decrease the amount of Hsp90 or Sti1, another component of the Hsp90 chaperone machinery. The activities of two heterologous Hsp90-dependent signal transducers expressed in yeast, glucocorticoid receptor and pp60(v-src) kinase, were adversely affected by cpr7 null mutations. These results suggest that CyP-40 cyclophilins play a general role in Hsp90-dependent signal transduction pathways under normal growth conditions.
Collapse
Affiliation(s)
- A A Duina
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
104
|
Abstract
The Hsp90 heat shock protein of eukaryotic cells regulates the activity of proteins involved in signal transduction pathways and may direct intracellular protein folding in general. Hsp90 performs at least part of its function in a complex with a specific set of partner proteins that include members of the prolyl isomerase family. The properties of the major components of the Hsp90 complex were examined through the use of in vitro protein folding assays. Two of the components, FKBP52 and p23, functioned as mechanistically distinct molecular chaperones. These results suggest the existence of a super-chaperone complex in the cytosol of eukaryotic cells.
Collapse
Affiliation(s)
- S Bose
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | | | |
Collapse
|
105
|
Yamashita YM, Nakaseko Y, Samejima I, Kumada K, Yamada H, Michaelson D, Yanagida M. 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 1996; 384:276-9. [PMID: 8918880 DOI: 10.1038/384276a0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 20S cyclosome complex (also known as the anaphase-promoting complex) has ubiquitin ligase activity and is required for mitotic cyclin destruction and sister chromatid separation. The formation and activation of the 20S cyclosome complex is regulated by an unknown mechanism. Here we show that Cut4 (ref. 6) is an essential component of the cyclosome in fission yeast. Cut4 shares sequence similarity with BimE, a protein that regulates mitosis in Aspergillus nidulans. Mutations in cut4 result in hypersensitivity to cyclic AMP and to stress-inducing heavy metals, inhibition of the onset of anaphase, disruption of the 20S complex, and inhibition of mitotic cyclin ubiquitination. These phenotypes are fully suppressed by cAMP phosphodiesterase and the protein kinase A (PKA) regulatory subunit and weakly suppressed by Sti1 (an activator of the Hsp70 and Hsp90 chaperones). Suppression correlates with the amount of 20S complex, indicating that cyclosome formation and activation is inhibited by the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Y M Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Fang Y, Fliss AE, Robins DM, Caplan AJ. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem 1996; 271:28697-702. [PMID: 8910505 DOI: 10.1074/jbc.271.45.28697] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulation of human androgen receptor (AR) by the molecular chaperone Hsp90 was investigated using the yeast Saccharomyces cerevisiae as a model system. These studies were performed in strains expressing a conditional temperature-sensitive mutant allele of the hsp82 gene, which encodes Hsp90 protein. At the restrictive temperature in the mutant, there is a decrease in hormone-dependent transactivation by the AR, although steady state levels of AR protein are unchanged. Quantitative hormone binding studies at the permissive temperature revealed the presence of both high affinity and low affinity hormone binding states. At the restrictive temperature in the hsp82 mutant, the high affinity state was abolished, and only the low affinity state was observed. The change in hormone binding affinity was further investigated by a competition assay with the anti-androgen hydroxyflutamide. Under permissive conditions, hydroxyflutamide competes poorly for the synthetic androgen R1881, but under restrictive conditions in the hsp82 mutant strain, hydroxyflutamide was shown to be a potent competitive inhibitor. Our findings indicate that Hsp90 participates in the activation process by maintaining apoAR in a high affinity ligand binding conformation which is important for efficient response to hormone.
Collapse
Affiliation(s)
- Y Fang
- Department of Cell Biology and Anatomy, Mount Sinai Medical Center, New York New York 10029, USA.
| | | | | | | |
Collapse
|
107
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996; 32:191-222. [PMID: 8980480 DOI: 10.1007/bf00039383] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
108
|
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. PLANT MOLECULAR BIOLOGY 1996. [PMID: 8980480 DOI: 10.1007/978-94-009-0353-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Protein folding in vivo is mediated by an array of proteins that act either as 'foldases' or 'molecular chaperones'. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.
Collapse
Affiliation(s)
- R S Boston
- Department of Botany, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
109
|
Duina AA, Marsh JA, Gaber RF. Identification of two CyP-40-like cyclophilins in Saccharomyces cerevisiae, one of which is required for normal growth. Yeast 1996; 12:943-52. [PMID: 8873448 DOI: 10.1002/(sici)1097-0061(199608)12:10<943::aid-yea997>3.0.co;2-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the analysis of two Saccharomyces cerevisiae cyclophilins, Cpr6 and Cpr7, identified by their ability to interact in vivo with the transcriptional regulator Rpd3. Both cyclophilins have an extended carboxy-terminal region containing a three-unit tetratricopeptide repeat (TPR) motif and share significant amino acid identity with the mammalian cyclophilin CyP-40. Neither CPR6 nor CPR7 is essential but deletion of CPR7 results in a significant impairment of the rate of cell division. This is the first demonstration that a member of the cyclophilin family is required for normal cell growth.
Collapse
Affiliation(s)
- A A Duina
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
110
|
Meng X, Devin J, Sullivan WP, Toft D, Baulieu EE, Catelli MG. Mutational analysis of Hsp90 alpha dimerization and subcellular localization: dimer disruption does not impede “in vivo' interaction with estrogen receptor. J Cell Sci 1996; 109 ( Pt 7):1677-87. [PMID: 8832390 DOI: 10.1242/jcs.109.7.1677] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular chaperone Hsp90 has been found ubiquitously as a predominantly cytoplasmic dimer. By interacting with cytoplasmic or nuclear proteins such as pp60v-src or steroid receptors, Hsp90 helps its targets to become competent for full biological activity. Mutational deletion analysis of some properties of chicken Hsp90 alpha was undertaken after transient transfection of the constructs in COS7 cells. First, Hsp90 mutants were analyzed for their ability to behave as cytosolic dimers. We confirmed that the C-terminal Hsp90 region (amino acids 446–728) was sufficient for dimerization, and found that deletion of three small subregions in the 200 C-terminal residues precluded Hsp90 dimer formation. Moreover, we demonstrated that the N-terminal region of the protein (1–442) was not involved in dimerization. Second, the subcellular localization of the wild-type (WT) protein and mutants was analyzed by specific immunodetection and confocal microscopy. Most of the mutants were cytoplasmic like Hsp90WT, a nuclear localization being barely detectable in the WT protein or in mutants with a C-terminal truncation equal to or shorter than 286 residues. Surprisingly a mutant encoding the N-terminal region (1–285) was nuclear localized. In addition, the in vivo interaction between the cytoplasmic Hsp90 and the nuclear ER was documented after coexpression of both proteins in the same cells: some Hsp90 was shifted into the nucleus via its interaction with ER. From an analysis of dimeric or monomeric cytoplasmic Hsp90 mutants, we found that disruption of Hsp90 dimer did not systematically impede its interaction with ER. Finally, Hsp90WT and cytoplasmic mutants were tested for their ability to rescue from lethality a yeast strain deleted of both Hsp90 genes. Interestingly, the delta 661–677 mutant that showed an impaired dimerization but interacted with ER was able to confer viability, while the mutant deleted of the 30 C-terminal residues (NC6) was monomeric, did not confer viability and did not interact with ER. We therefore suggest that Hsp90 properties analyzed here are not necessarily interdependent.
Collapse
Affiliation(s)
- X Meng
- INSERM U.33, Laboratoire des Communications Hormonales, Bicĕtre, France
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
The discovery of a new co-chaperone, Hip, that interacts with Hsp70 underscores the complexity of the Hsp70 'chaperone machine' that mediates early steps of protein folding in cells.
Collapse
Affiliation(s)
- T Ziegelhoffer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
112
|
Jaenicke R. Protein folding and association: in vitro studies for self-organization and targeting in the cell. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:209-314. [PMID: 8646849 DOI: 10.1016/s0070-2137(96)80008-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| |
Collapse
|
113
|
Abstract
The Hsc70-interacting protein Hip, a tetratricopeptide repeat protein, participates in the regulation of the eukaryotic 70 kDa heat shock cognate Hsc70. One Hip oligomer binds the ATPase domains of at least two Hsc70 molecules dependent on activation of the Hsc70 ATPase by Hsp40. While hydrolysis remains the rate-limiting step in the ATPase cycle, Hip stabilizes the ADP state of Hsc70 that has a high affinity for substrate protein. Through its own chaperone activity, Hip may contribute to the interaction of Hsc70 with various target proteins. We propose a mechanism for the regulation of eukaryotic Hsc70 that is distinct from that of bacterial Hsp70. The Hsc70/Hsp40/Hip system is apparently independent of a GrpE-like nucleotide exchange factor.
Collapse
Affiliation(s)
- J Höhfeld
- Howard Hughes Medical Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
114
|
Owens-Grillo JK, Hoffmann K, Hutchison KA, Yem AW, Deibel MR, Handschumacher RE, Pratt WB. The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J Biol Chem 1995; 270:20479-84. [PMID: 7657624 DOI: 10.1074/jbc.270.35.20479] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently shown that hsp56, the FK506-binding immunophilin component of both the heat shock protein (hsp90.hsp70.hsp56) heterocomplex and the untransformed glucocorticoid receptor heterocomplex, is bound directly to hsp90 (Czar, M. J., Owens-Grillo, J. K., Dittmar, K. D., Hutchison, K. A., Zacharek, A. M., Leach, K. L., Deibel, M. R., and Pratt, W. B. (1994) J. Biol. Chem. 269, 11155-11161). In this work, we show that both untransformed glucocorticoid receptor and hsp90 heterocomplexes contain CyP-40, a 40-kDa immunophilin of the cyclosporin A-binding class. CyP-40 is present in both native glucocorticoid receptor heterocomplexes and receptor heterocomplexes reconstituted with rabbit reticulocyte lysate, and the presence of CyP-40 in the receptor heterocomplex is stabilized by molybdate. Immunoadsorption of hsp90 from cell lysate yields coimmunoadsorption of both hsp56 and CyP-40, showing that both immunophilins are in native heterocomplex with hsp90. However, immunoadsorption of hsp56 does not yield coimmunoadsorption of CyP-40; thus, the two immunophilins do not exist in the same heterocomplex with hsp90. Both purified CyP-40 and hsp56 bind directly to purified hsp90, and excess CyP-40 blocks the binding of hsp56, consistent with the presence of a common immunophilin binding site on hsp90. Our data also suggest that there are at least two types of untransformed glucocorticoid receptor-hsp90 heterocomplexes, one that contains hsp56 and another that contains CyP-40. The role played by the immunophilins in steroid receptor action is unknown, but it is clear that the peptidylprolyl isomerase activity of immunophilins is not required for glucocorticoid receptor-hsp90 heterocomplex assembly and proper folding of the hormone binding domain by the hsp90-associated protein folding system of reticulocyte lysate.
Collapse
Affiliation(s)
- J K Owens-Grillo
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Eukaryotic cells have developed particular strategies to support the critical steps in protein maturation that starts in the cytosol with the birth of a nascent polypeptide chain, and ends when the protein has reached the appropriate compartment and/or has attained its mature structure. Many of the cellular proteins that have evolved to promote maturation processes are constitutively expressed members of the highly conserved heat shock protein (hsp) family, also known as 'molecular chaperones'. Protein-mediated processes that occur in the cytosol are discussed.
Collapse
Affiliation(s)
- I G Haas
- Institut für Biochemie, Heidelberg, Germany
| |
Collapse
|
116
|
Kimura Y, Yahara I, Lindquist S. Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 1995; 268:1362-5. [PMID: 7761857 DOI: 10.1126/science.7761857] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The substrate-specific protein chaperone Hsp90 (heat shock protein 90) from Saccharomyces cerevisiae functions in diverse signal transduction pathways. A mutation in YDJ1, a member of the DnaJ chaperone family, was recovered in a synthetic-lethal screen with Hsp90 mutants. In an otherwise wild-type background, the ydj1 mutation exerted strong and specific effects on three Hsp90 substrates, derepressing two (the estrogen and glucocorticoid receptors) and reducing the function of the third (the tyrosine kinase p60v-src). Analysis of one of these substrates, the glucocorticoid receptor, indicated that Ydj1 exerts its effects through physical interaction with Hsp90 substrates.
Collapse
Affiliation(s)
- Y Kimura
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
117
|
|
118
|
Caplan AJ, Langley E, Wilson EM, Vidal J. Hormone-dependent transactivation by the human androgen receptor is regulated by a dnaJ protein. J Biol Chem 1995; 270:5251-7. [PMID: 7890635 DOI: 10.1074/jbc.270.10.5251] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genetic studies were performed to examine the role of eukaryotic dnaJ protein, Ydj1p, in the regulated activation of human androgen receptor (hAR) after heterologous expression in Saccharomyces cerevisiae. Hormone-dependent activation of hAR was measured as a function of lacZ reporter gene expression, which was defective in ydj1-151 and ydj1-2 delta null mutant strains compared to the wild type. This defect was not due to receptor misfolding, since hAR in both wild type and mutant strains had a similar capacity to bind hormone. The target for Ydj1p action was determined to be the hAR hormone binding domain since an N-terminal fragment lacking this region was constitutively active in both wild type and ydj1-151 mutant strains. These data correlate hormone dependence of hAR activation with a requirement for Ydj1p function and are consistent with a role for dnaJ proteins in signal transduction by steroid hormone receptors.
Collapse
Affiliation(s)
- A J Caplan
- Department of Cell Biology and Anatomy, Mount Sinai Medical Center, New York, New York 10029
| | | | | | | |
Collapse
|