101
|
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24:59. [PMID: 30470170 PMCID: PMC6251169 DOI: 10.1186/s10020-018-0060-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Traditional risk factors are insufficient to explain all cases of coronary artery disease (CAD) in patients with diabetes mellitus (DM). Advanced glycation end-products (AGEs) and their receptors may play important roles in the development and progression of CAD. Body Hyperglycemia is the hallmark feature of DM. An increase in the incidence of both micro-and macrovascular complications of diabetes has been observed with increased duration of hyperglycemia. This association persists even after glycemic control has been achieved, suggesting an innate mechanism of “metabolic memory.” AGEs are glycated proteins that may serve as mediators of metabolic memory due to their increased production in the setting of hyperglycemia and generally slow turnover. Elevated AGE levels can lead to abnormal cross linking of extracellular and intracellular proteins disrupting their normal structure and function. Furthermore, activation of AGE receptors can induce complex signaling pathways leading to increased inflammation, oxidative stress, enhanced calcium deposition, and increased vascular smooth muscle apoptosis, contributing to the development of atherosclerosis. Through these mechanisms, AGEs may be important mediators of the development of CAD. However, clinical studies regarding the role of AGEs and their receptors in advancing CAD are limited, with contradictory results. Conclusion AGEs and their receptors may be useful biomarkers for the presence and severity of CAD. Further studies are needed to evaluate the utility of circulating and tissue AGE levels in identifying asymptomatic patients at risk for CAD or to identify patients who may benefit from invasive intervention.
Collapse
Affiliation(s)
- Sarah Louise Fishman
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Halis Sonmez
- Center for Diabetes and Endocrinology, 111 Salem Tpke, Norwich, CT, 06360, USA
| | - Craig Basman
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Varinder Singh
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Leonid Poretsky
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA.
| |
Collapse
|
102
|
Bessa AS, Ragab AM, Nassra RA, Piñero DP, Shaheen MS. Expression levels of aldose reductase enzyme, vascular endothelial growth factor, and intercellular adhesion molecule-1 in the anterior lens capsule of diabetic cataract patients. J Cataract Refract Surg 2018; 44:1431-1435. [PMID: 30274845 DOI: 10.1016/j.jcrs.2018.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To compare the levels of aldose reductase (ALR) enzyme, intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF) in the anterior lens capsule of diabetic versus nondiabetic patients. SETTING Alexandria Main University Hospital, Alexandria, Egypt. DESIGN Prospective case-control study. METHODS The study enrolled patients undergoing cataract extraction and divided them into 3 groups: eyes that had proliferative diabetic retinopathy (PDR), eyes that had nonproliferative diabetic retinopathy (NPDR), and nondiabetic eyes. The anterior lens capsules were obtained by performing femtosecond laser-assisted capsulorhexis. Concentrations of ALR, ICAM-1, and VEGF in the lens capsule specimens were measured using human enzyme-linked immunosorbent assay. RESULTS This study comprised 200 patients (200 eyes); 51 eyes had PDR, 49 eyes had NPDR, and 100 eyes were nondiabetic. The mean ALR, ICAM-1, and VEGF levels in the anterior capsule of diabetic group were 2.84 nanogram (ng)/mL ± 0.51 (SD), 87.73 ± 22.84 picogram (pg)/mL, and 75.53 ± 14.95 pg/mL, respectively; whereas, in the nondiabetic group, they were 1.44 ± 0.17 ng/mL, 35.45 ± 2.8 pg/mL, and 33.55 ± 5.47 pg/mL, respectively. In comparing the concentrations of these mediators, both the PDR and NPDR groups had significantly higher levels compared with the nondiabetic eyes (P < .001). In addition, eyes with PDR had significantly higher levels of these mediators than eyes with NPDR (P < .001). CONCLUSION The concentrations of ALR, ICAM-1, and VEGF in the anterior lens capsule of diabetic patients are significantly higher than those of nondiabetics. A significantly higher level of 3 mediators in eyes with PDR compared with those with NPDR might allow the use of them as a biomarker for severity of diabetic retinopathy.
Collapse
Affiliation(s)
- Amr S Bessa
- From the Department of Ophthalmology (Bessa, Ragab, Shaheen), Faculty of Medicine, Alexandria University, and the Medical Biochemistry Department (Nassra), Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Ophthalmology (Ragab), Surrey and Sussex NHS Trust, Associate University Hospital of Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Optics (Piñero), Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Ahmed M Ragab
- From the Department of Ophthalmology (Bessa, Ragab, Shaheen), Faculty of Medicine, Alexandria University, and the Medical Biochemistry Department (Nassra), Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Ophthalmology (Ragab), Surrey and Sussex NHS Trust, Associate University Hospital of Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Optics (Piñero), Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Rasha A Nassra
- From the Department of Ophthalmology (Bessa, Ragab, Shaheen), Faculty of Medicine, Alexandria University, and the Medical Biochemistry Department (Nassra), Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Ophthalmology (Ragab), Surrey and Sussex NHS Trust, Associate University Hospital of Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Optics (Piñero), Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - David P Piñero
- From the Department of Ophthalmology (Bessa, Ragab, Shaheen), Faculty of Medicine, Alexandria University, and the Medical Biochemistry Department (Nassra), Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Ophthalmology (Ragab), Surrey and Sussex NHS Trust, Associate University Hospital of Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Optics (Piñero), Pharmacology and Anatomy, University of Alicante, Alicante, Spain.
| | - Mohamed Shafik Shaheen
- From the Department of Ophthalmology (Bessa, Ragab, Shaheen), Faculty of Medicine, Alexandria University, and the Medical Biochemistry Department (Nassra), Faculty of Medicine, Alexandria University, Alexandria, Egypt; Department of Ophthalmology (Ragab), Surrey and Sussex NHS Trust, Associate University Hospital of Brighton and Sussex Medical School, Brighton, United Kingdom; Department of Optics (Piñero), Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| |
Collapse
|
103
|
Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1‑receptor for advanced glycation end products‑nuclear factor‑κB signaling pathway. Mol Med Rep 2018; 18:3625-3630. [PMID: 30132524 DOI: 10.3892/mmr.2018.9393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/17/2018] [Indexed: 11/05/2022] Open
Abstract
Sodium‑glucose co‑transporter 2 (SGLT2) inhibitors are recently developed oral hypoglycemic agents, which act on renal proximal tubules by reducing the reabsorption of glucose and increasing the excretion of glucose in the urine. However, the mechanism underlying renoprotection has not been fully elucidated. Previous studies have indicated that the expression of high mobility group box 1 (HMGB1) increased in patients with kidney disease, and may result in renal damage through the activation of nuclear factor‑κB (NF‑κB) and an increase in receptor for advanced glycation end products (RAGE) expression. The aim of the present study was to evaluate the effects of the SGLT‑2 inhibitor dapagliflozin on cultured human proximal tubular epithelial cells (HK‑2). HK‑2 cells were grown under high glucose conditions for 48 h in the presence or absence of dapagliflozin. The markers of oxidative stress, inflammation and fibrillation levels were then detected by reverse transcription‑quantitative polymerase chain reaction and western blotting. Hyperglycemia increased the mRNA expression and protein levels of malondialdehyde (MDA), superoxide dismutase (SOD), monocyte chemoattractant protein‑1 (MCP‑1), intercellular adhesion molecule‑1 (ICAM‑1), fibronectin (FN), collagenase type 1 (COL‑1), HMGB1, RAGE and NF‑κB, and the effects could be reversed by dapagliflozin in a concentration‑dependent manner. The results of the present study suggested that HMGB1 increased the expression and secretion of markers of inflammation, oxidative stress and fibrillation, including MDA, SOD, MCP‑1, ICAM‑1, FN and COL‑1, in diabetic nephropathy. However, dapagliflozin significantly reduced the levels of inflammatory markers and postponed the progression of renal injury. It was therefore suggested this may be mediated through the inhibition of HMGB1‑RAGE-NF‑κB signaling pathway.
Collapse
|
104
|
Mirmiranpour H, Shmas Nosrati F, Sobhai SO, Nazifi Takantape S, Amjadi A. Effect of Low-Level Laser Irradiation on the Function of Glycated Catalase. J Lasers Med Sci 2018; 9:212-218. [PMID: 30809334 DOI: 10.15171/jlms.2018.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction: The aim of this work is to evaluate the effect of low-level laser irradiation (LLLI), by lasers with different wavelengths, on glycated catalase enzyme in vitro experimentally. Methods: This is done by measuring the activity and structure properties of glycated catalase enzyme. The structure properties were evaluated with circular dichroism (CD) and fluoroscopy methods. Three continuous wave (CW) lasers in the visible spectrum (λ =450, 530, 638 nm) and a 100-ns pulsed laser in the infrared spectrum (λ =905 nm) were chosen for comparison. For the infrared laser, same effects have been investigated for different energy doses. The effect of photon energy (hυ) at different wavelengths was measured on activity, CD, and fluoroscopy properties of catalase, and compared with the control group (samples without irradiation). The energy intensity of laser should not exceed 0.1 J/cm2 . Experiments were performed on glycated catalase between 2 to 16 weeks after glycation of catalase. The LLLI effect was also investigated on the samples, by comparing the catalase activity, CD and fluoroscopy for different wavelengths. Results: Our results indicated, the decrease in catalase activity as a function of glycation time (weeks) for all samples, and a slight increase on its activity by different laser wavelengths irradiation for any fixed period of glycation time. Finally, the catalase activity has been increased as the laser's photon energy (hυ) intensified. More specifically, the blue laser (λ =450 nm) had the most and the red laser (λ =638 nm) had the least effect, and the green laser (λ =530 nm) had the medium effect on catalase activity as well. Furthermore, pulsed laser had an additional effect by increasing energy dosage. Conclusion: As we expected in all experiments, an increase in the catalase activity was coincident with a decrease in the catalase fluoroscopy and CD parameters.
Collapse
Affiliation(s)
- Hossein Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Valiasr Hospital, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Shmas Nosrati
- Laser and medical Physics lab, Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Seyed Omid Sobhai
- Laser and medical Physics lab, Department of Physics, Sharif University of Technology, Tehran, Iran.,Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Ahmad Amjadi
- Laser and medical Physics lab, Department of Physics, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
105
|
Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer's Disease. ACS Chem Neurosci 2018; 9:988-1000. [PMID: 29384651 DOI: 10.1021/acschemneuro.7b00410] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) are implicated in the pathology of Alzheimer's disease (AD), as they induce neurodegeneration following interaction with the receptor for AGE (RAGE). This study aimed to establish a mechanistic link between AGE-RAGE signaling and AD pathology. AGE-induced changes in the neuro2a proteome were monitored by SWATH-MS. Western blotting and cell-based reporter assays were used to investigate AGE-RAGE regulated APP processing and tau phosphorylation in primary cortical neurons. Selected protein expression was validated in brain samples affected by AD. The AGE-RAGE axis altered proteome included increased expression of cathepsin B and asparagine endopeptidase (AEP), which mediated an increase in Aβ1-42 formation and tau phosphorylation, respectively. Elevated cathepsin B, AEP, RAGE, and pTau levels were found in human AD brain, coincident with enhanced AGEs. This study demonstrates that the AGE-RAGE axis regulates Aβ1-42 formation and tau phosphorylation via increased cathepsin B and AEP, providing a new molecular link between AGEs and AD pathology.
Collapse
Affiliation(s)
- Kedar Batkulwar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Rashmi Godbole
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Mahesh J. Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
106
|
Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G. The advanced glycation end-product N ϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol 2018. [PMID: 29533466 DOI: 10.1002/path.5072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Luisa de Latouliere
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Vittoria Ionta
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, Genoa, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
107
|
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose. PLoS One 2018; 13:e0193312. [PMID: 29474476 PMCID: PMC5825096 DOI: 10.1371/journal.pone.0193312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/08/2018] [Indexed: 01/17/2023] Open
Abstract
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.
Collapse
|
108
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
109
|
Wendel U, Persson N, Risinger C, Bengtsson E, Nodin B, Danielsson L, Welinder C, Nordin Fredrikson G, Jansson B, Blixt O. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer. PLoS One 2018; 13:e0191872. [PMID: 29420566 PMCID: PMC5805250 DOI: 10.1371/journal.pone.0191872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.
Collapse
Affiliation(s)
- Ulrika Wendel
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Persson
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Risinger
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Scania University Hospital, Malmö Lund University, Malmö, Sweden
| | - Björn Nodin
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lena Danielsson
- Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
| | - Gunilla Nordin Fredrikson
- Department of Clinical Sciences Malmö, Scania University Hospital, Malmö Lund University, Malmö, Sweden
| | - Bo Jansson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ola Blixt
- Chemical Glyco-Biology Laboratory, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
110
|
Pathological lesions and global DNA methylation in rat prostate under streptozotocin-induced diabetes and melatonin supplementation. Cell Biol Int 2018; 42:470-487. [DOI: 10.1002/cbin.10920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
|
111
|
Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6435861. [PMID: 29636850 PMCID: PMC5831771 DOI: 10.1155/2018/6435861] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Collapse
|
112
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
113
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:33. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β₂-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
114
|
Senatus LM, Schmidt AM. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet 2017; 8:187. [PMID: 29259621 PMCID: PMC5723304 DOI: 10.3389/fgene.2017.00187] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
The process of advanced glycation leads to the generation and accumulation of an heterogeneous class of molecules called advanced glycation endproducts, or AGEs. AGEs are produced to accelerated degrees in disorders such as diabetes, renal failure, inflammation, neurodegeneration, and in aging. Further, AGEs are present in foods and in tobacco products. Hence, through both endogenous production and exogenous consumption, AGEs perturb vascular homeostasis by a number of means; in the first case, AGEs can cause cross-linking of long-lived molecules in the basement membranes such as collagens, thereby leading to “vascular stiffening” and processes that lead to hyperpermeability and loss of structural integrity. Second, AGEs interaction with their major cell surface signal transduction receptor for AGE or RAGE sets off a cascade of events leading to modulation of gene expression and loss of vascular and tissue homeostasis, processes that contribute to cardiovascular disease. In addition, it has been shown that an enzyme, which plays key roles in the detoxification of pre-AGE species, glyoxalase 1 (GLO1), is reduced in aged and diabetic tissues. In the diabetic kidney devoid of Ager (gene encoding RAGE), higher levels of Glo1 mRNA and GLO1 protein and activity were observed, suggesting that in conditions of high AGE accumulation, natural defenses may be mitigated, at least in part through RAGE. AGEs are a marker of arterial aging and may be detected by both biochemical means, as well as measurement of “skin autofluorescence.” In this review, we will detail the pathobiology of the AGE-RAGE axis and the consequences of its activation in the vasculature and conclude with potential avenues for therapeutic interruption of the AGE-RAGE ligand-RAGE pathways as means to forestall the deleterious consequences of AGE accumulation and signaling via RAGE.
Collapse
Affiliation(s)
- Laura M Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
115
|
Marques CMS, Nunes EA, Lago L, Pedron CN, Manieri TM, Sato RH, Oliveira VX, Cerchiaro G. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:42-51. [PMID: 29150049 DOI: 10.1016/j.mrgentox.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Glucose, in the presence of reactive oxygen species (ROS), acts as an as an oxidative agent and drives deleterious processes in Diabetes Mellitus. We have studied the mechanism and the toxicological effects of glucose-dependent glycoxidation reactions driven by copper and ROS, using a model peptide based on the exposed sequence of Human Serum Albumin (HSA) and containing a lysine residue susceptible to copper complexation. The main products of these reactions are Advanced Glycation End-products (AGEs). Carboxymethyl lysine and pyrraline condensed on the model peptide, generating a Modified Peptide (MP). These products were isolated, purified, and tested on cultured motor neuron cells. We observed DNA damage, enhancement of membrane roughness, and formation of domes. We evaluated nuclear abnormalities by the cytokinesis-blocked micronucleus assay and we measured cytostatic and cytotoxic effects, chromosomal breakage, nuclear abnormalities, and cell death. AGEs formed by glycoxidation caused large micronucleus aberrations, apoptosis, and large-scale nuclear abnormalities, even at low concentrations.
Collapse
Affiliation(s)
| | - Emilene Arusievicz Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Larissa Lago
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Cibele Nicolaski Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Tânia Maria Manieri
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Roseli Hiromi Sato
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
116
|
Protective Effects and Possible Mechanisms of Ergothioneine and Hispidin against Methylglyoxal-Induced Injuries in Rat Pheochromocytoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4824371. [PMID: 29181125 PMCID: PMC5664345 DOI: 10.1155/2017/4824371] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Diabetic encephalopathy (DE) is often a complication in patients with Alzheimer's disease due to high blood sugar induced by diabetic mellitus. Ergothioneine (EGT) and hispidin (HIP) are antioxidants present in Phellinus linteus. Methylglyoxal (MGO), a toxic precursor of advanced glycated end products (AGEs), is responsible for protein glycation. We investigated whether a combination EGT and HIP (EGT + HIP) protects against MGO-induced neuronal cell damage. Rat pheochromocytoma (PC12) cells were preincubated with EGT (2 μM), HIP (2 μM), or EGT + HIP, then challenged with MGO under high-glucose condition (30 μM MGO + 30 mM glucose; GLU + MGO) for 24–96 h. GLU + MGO markedly increased protein carbonyls and reactive oxygen species in PC12 cells; both of these levels were strongly reduced by EGT or HIP with effects comparable to those of 100 nM aminoguanidine (an AGE inhibitor) but stronger than those of 10 μM epalrestat (an aldose reductase inhibitor). GLU + MGO significantly increased the levels of AGE and AGE receptor (RAGE) protein expression of nuclear factor kappa-B (NF-κB) in the cytosol, but treatment with EGT, HIP, or EGT + HIP significantly attenuated these levels. These results suggest that EGT and HIP protect against hyperglycemic damage in PC12 cells by inhibiting the NF-κB transcription pathway through antioxidant activities.
Collapse
|
117
|
Zhang J, Zhang L, Zhang S, Yu Q, Xiong F, Huang K, Wang CY, Yang P. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol 2017; 454:103-111. [PMID: 28619625 DOI: 10.1016/j.mce.2017.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Obesity has emerged as an imminent global public health concern over the past several decades. It has now become evident that obesity is characterized by the persistent and low-grade inflammation in the adipose tissue, and serves as an independent risk factor for many metabolic disorders such as diabetes and cardiovascular disease. Particularly, adipocytes originated from obese mice and humans likely predominate necrosis upon stressful insults, leading to passive release of cellular contents including the high mobility group box 1 (HMGB1) into the extracellular milieu. Extracellular HMGB1 acts as an innate alarmin to stimulate the activation of resident immune cells in the adipose tissue. Upon activation, those resident immune cells actively secrete additional HMGB1, which in turn activates/recruits additional immune cells, and induces adipocyte death. This review summarizes those novel discoveries in terms of HMGB1 in the initiation and maintenance of chronic inflammatory state in adipose tissue in obesity, and discusses its potential application in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| |
Collapse
|
118
|
Katakami N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb 2017; 25:27-39. [PMID: 28966336 PMCID: PMC5770221 DOI: 10.5551/jat.rv17014] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic macroangiopathy, atherosclerosis secondary to diabetes mellitus (DM), causes cerebro-cardiovascular diseases, which are major causes of death in patients with DM and significantly reduce their quality of life. The alterations in vascular homeostasis due to endothelial and vascular smooth muscle cell dysfunction are the main features of diabetic macroangiopathy. Although multiple metabolic abnormalities that characterize diabetes are involved in the progression of atherosclerosis in patients with DM, it may be said that prolonged exposure to hyperglycemia and insulin resistance clustering with other risk factors such as obesity, arterial hypertension, and dyslipidemia play crucial roles. Laboratory and clinical researches in the past decades have revealed that major biochemical pathways involved in the development of diabetic macroangiopathy are as follows: overproduction of reactive oxygen species, increased formation of advanced glycation end-products (AGEs) and activation of the AGEs-receptor for AGE axis, polyol and hexosamine flux, protein kinase C activation, and chronic vascular inflammation. Among them, oxidative stress is considered to be a key factor.
Collapse
Affiliation(s)
- Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine.,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine
| |
Collapse
|
119
|
Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol 2017; 70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress occurs whenever the release of reactive oxygen species (ROS) exceeds endogenous antioxidant capacity. In this paper, we review the specific role of several cardiovascular risk factors in promoting oxidative stress: diabetes, obesity, smoking, and excessive pollution. Specifically, the risk of developing heart failure is higher in patients with diabetes or obesity, even with optimal medical treatment, and the increased release of ROS from cardiac mitochondria and other sources likely contributes to the development of cardiac dysfunction in this setting. Here, we explore the role of different ROS sources arising in obesity and diabetes, and the effect of excessive ROS production on the development of cardiac lipotoxicity. In parallel, contaminants in the air that we breathe pose a significant threat to human health. This paper provides an overview of cigarette smoke and urban air pollution, considering how their composition and biological effects have detrimental effects on cardiovascular health.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Adult and Pediatric Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany.
| | - Mark R Miller
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
120
|
Neelofar K, Ahmad J. An overview of in vitro and in vivo glycation of albumin: a potential disease marker in diabetes mellitus. Glycoconj J 2017; 34:575-584. [PMID: 28812216 DOI: 10.1007/s10719-017-9789-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/27/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glycation of macromolecules, especially proteins leading to their oxidation is increased in diabetes mellitus due to hyperglycaemia and play an important role in associated complications of the disease. Protein glycation mostly occurs in intra chain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). This review deals with the structural studies of in vitro and in vivo glycated human serum albumin (HSA). The aim of this review is to explain the disturbance in secondary and tertiary structure of albumin upon glucosylation and the immunogenic potential of modified albumin. Amadori-albumin may have enough potential to provoke the immunoregulatry cells and generate autoantibodies in diabetic patients. Role of Amadori-albumin in the induction of autoantibodies in type2 diabetes especially in chronic kidney disease (CKD) patients has been discussed. This review also considers various studies that investigate the effects of glycation on the structural and immunological properties of HSA. The use of glycated albumin (GA) as a short to intermediate term marker for glycaemic control in diabetes is also focused.
Collapse
Affiliation(s)
- Km Neelofar
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
121
|
Ouyang A, Garner TB, Fleenor BS. Hesperidin reverses perivascular adipose-mediated aortic stiffness with aging. Exp Gerontol 2017; 97:68-72. [PMID: 28780050 DOI: 10.1016/j.exger.2017.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023]
Abstract
We tested the hypothesis that hesperidin would reverse age-related aortic stiffness, perivascular adipose (PVAT) mediated-arterial stiffening and PVAT advanced glycation end-products (AGE) accumulation. Aortic pulse wave velocity (aPWV) and intrinsic mechanical stiffness, two measures of arterial stiffness, were assessed in C57BL/6 mice that were young (6months), old (27-29months), or old treated with hesperidin for 4weeks. Old compared with young mice had increased aPWV (444±10 vs. 358±8cm/s, P<0.05) and mechanical stiffness (6506±369 vs. 3664±414kPa, P<0.05). In old mice hesperidin reduced both aPWV (331±38cm/s) and mechanical stiffness (4445±667kPa) to levels not different from young. Aortic segments from old animals cultured with (+) PVAT had greater mechanical stiffness compared to young (+) PVAT (6454±323 vs. 3575±440kPa, P<0.05) that was ameliorated in arteries from old hesperidin treated cultured (+) PVAT (2639±258kPa). Hesperidin also reversed the aging-related PVAT AGE accumulation (all, P<0.05). A 4-week treatment with the AGE inhibitor aminoguanidine reversed both the age-related increase in aPWV (390±7cm/s) and mechanical stiffness (3396±1072kPa), as well as mechanical stiffness in arteries cultured (+) PVAT (3292±716kPa) (all, P<0.05) to values not different from young. In conclusion, hesperidin ameliorates the age-related increase in aortic stiffness and the PVAT-mediated effects on arterial stiffening. Hesperidin also reversed PVAT AGE accumulation, where PVAT AGE were shown to promote aortic stiffness with aging.
Collapse
Affiliation(s)
- An Ouyang
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Tyler B Garner
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Bradley S Fleenor
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
122
|
Liu CC, Zhang XS, Ruan YT, Huang ZX, Zhang SB, Liu M, Luo HJ, Wu SL, Ma C. Accumulation of methylglyoxal increases the advanced glycation end-product levels in DRG and contributes to lumbar disk herniation-induced persistent pain. J Neurophysiol 2017; 118:1321-1328. [PMID: 28615337 PMCID: PMC5558033 DOI: 10.1152/jn.00745.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 02/02/2023] Open
Abstract
Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 μm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain.NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Xin-Sheng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Yu-Ting Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Zhu-Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Su-Bo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Meng Liu
- Zhongshan Medical School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Jie Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; and
| |
Collapse
|
123
|
Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep 2017; 7:5916. [PMID: 28725008 PMCID: PMC5517486 DOI: 10.1038/s41598-017-06067-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl intermediate and a precursor of advanced glycation end products (AGEs). The authors investigated the role played by AGEs in muscle myopathy and the amelioration of its effects by curcumin and gingerol. In addition to producing phenotypical changes, MG increased oxidative stress and reduced myotube formation in C2C12 cells. RAGE (receptor for AGEs) expression was up-regulated and MYOD and myogenin (MYOG) expressions were concomitantly down-regulated in MG-treated cells. Interestingly, AGE levels were higher in plasma (~32 fold) and muscle (~26 fold) of diabetic mice than in control mice. RAGE knock-down (RAGEkd) reduced the expressions of MYOD and MYOG and myotube formation in C2C12 cells. In silico studies of interactions between curcumin or gingerol and myostatin (MSTN; an inhibitor of myogenesis) and their observed affinities for activin receptor type IIB (ACVRIIB) suggested curcumin and gingerol reduce the interaction between MSTN and ACVRIIB. The findings of this study suggest enhanced AGE production and subsequent RAGE-AGE interaction obstruct the muscle development program, and that curcumin and gingerol attenuate the effect of AGEs on myoblasts.
Collapse
|
124
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
125
|
Fiorentino TV, Marini MA, Succurro E, Sciacqua A, Andreozzi F, Perticone F, Sesti G. Elevated hemoglobin glycation index identify non-diabetic individuals at increased risk of kidney dysfunction. Oncotarget 2017; 8:79576-79586. [PMID: 29108337 PMCID: PMC5668070 DOI: 10.18632/oncotarget.18572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 01/29/2023] Open
Abstract
Hemoglobin glycation index (HGI), calculated as the difference between the observed value of HbA1 and the predicted HbA1c based on plasma glucose concentration, is a measure of the individual tendency toward non-enzymatic hemoglobin glycation which has been found to be positively associated with nephropathy in subjects with diabetes. In this cross-sectional study we aimed to evaluate whether higher HGI levels are associated with impaired kidney function also among nondiabetic individuals. The study group comprised 1505 White nondiabetic individuals stratified in quartiles according to HGI levels. Estimated glomerular filtration rate (eGFR) was calculated by using the MDRD equation. Individuals in the intermediate and high HGI groups exhibited a worse metabolic phenotype with increased levels of visceral obesity, total cholesterol, triglycerides, inflammatory biomarkers such as hsCRP and white blood cells count and lower values of HDL and insulin sensitivity assessed by Matsuda index in comparison to the lowest quartile of HGI. Subjects in the intermediate and high HGI groups displayed a graded decrease of eGFR levels in comparison with the lowest quartile of HGI. In a logistic regression analysis individuals in the highest quartile of HGI exhibited a significantly 3.6-fold increased risk of having chronic kidney disease (95% CI: 1.13–11.24, P = 0.03) and a significantly 1.6-fold increased risk of having a mildly reduced kidney function (95% CI: 1.19–2.28, P = 0.003) in comparison to individuals in the lowest HGI group. In conclusion HGI may be a useful tool to identify nondiabetic individuals with an increased risk of having kidney dysfunction.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Elena Succurro
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
126
|
Andrade DO, Santos SPO, Pinhel MAS, Valente FM, Giannini MC, Gregório ML, De Godoy MF, Souza DRS, Vilela-Martin JF. Effects of acute blood pressure elevation on biochemical-metabolic parameters in individuals with hypertensive crisis. Clin Exp Hypertens 2017; 39:553-561. [PMID: 28569557 DOI: 10.1080/10641963.2017.1291661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertensive crisis is a common clinical situation that presents a high rate of morbidity and mortality and it is characterized by symptomatic rise of blood pressure (BP), systolic (SBP) ≥ 180 mmHg and/or diastolic (DBP) ≥ 120 mmHg. It is classified as emergency (HE) or hypertensive urgency (HU). There is no description of laboratory findings in patients who present acute BP elevation. Thus, this study had the objective to assess the biochemical-metabolic parameters of patients with HC. We studied 74 normotensive individuals (NT), 74 controlled hypertensive patients (ContrHT), 50 subjects with HU, and 78 with HE for evaluating biochemical-metabolic parameters. HE occurs in older individuals and more frequently in those with known hypertension. More patients with HE had dyslipidemia than those with HU (58% vs. 38%). The diastolic BP and heart rate were higher in the HE group (120 mmHg and 87 bpm) compared to ContrHT (71 mmHg and 71 bpm; p < 0.0001) and NT groups (75 mmHg and 68 bpm; p < 0.0001). Glycemia was higher in HE vs. NT and ContrHT (p < 0.05). HDL cholesterol was lower in HE than NT (p = 0.0088). Potassium was lower in HE vs. NT, ContrHT and HU groups (p < 0.05). Creatinine was higher in the HC group vs. NT and ContrHT (p < 0.05). The GFR was significantly lower in HE group vs. HU, ContrHT and NT (p < 0.001). In conclusion, individuals with HC show biochemical alterations when compared to ContrHT and NT. Acute BP elevations are associated with hyperglycemia, dyslipidemia, and higher potassium and creatinine levels and lower renal function. Abbreviations BMI = body mass index BP = blood pressure CH = hypertensive crisis ContrHT = controlled hypertensive DBP = diastolic blood pressure GFR = glomerular filtration rate HbA1c = glycated hemoglobin HDLc = high-density lipoprotein cholesterol HE = hypertensive emergency HPLC = high-performance liquid chromatography HR = heart rate HU = hypertensive urgency JNC 7 = VII Joint National Committee on the Detection, Evaluation, and Treatment of High Blood Pressure LDLc = low-density lipoprotein cholesterol MDRD = Modification of Diet in Renal Disease NT = normotensive RASB = renin-angiotensin system blockers SBP = systolic blood pressure TC = total cholesterol TG = triglycerides.
Collapse
Affiliation(s)
- Days Oliveira Andrade
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Sara Patrícia O Santos
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Marcela Augusta S Pinhel
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Flávia Mariana Valente
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Marcela Cavichiolo Giannini
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Michele Lima Gregório
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| | - Moacir Fernandes De Godoy
- c Cardiology and Cardiovascular Surgery Department , Medical School at São José do Rio Preto (FAMERP) , São Paulo , Brazil
| | - Dorotéia Rossi S Souza
- b Molecular Biology Department , State Medical School at São José do Rio Preto (FAMERP) , São Paulo , Brazil
| | - José Fernando Vilela-Martin
- a State Medical School at São José do Rio Preto (FAMERP) , Internal Medicine Department, Hypertension Clinic of FAMERP and Hospital de Base , São José do Rio Preto , São Paulo , Brazil
| |
Collapse
|
127
|
Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23:40-49. [PMID: 28416135 PMCID: PMC5509466 DOI: 10.1016/j.prrv.2017.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Collapse
Affiliation(s)
| | | | - Tim D. Oury
- Corresponding author. Tel.: +1 412 648 9659; Fax: +1 412 648 9527
| |
Collapse
|
128
|
Effective inhibition of protein glycation by combinatorial usage of limonene and aminoguanidine through differential and synergistic mechanisms. Int J Biol Macromol 2017; 99:563-569. [DOI: 10.1016/j.ijbiomac.2017.02.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/21/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
|
129
|
Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Ojha S, Arya DS. Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol. Int J Mol Sci 2017; 18:ijms18051001. [PMID: 28505121 PMCID: PMC5454914 DOI: 10.3390/ijms18051001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well known that this mechanism is involved in the pathogenesis of cardiovascular disease in diabetes. Kaempferol, a dietary flavonoid, is known to possess antioxidant, anti-apoptotic, and anti-inflammatory activities. However, little is known about the effect of kaempferol on myocardial ischemia-reperfusion (IR) injury in diabetic rats. Diabetes was induced in male albino Wistar rats using streptozotocin (70 mg/kg; i.p.), and rats with glucose level >250 mg/dL were considered as diabetic. Diabetic rats were treated with vehicle (2 mL/kg; i.p.) and kaempferol (20 mg/kg; i.p.) daily for a period of 28 days and on the 28th day, ischemia was produced by one-stage ligation of the left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed and the heart tissue was processed for biochemical, morphological, and molecular studies. Kaempferol pretreatment significantly reduced hyperglycemia, maintained hemodynamic function, suppressed AGE-RAGE axis activation, normalized oxidative stress, and preserved morphological alterations. In addition, there was decreased level of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and NF-κB), inhibition of active c-Jun N-terminal kinase (JNK) and p38 proteins, and activation of Extracellular signal regulated kinase 1/2 (ERK1/2) a prosurvival kinase. Furthermore, it also attenuated apoptosis by reducing the expression of pro-apoptotic proteins (Bax and Caspase-3), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells, and increasing the level of anti-apoptotic protein (Bcl-2). In conclusion, kaempferol attenuated myocardial ischemia-reperfusion injury in diabetic rats by reducing AGE-RAGE/ mitogen activated protein kinase (MAPK) induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kapil Suchal
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sana Irfan Khan
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Rajiv Kumar Malhotra
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sameer N Goyal
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India.
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi 17666, UAE.
| | - Dharamvir Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
130
|
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med 2017; 13:384-404. [PMID: 31285723 DOI: 10.1177/1559827617708991] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are a family of compounds of diverse chemical nature that are the products of nonenzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs bind to one or more of their multiple receptors (RAGE) found on a variety of cell types and elicit an array of biologic responses. In this review, we have summarized the data on the nature of AGEs and issues associated with their measurements, their receptors, and changes in their expression under different physiologic and disease states. Last, we have used this information to prescribe lifestyle choices to modulate AGE-RAGE cycle for better health.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Kathleen E Davis
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| |
Collapse
|
131
|
Liu C, Huang Y, Zhang Y, Chen X, Kong X, Dong Y. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway. Free Radic Res 2017; 51:337-350. [PMID: 28488455 DOI: 10.1080/10715762.2017.1289376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An increased intracellular methylglyoxal (MGO) under hyperglycemia led to pancreatic beta cell death. However, its mechanism in which way with MGO induced beta cell death remains unknown. We investigated both high glucose and MGO treatment significantly inclined intracellular MGO concentration and inhibited cell viability in vitro. MGO treatment also triggered intracellular advanced glycation end products (AGEs) formation, declined mitochondrial membrane potential (MMP), increased oxidative stress and the expression of ER stress mediators Grp78/Bip and p-PERK; activated mitochondrial apoptotic pathway, which could mimic by Glo1 knockdown. Aminoguanidine (AG), a MGO scavenger, however, prevented AGEs formation and MGO-induced cell death by inhibiting oxidative stress and ER stress. Furthermore, both antioxidant N-acetylcysteine (NAC) and ER stress inhibitor 4-phenylbutyrate (4-PBA) could attenuate MGO-induced cell death through ameliorating ER stress. MGO treatment down-regulated Ire1α, a key ER stress mediator, increased JNK phosphorylation and activated mitochondrial apoptosis; down-regulated Bcl-2 expression which could be attenuated by the JNK inhibitor SP600125 and further inhibited cytochrome c leakage from mitochondria and blocked the conversion of pro caspase 3 into cleaved caspase 3, all these might contribute to the inhibition of INS-1 cell apoptosis. Ire1α down-regulation by Ire1α siRNAs mimicked MGO-induced cytotoxicity by activating the JNK phosphorylation and mitochondrial apoptotic pathway. In summary, we demonstrated that increased intracellular MGO induced cytotoxicity in INS-1 cells primarily by activating oxidative stress and further triggering mitochondrial apoptotic pathway, and ER stress-mediated Ire1α-JNK pathway. These findings may have implication on new mechanism of glucotoxicity-mediated pancreatic beta-cell dysfunction.
Collapse
Affiliation(s)
- Chongxiao Liu
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yanhong Huang
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yifan Zhang
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xueru Chen
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiang Kong
- b Department of Endocrinology , Yijishan Hospital Affiliated Wannan Medical College , Anhui , China
| | - Yan Dong
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
132
|
Dietary Metabolites and Chronic Kidney Disease. Nutrients 2017; 9:nu9040358. [PMID: 28375181 PMCID: PMC5409697 DOI: 10.3390/nu9040358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.
Collapse
|
133
|
Liu ZH, Dai DP, Ding FH, Pan WQ, Fang YH, Zhang Q, Li M, Yang P, Wang XQ, Shen Y, Wang LJ, Yan XX, He YH, Yang K, Zhang RY, Shen WF, Chen Y, Lu L. Association of serum HMGB2 level with MACE at 1 mo of myocardial infarction: Aggravation of myocardial ischemic injury in rats by HMGB2 via ROS. Am J Physiol Heart Circ Physiol 2017; 312:H422-H436. [PMID: 28011583 DOI: 10.1152/ajpheart.00249.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/05/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
Abstract
High-mobility group box (HMGB) family is related to inflammatory diseases. We investigated whether serum HMGB2 levels are related to myocardial infarction (MI) severity and major adverse cardiac events (MACE) during MI. We included 432 consecutive patients with ST-segment elevation myocardial infarction and 312 controls. Serum HMGB2 levels were significantly higher in MI patients than in controls. Increased HMGB2 levels were associated with MACE and negatively with ejection fraction in MI patients. HMGB2 was an independent determinant of MACE in logistic regression analysis. HMGB2 protein (10 μg) or saline was injected intramyocardially in MI rats, with or without coadministration of the NADPH oxidase inhibitor apocynin. After 72 h, pathological, echocardiographic, and hemodynamic examinations showed that HMGB2 increased infarct size and worsened cardiac function in MI rats. Moreover, HMGB2 administration enhanced reactive oxygen species (ROS) production, cell apoptosis, inflammation, and autophagosome clearance impairment, which were attenuated by coadministration of apocynin or knock down of receptor for advanced glycation end products (RAGE). In conclusion, increased serum HMGB2 levels are associated with MI severity and MACE at 1 mo. HMGB2 promotes myocardial ischemic injury in rats and hypoxic H9C2 cell damage via ROS provoked by RAGE. NEW & NOTEWORTHY We demonstrate that serum high-mobility group box 2 is associated with major adverse cardiac events at 1 mo in myocardial infarction patients. Mechanistically, high-mobility group box 2 promotes reactive oxygen species production via receptor for advanced glycation end products signaling in ischemic myocardium, thereby aggravating cell apoptosis, inflammation, and autophagosome clearance impairment. This study reveals that high-mobility group box 2 is a novel factor enhancing ischemic injury in myocardial infarction.
Collapse
Affiliation(s)
- Zhu Hui Liu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Dao Peng Dai
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Wen Qi Pan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Yue Hua Fang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Qi Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Man Li
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Ping Yang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Xiao Qun Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Ling Jie Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiao Xiang Yan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu Hu He
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Ke Yang
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Rui Yan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Ying Chen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
134
|
Torino C, Pizzini P, Cutrupi S, Tripepi G, Mallamaci F, Thadhani R, Zoccali C. Active vitamin D treatment in CKD patients raises serum sclerostin and this effect is modified by circulating pentosidine levels. Nutr Metab Cardiovasc Dis 2017; 27:260-266. [PMID: 28017524 DOI: 10.1016/j.numecd.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS 1,25(OH)2Vitamin D increases the expression of the sclerostin gene. Whether vitamin D receptor activation (VDRA) influences serum sclerostin in CKD and whether compounds interfering with VDRA like Advanced Glycosylation End Products (AGEs) may alter the sclerostin response to VDRA is unknown. METHODS AND RESULTS Eighty-eight stage G3-4 CKD patients randomly received 2 μg paricalcitol (PCT)/day (n = 44) or placebo (n = 44) for 12 weeks. Sclerostin, a major AGE compound like pentosidine, and bone mineral disorder biomarkers were measured at baseline, at 12 weeks and 2 weeks after stopping the treatments. At baseline, in the whole study population sclerostin correlated with male gender (P = 0.002), BMI (P < 0.001), waist circumference (P < 0.001), serum pentosidine (P = 0.002) and to a weaker extent, with diabetes (P = 0.04), 1,25(OH)2Vitamin D (r = 0.22, P = 0.04) and serum phosphate (r = -0.26, P = 0.01). Sclerostin increased during PCT treatment (average + 15.7 pg/ml, 95% CI: -3.0 to +34.3) but not during placebo (P = 0.03) and the PCT effect was abolished 2 weeks after stopping this drug. The increase in sclerostin levels induced by PCT was modified by prevailing pentosidine levels (P = 0.01) and was abolished by statistical adjustment for simultaneous changes in PTH but not by FGF23 changes. CONCLUSIONS VDRA by paricalcitol causes a moderate increase in serum sclerostin in CKD patients. Such an effect is abolished by adjustment for PTH, suggesting that it may serve to counter PTH suppression. The sclerostin rise by PCT is attenuated by pentosidine, an observation in keeping with in vitro studies showing that AGEs alter the functioning of the VDRA.
Collapse
Affiliation(s)
- C Torino
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - P Pizzini
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - S Cutrupi
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - G Tripepi
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - F Mallamaci
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy
| | - R Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - C Zoccali
- CNR-IFC & Nephrology and Renal Transplantation Unit, Reggio Calabria, Italy.
| |
Collapse
|
135
|
Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep 2017; 7:42027. [PMID: 28181586 PMCID: PMC5299420 DOI: 10.1038/srep42027] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/06/2017] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia induced advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) activation is thought to involve in the development of cardiovascular disease in diabetics. Activation of AGE-RAGE axis results in the oxidative stress and inflammation. Mangiferin is found in the bark of mango tree and is known to treat diseases owing to its various biological activities. Thus, this study was designed to evaluate the effect of mangiferin in ischemia-reperfusion (IR) induced myocardial injury in diabetic rats. A single injection of STZ (70 mg/kg; i.p.) was injected to male albino Wistar rats to induce diabetes. After confirmation of diabetes, rats were administered vehicle (2 ml/kg; i.p.) and mangiferin (40 mg/kg; i.p.) for 28 days. On 28th day, left anterior descending coronary artery was ligated for 45 min and then reperfused for 60 min. Mangiferin treatment significantly improved cardiac function, restored antioxidant status, reduced inflammation, apoptosis and maintained myocardial architecture. Furthermore, mangiferin significantly inhibited the activation of AGE-RAGE axis, c-Jun N-terminal kinase (JNK) and p38 and increased the expression of extracellular regulated kinase 1/2 (ERK1/2) in the myocardium. Thus, mangiferin attenuated IR injury in diabetic rats by modulation of AGE-RAGE/MAPK pathways which further prevented oxidative stress, inflammation and apoptosis in the myocardium.
Collapse
Affiliation(s)
- Kapil Suchal
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Salma Malik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajiv Kumar Malhotra
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer N Goyal
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra-425405, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Santosh Kumari
- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi 17666, United Arab Emirates
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
136
|
Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 2017; 352:75-83. [PMID: 28159472 DOI: 10.1016/j.yexcr.2017.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
Abstract
A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1β, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients.
Collapse
Affiliation(s)
- Ming-Min Chung
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Christopher J Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 111, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Dee Pei
- Department of Internal Medicine, Cardinal Tien Hospital, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chien-Hung Lin
- Department of Pediatrics, Taipei City Hospital Zhongxing Branch, Taipei 103, Taiwan
| | - Yi-Nuo Shih
- Department of Occupational Therapy, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Chia-Hui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
137
|
Mapanga RF, Joseph DE, Saieva M, Boyer F, Rondeau P, Bourdon E, Essop MF. Glycation abolishes the cardioprotective effects of albumin during ex vivo ischemia-reperfusion. Physiol Rep 2017; 5:5/2/e13107. [PMID: 28126733 PMCID: PMC5269409 DOI: 10.14814/phy2.13107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
Hyperglycemia-induced oxidative stress plays a key role in the onset/progression of cardiovascular diseases. For example, it can trigger formation of advanced glycation end (AGE) products with ischemia-reperfusion performed under hyperglycemic conditions. For this study, we hypothesized that albumin modified by glycation loses its unique cardioprotective properties in the setting of ischemia-reperfusion under high glucose conditions. Here, ex vivo rat heart perfusions were performed under simulated normo- and hyperglycemic conditions, that is Krebs-Henseleit buffer containing 11 mmol/L and 33 mmol/L glucose, respectively, ± normal or glycated albumin preparations. The perfusion protocol consisted of a 60 min stabilization step that was followed by 20 min of global ischemia and 60 min reperfusion. Additional experiments were completed to determine infarct sizes in response to 20 min regional ischemia and 120 min reperfusion. At the end of perfusions, heart tissues were isolated and evaluated for activation of the AGE pathway, oxidative stress, and apoptosis. Our data reveal that native bovine serum albumin treatment elicited cardioprotection (improved functional recovery, decreased infarct sizes) under high glucose conditions together with enhanced myocardial antioxidant capacity. However, such protective features are lost with glycation where hearts displayed increased infarct sizes and poor functional recovery versus native albumin treatments. Myocardial antioxidant capacity was also lowered together with activation of the intracellular AGE pathway. These data therefore show that although albumin acts as a cardioprotective agent during ischemia-reperfusion, it loses its cardioprotective and antioxidant properties when modified by glycation.
Collapse
Affiliation(s)
- Rudo F Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Danzil E Joseph
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Marco Saieva
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Florence Boyer
- Inserm UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Université de La Réunion Plateforme CYROI, Saint Denis de La Réunion, France
| | - Philippe Rondeau
- Inserm UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Université de La Réunion Plateforme CYROI, Saint Denis de La Réunion, France
| | - Emmanuel Bourdon
- Inserm UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Université de La Réunion Plateforme CYROI, Saint Denis de La Réunion, France
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
138
|
Son WR, Nam MH, Hong CO, Kim Y, Lee KW. Plantamajoside from Plantago asiatica modulates human umbilical vein endothelial cell dysfunction by glyceraldehyde-induced AGEs via MAPK/NF-κB. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:66. [PMID: 28109289 PMCID: PMC5251346 DOI: 10.1186/s12906-017-1570-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/07/2017] [Indexed: 01/25/2023]
Abstract
Background Plantago asiatica has been traditionally used for traditional medicine around East Asia. Plantamajoside (PM), which is isolated from this plant, is known for biological properties including anti-inflammation and antioxidant activity. To demonstrate the biological activity of PM against endothelial dysfunction induced by advanced glycation end-products (AGEs), a cellular inflammatory mechanism system was evaluated in human umbilical vein endothelial cells (HUVECs). Methods We obtained PM through previous research in our laboratory. We formed the AGEs from bovine serum albumin with glyceraldehyde in the dark for seven days. To confirm the modulation of the inflammatory mechanism in endothelial dysfunction, we quantified the various pro-inflammatory cytokines and endothelial dysfunction-related proteins in the HUVECs with Western blotting and with real-time and quantitative real-time polymerase chain reactions. Results Co-treatment with PM and AGEs significantly suppressed inflammatory cytokines and adhesion molecule expression. Moreover, the PM treatment for down-regulated inflammatory signals and blocked monocyte adhesion on the HUVECs. Conclusions Theses results demonstrated that PM, as a potential natural compound, protects AGE-induced endothelial cells against inflammatory cellular dysfunction. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1570-1) contains supplementary material, which is available to authorized users.
Collapse
|
139
|
The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. J Transl Med 2017; 97:34-42. [PMID: 27869797 PMCID: PMC5214531 DOI: 10.1038/labinvest.2016.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Diabetics often have poor perfusion in their limbs as a result of peripheral artery disease and an impaired ability to generate collateral vessels. The receptor for advanced glycation end products (RAGE) is one protein that is thought to play a detrimental role in collateral development in diabetics due to increased levels of advanced glycation end products (AGE), one of its ligands, in diabetes. Thus, the aim of this study was to investigate the role of RAGE in both diabetic and non-diabetic settings in a model of collateral formation in mice. Streptozotocin was used to induce diabetes in both wild type and RAGE knockout mice. Increased levels of the AGE, Nɛ-(carboxymethyl) lysine (CML), were confirmed via an ELISA. A hindlimb ischemia model, in which the femoral artery is ligated, was used to drive collateral growth and reperfusion was assessed using laser Doppler perfusion imaging and histological analysis of vessels in the muscle. Both of these measurements showed impaired collateral growth in diabetic compared with wild-type mice as well as improved collateral growth in both diabetic and non-diabetic RAGE knockout mice when compared their wild-type counterparts. Distance on a freely accessed running wheel, used as a measure of perfusion recovery, showed that wild-type diabetic mice had functionally impaired recovery compared with their wild-type counterparts. Immunohistochemistry and immunoblotting showed that HMGB-1 (high-mobility group box 1), another RAGE ligand, was increased in the ischemic leg compared with the non-ischemic leg in all mice. This increase in HMGB-1 may explain improvement in animals lacking RAGE and its subsequent signaling. In conclusion, this study shows that RAGE impairs collateral growth in a diabetic setting and also in a non-diabetic setting. This demonstrates the importance of RAGE and alternate RAGE ligands in the setting of collateral vessel growth.
Collapse
|
140
|
Saucedo-Vence K, Elizalde-Velázquez A, Dublán-García O, Galar-Martínez M, Islas-Flores H, SanJuan-Reyes N, García-Medina S, Hernández-Navarro MD, Gómez-Oliván LM. Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:347-357. [PMID: 27744200 DOI: 10.1016/j.scitotenv.2016.09.230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Sucralose (SUC) is an artificial sweetener that is now widely used in North American and Europe; it has been detected in a wide variety of aquatic environments. It is considered safe for human consumption but its effects in the ecosystem have not yet been studied in depth, since limited ecotoxicological data are available in the peer-reviewed literature. This study aimed to evaluate potential SUC-induced toxicological hazard in the blood, brain, gill, liver and muscle of Cyprinus carpio using oxidative stress biomarkers. Carps were exposed to two different environmentally relevant concentrations (0.05 and 155μgL-1) for different exposure times (12, 24, 48, 72 and 96h). The following biomarkers were evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC) and protein carbonyl content (PCC), as well as the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). SUC was determined by high pressure liquid chromatography tandem mass spectrometry techniques (HPLC)-MS/MS. Results show a statically significant increase in LPX, HPC, PCC (P<0.05) especially in gill, brain and muscle, as well as significant changes in the activity of antioxidant enzymes in gill and muscle. Furthermore, the biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Karinne Saucedo-Vence
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF CP 07738, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF CP 07738, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
141
|
The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Cell Biochem Biophys 2016; 71:1425-43. [PMID: 25427889 DOI: 10.1007/s12013-014-0365-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN. Hyperglycemia- and dyslipidemia-driven oxidative stress is a major contributor, enhanced by advanced glycation end product (AGE) formation and polyol pathway activation. There are several polymorphous pathways that lead to oxidative stress in the peripheral nervous system in chronic hyperglycemia. This article demonstrates the origin of oxidative stress derived from glycation reactions and genetic variations within the antioxidant genes which could be implicated in the pathogenesis of DN. In the diabetic state, unchecked superoxide accumulation and resultant increases in polyol pathway activity, AGEs accumulation, protein kinase C activity, and hexosamine flux trigger a feed-forward system of progressive cellular dysfunction. In nerve, this confluence of metabolic and vascular disturbances leads to impaired neural function and loss of neurotrophic support, and over the long term, can mediate apoptosis of neurons and Schwann cells, the glial cells of the peripheral nervous system. In this article, we consider AGE-mediated reactive oxygen species (ROS) generation as a pathogenesis factor in the development of DN. It is likely that oxidative modification of proteins and other biomolecules might be the consequence of local generation of superoxide on the interaction of the residues of L-lysine (and probably other amino acids) with α-ketoaldehydes. This phenomenon of non-enzymatic superoxide generation might be an element of autocatalytic intensification of pathophysiological action of carbonyl stress. Glyoxal and methylglyoxal formed during metabolic pathway are detoxified by the glyoxalase system with reduced glutathione as co-factor. The concentration of reduced glutathione may be decreased by oxidative stress and by decreased in situ glutathione reductase activity in diabetes mellitus. Genetic variations within the antioxidant genes therefore could be implicated in the pathogenesis of DN. In this work, the supporting data about the association between the -262T > C polymorphism of the catalase (CAT) gene and DN were shown. The -262TT genotype of the CAT gene was significantly associated with higher erythrocyte catalase activity in blood of DN patients compared to the -262CC genotype (17.8 ± 2.7 × 10(4) IU/g Hb vs. 13.5 ± 3.2 × 10(4) IU/g Hb, P = 0.0022). The role of these factors in the development of diabetic complications and the prospective prevention of DN by supplementation in formulations of transglycating imidazole-containing peptide-based antioxidants (non-hydrolyzed carnosine, carcinine, n-acetylcarcinine) scavenging ROS in the glycation reaction, modifying the activity of enzymic and non-enzymic antioxidant defenses that participate in metabolic processes with ability of controlling at transcriptional levels the differential expression of several genes encoding antioxidant enzymes inherent to DN in Type I Diabetic patients, now deserve investigation.
Collapse
|
142
|
Reddy KA, Kumar PU, Srinivasulu M, Triveni B, Sharada K, Ismail A, Reddy GB. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 2016; 31:137-143. [PMID: 27855345 DOI: 10.1016/j.breast.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/25/2022] Open
Abstract
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.
Collapse
Affiliation(s)
| | - P Uday Kumar
- National Institute of Nutrition, Hyderabad, India
| | | | - B Triveni
- MNJ Institute of Oncology, Hyderabad, India
| | - K Sharada
- National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
143
|
Einbinder Y, Ohana M, Benchetrit S, Zehavi T, Nacasch N, Bernheim J, Zitman-Gal T. Glucagon-like peptide-1 and vitamin D: anti-inflammatory response in diabetic kidney disease in db/db mice and in cultured endothelial cells. Diabetes Metab Res Rev 2016; 32:805-815. [PMID: 26991522 DOI: 10.1002/dmrr.2801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/01/2016] [Accepted: 03/08/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone that stimulates insulin secretion and may affect the inflammatory pathways involved in diabetes mellitus. Calcitriol, an active form of vitamin D, plays an important role in renal, endothelial and cardiovascular protection. We evaluated the anti-inflammatory and histologic effects of a GLP-1 analogue (liraglutide) and of calcitriol in a db/db mouse diabetes model and in endothelial cells exposed to a diabetes-like environment. METHODS Diabetic db/db mice were treated with liraglutide and calcitriol for 14 weeks, after which the kidneys were perfused and removed for mRNA and protein analysis and histology. Endothelial cells were stimulated with advanced glycation end products (AGEs), glucose, liraglutide and calcitriol. Total RNA and protein were extracted and analysed for the expression of selected inflammatory markers. RESULTS Typical histological changes, glomerular enlargement and mesangial expansion were seen in db/db mice compared with control mice. Glomerular hypertrophy was ameliorated with liraglutide, compared with db/db controls. Liraglutide up-regulated endothelial nitric oxide synthase protein expression compared with the db/db control group and down-regulated p65 protein expression. Calcitriol did not further improve the beneficial effect observed on protein expression. In endothelial cells, liraglutide treatment exhibited a dose-dependent ability to prevent an inflammatory response in the selected markers: thioredoxin-interacting protein, p65, IL6 and IL8. In most gene and protein expressions, addition of calcitriol did not enhance the effect of liraglutide. CONCLUSIONS The GLP-1 analogue liraglutide prevented the inflammatory response observed in endothelial cells exposed to a diabetes-like environment and in db/db mice at the level of protein expression and significantly ameliorated the glomerular hypertrophy seen in the diabetic control group. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yael Einbinder
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meital Ohana
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sydney Benchetrit
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tania Zehavi
- Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - Naomi Nacasch
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacques Bernheim
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Zitman-Gal
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel.
| |
Collapse
|
144
|
Yeh WJ, Yang HY, Pai MH, Wu CH, Chen JR. Long-term administration of advanced glycation end-product stimulates the activation of NLRP3 inflammasome and sparking the development of renal injury. J Nutr Biochem 2016; 39:68-76. [PMID: 27816762 DOI: 10.1016/j.jnutbio.2016.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/20/2016] [Accepted: 09/02/2016] [Indexed: 01/13/2023]
Abstract
The accumulation of advanced glycation end-products (AGEs) and the enhanced interaction of AGE with their cellular receptor (RAGE) have been implicated in the progression of chronic kidney disease. The purpose of this study was to examine whether the AGE/RAGE-induced nephrotoxic effects are associated with inflammasome activation and endothelial dysfunction. Chronic renal injury was examined in BALB/c mice by the long-term administration of carbonyl-AGE for 16 weeks. Endothelial dysfunction was detected by measuring the number of circulating endothelial progenitor cells (EPCs) and the levels of nitric oxide synthase (eNOS) and nitric oxide (NO) in kidneys. Results showed that administration of methylglyoxal-bovine serum albumin (MG-BSA) AGE accelerated renal MG, carboxyethyl lysine, carboxymethyl lysine and malondialdehyde formation and, in parallel, the levels of serum creatinine and blood urea nitrogen (BUN) were significantly increased. Expression of RAGE and NLRP3 inflammasome-related proteins (TXNIP, NLRP3, procaspase-1 and caspase-1) and IL (interleukin)-1β secretion were upregulated, whereas the levels of EPCs, eNOS and NO were lower in MG-BSA-treated mice. This induction by MG-BSA was significantly inhibited by RAGE antagonist. Our results firstly reveal a possible mechanism of AGE-mediated renal dysfunction upon NLRP3 inflammasome activation. Therapeutic blockade of RAGE may ameliorate renal and endothelial functions in subjects under high AGE burden.
Collapse
Affiliation(s)
- Wan-Ju Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Yang
- Department of Nutrition, I-Shou University, Kaohsiung, Taiwan
| | - Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hao Wu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
145
|
Abstract
The receptor for advanced glycation end products (RAGE) is a novel protein increasingly studied in the pathogenesis of type 1 diabetes (T1D). RAGE is expressed by several immune cell types, including T cells, antigen-presenting cells, endothelial cells, and the endocrine cells of the pancreatic islets. RAGE binds various ligands including advanced glycation end products (AGEs), high-mobility group box protein 1 (HMGB1), S100 proteins, β-amyloid, β-sheet fibrils, and lipopolysaccharide. AGEs are a particularly interesting ligand because their exogenous introduction into the body can be accelerated by the consumption of AGE-rich processed foods. This review will detail RAGE isoforms and its ligands and discuss how RAGE binding on the aforementioned cells could be linked to T1D pathogenesis.
Collapse
Affiliation(s)
- Sherman S Leung
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia.
- Mater Clinical School, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Danielle J Borg
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
| |
Collapse
|
146
|
Kim J, Jo K, Lee IS, Kim CS, Kim JS. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction. Nutrients 2016; 8:nu8090585. [PMID: 27657123 PMCID: PMC5037569 DOI: 10.3390/nu8090585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs) are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE) against damage to retinal vascular cells were investigated in streptozotocin (STZ)-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB) and inducible nitric oxide synthase (iNOS) were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling)-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs) binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.
Collapse
Affiliation(s)
- Junghyun Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyuhyung Jo
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Ik-Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Jin Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
147
|
Kim J, Kim CS, Sohn E, Kim JS. Cytoplasmic translocation of high-mobility group box-1 protein is induced by diabetes and high glucose in retinal pericytes. Mol Med Rep 2016; 14:3655-61. [PMID: 27599553 PMCID: PMC5042730 DOI: 10.3892/mmr.2016.5702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/18/2016] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to assess the involvement of the high-mobility group box-1 (HMGB1) protein, receptor for advanced glycation end products (RAGE) and nuclear factor (NF)-κB signaling pathway in the development of diabetic retinopathy. Rat primary retinal pericytes were exposed to 25 mmol/l D-glucose for 48 h. Diabetic retinal vessels were prepared from streptozotocin-induced diabetic rats 12 weeks following the induction of diabetes. The expression of HMGB1 was detected using immunofluorescence staining. The expression of RAGE and the activity of NF-κB were analyzed using western blot and electrophoretic mobility shift assays, respectively. The results showed that HMGB1 was translocated to the cytoplasm of the high glucose-treated pericytes and diabetic retinal pericytes, whereas, in the control cells and the normal retinas, HMGB1 was expressed in the cell nuclei only. The expression of RAGE, a potential receptor for HMGB1, and the activity of NF-κB were also increased in the high glucose-treated pericytes, compared with the normal control cells. In addition, high glucose increased the binding of NF-κB to the RAGE promoter. These findings suggested that the cytoplasmic translocation of HMGB1 may be caused by diabetes and high glucose in retinal pericytes, and that the pathogenic role of HMGB1 may be dependent on the expression of RAGE and activation of NF-κB.
Collapse
Affiliation(s)
- Junghyun Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
148
|
Abstract
Although an association between diabetes mellitus (DM) and cognitive dysfunction has been recognized for a century, it is often not considered as a complication of DM and remains under-recognized. Cognitive dysfunction, usually present as mild cognitive impairment, can occur with either type 1 or type 2 DM. Both forms of DM contribute to accelerated cerebral atrophy and to the presence of heightened white matter abnormalities. These effects are noted most at the two extremes of life, in childhood and in the advanced years. The cognitive spheres most affected include attention and executive function, processing speed, perception, and memory. Although DM is unlikely to lead to frank dementia, its ability to exacerbate existing neurodegenerative processes, such as Alzheimer disease, will impact tremendously upon our society in the upcoming decades as our population ages. This chapter describes the clinical impact of DM upon the brain, along with discussion of the potential therapeutic avenues to be discovered in the coming decades. We need to prepare for better preventative and therapeutic management of this cerebral neurodegenerative condition.
Collapse
Affiliation(s)
- Cory Toth
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
149
|
Stegen S, Stegen B, Aldini G, Altomare A, Cannizzaro L, Orioli M, Gerlo S, Deldicque L, Ramaekers M, Hespel P, Derave W. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Appl Physiol Nutr Metab 2016; 40:868-76. [PMID: 26307517 DOI: 10.1139/apnm-2015-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus β-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% β-alanine (HFba), as β-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p < 0.05) in the HFcar group, but not in the HFba group, compared with HF rats. We conclude that plasma carnosine, but not muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.
Collapse
Affiliation(s)
- Sanne Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Bram Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Giancarlo Aldini
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Cannizzaro
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Marica Orioli
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Sarah Gerlo
- c VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Louise Deldicque
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Monique Ramaekers
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Peter Hespel
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Wim Derave
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
150
|
RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9348651. [PMID: 27313835 PMCID: PMC4897723 DOI: 10.1155/2016/9348651] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.
Collapse
|