101
|
Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 1987; 51:1079-90. [PMID: 3319186 DOI: 10.1016/0092-8674(87)90594-0] [Citation(s) in RCA: 1353] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcription factor Sp1 is a protein present in mammalian cells that binds to GC box promoter elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. We have isolated a cDNA that encodes the 696 C-terminal amino acid residues of human Sp1. By expression of truncated fragments of Sp1 in E. coli, we have localized the DNA binding activity to the C-terminal 168 amino acid residues. In this region, Sp1 has three contiguous Zn(II) finger motifs, which are believed to be metalloprotein structures that interact with DNA. We have found that purified Sp1 requires Zn(II) for sequence-specific binding to DNA. Thus, it is likely that Sp1 interacts with DNA by binding of the Zn(II) fingers. To facilitate the identification of mutant variants of Sp1 that are defective in DNA binding, we have also devised a bacterial colony assay for detection of Sp1 binding to DNA.
Collapse
Affiliation(s)
- J T Kadonaga
- Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
102
|
LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes. Mol Cell Biol 1987. [PMID: 2823102 DOI: 10.1128/mcb.7.8.2708] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the majority of genes for amino acid biosynthesis which have been examined are under general amino acid control, LEU1 and LEU2 of Saccharomyces cerevisiae respond specifically to leucine. We report here an analysis of LEU3, a putative leucine-specific regulatory locus. We show that LEU3 is necessary for expression of wild-type levels of LEU1- and LEU2-specific RNAs and, further, that the levels of LEU4-specific transcripts are also affected by LEU3. We cloned LEU3 and showed by DNA sequence analysis that it contained an open reading frame of 886 amino acids. A striking feature of the predicted LEU3 protein was a cluster of acidic amino acids (19 of 20) located in the C-terminal half of the coding region. The protein also had a repeated cysteine motif which was conserved in a number of other yeast proteins implicated in gene regulation. We show that whole-cell extracts contained a LEU3-dependent DNA-binding activity that interacted with the 5' region of LEU2. Subdivision of the LEU2 5' region established that the LEU3-dependent DNA-binding activity interacted with the segment which had the previously reported homology with LEU1.
Collapse
|
103
|
|
104
|
Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45464-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
105
|
Beri RK, Whittington H, Roberts CF, Hawkins AR. Isolation and characterization of the positively acting regulatory gene QUTA from Aspergillus nidulans. Nucleic Acids Res 1987; 15:7991-8001. [PMID: 3313276 PMCID: PMC306322 DOI: 10.1093/nar/15.19.7991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The positively acting regulator gene QUTA from Aspergillus nidulans has been identified and located within a cluster of quinic acid utilisation (QUT) genes isolated within a recombinant phage lambda (lambda Q1). The DNA sequence of the QUTA gene reveals a single uninterrupted reading frame coding for a protein of mw 90.416 Kd. The QUTA protein sequence has a protein motif in the form of a putative "DNA finger" that shows strong homology to other such motifs in the GAL4, PPR1, ARGRII, LAC9 and QA1F regulatory gene products of S. cerevisiae, K. lactis and N. crassa. The data presented confirm the view deduced by genetical analysis that the QUTA gene of A. nidulans encodes a protein capable of interacting with QUT specific DNA sequences.
Collapse
Affiliation(s)
- R K Beri
- Department of Genetics, University of Leicester, UK
| | | | | | | |
Collapse
|
106
|
Abstract
Simian virus 40-based plasmids that direct the synthesis of preproinsulin during short-term transfection of COS cells have been used to probe the mechanism of reinitiation by eucaryotic ribosomes. Earlier studies from several laboratories had established that the ability of ribosomes to reinitiate translation at an internal AUG codon depends on having a terminator codon in frame with the preceding AUG triplet and upstream from the intended restart site. In the present studies, the position of the upstream terminator codon relative to the preproinsulin restart site has been systematically varied. The efficiency of reinitiation progressively improved as the intercistronic sequence was lengthened. When the upstream "minicistron" terminated 79 nucleotides before the preproinsulin start site, the synthesis of proinsulin was as efficient as if there were no upstream AUG codons. A mechanism is postulated that might account for this result, which is somewhat surprising inasmuch as bacterial ribosomes reinitiate less efficiently as the intercistronic gap is widened.
Collapse
Affiliation(s)
- M Kozak
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
107
|
Friden P, Schimmel P. LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes. Mol Cell Biol 1987; 7:2708-17. [PMID: 2823102 PMCID: PMC367887 DOI: 10.1128/mcb.7.8.2708-2717.1987] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although the majority of genes for amino acid biosynthesis which have been examined are under general amino acid control, LEU1 and LEU2 of Saccharomyces cerevisiae respond specifically to leucine. We report here an analysis of LEU3, a putative leucine-specific regulatory locus. We show that LEU3 is necessary for expression of wild-type levels of LEU1- and LEU2-specific RNAs and, further, that the levels of LEU4-specific transcripts are also affected by LEU3. We cloned LEU3 and showed by DNA sequence analysis that it contained an open reading frame of 886 amino acids. A striking feature of the predicted LEU3 protein was a cluster of acidic amino acids (19 of 20) located in the C-terminal half of the coding region. The protein also had a repeated cysteine motif which was conserved in a number of other yeast proteins implicated in gene regulation. We show that whole-cell extracts contained a LEU3-dependent DNA-binding activity that interacted with the 5' region of LEU2. Subdivision of the LEU2 5' region established that the LEU3-dependent DNA-binding activity interacted with the segment which had the previously reported homology with LEU1.
Collapse
Affiliation(s)
- P Friden
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
108
|
Zhou K, Brisco PR, Hinkkanen AE, Kohlhaw GB. Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control. Nucleic Acids Res 1987; 15:5261-73. [PMID: 3299266 PMCID: PMC305960 DOI: 10.1093/nar/15.13.5261] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Determination of the nucleotide sequence of a DNA region from Saccharomyces cerevisiae previously shown to contain the LEU3 gene revealed one long open reading frame (ORF) whose 887 codons predict the existence of a protein with a molecular mass of 100,162 daltons. The codon bias index of 0.02 suggests that LEU3 encodes a low-abundance protein. The predicted amino acid sequence contains a stretch of 31 residues near the N-terminus that is rich in cysteines and basic amino acids and shows strong homology to similar regions in five other regulatory proteins of lower eukaryotes. Additional regions with a predominance of basic amino acids are present adjacent to the cysteine-rich region. A stretch of 20 residues, 19 of which are glu or asp, is found in the carboxy terminal quarter of the protein. The 5' flanking region of LEU3 contains a TATA box 111 bp upstream from the beginning of the long ORF and two transcription initiation elements (5'TCAA3') 58 and 48 bp upstream from the ORF. The 3' flanking region shows a tripartite potential termination-polyadenylation signal. The predicted 5' and 3' ends of the transcript are in very good agreement with the previously determined size of the LEU3 message. Analysis of a LEU3'-'lacZ translational fusion suggests that the LEU3 gene, whose product is involved in the specific regulation of the leucine and possibly the isoleucine-valine pathways, is itself under general amino acid control. Consistent with this observation is the finding that the 5' flanking region of LEU3 contains two perfect copies of the general control target sequence 5'TGACTC3'.
Collapse
|
109
|
Beckmann JD, Ljungdahl PO, Lopez JL, Trumpower BL. Isolation and characterization of the nuclear gene encoding the Rieske iron-sulfur protein (RIP1) from Saccharomyces cerevisiae. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47500-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
110
|
Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 1987. [PMID: 2951591 DOI: 10.1128/mcb.7.3.1256] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The qa-1F regulatory gene of Neurospora crassa encodes an activator protein required for quinic acid induction of transcription in the qa gene cluster. This activator protein was expressed in insect cell culture with a baculovirus expression vector. The activator binds to 13 sites in the gene cluster that are characterized by a conserved 16-base-pair sequence of partial dyad symmetry. One site is located between the divergently transcribed qa-1F and qa-1S regulatory genes, corroborating prior evidence that qa-1F is autoregulated and controls expression of the qa-1S repressor. Multiple upstream sites located at variable positions 5' to the qa structural genes appear to allow for greater transcriptional control by qa-1F. Full-length and truncated activator peptides were synthesized in vitro, and the DNA-binding domain was localized to the first 183 amino acids. A 28-amino acid sequence within this region shows striking homology to N-terminal sequences from other lower-eucaryotic activator proteins. A qa-1F(Ts) mutation is located within this putative DNA-binding domain.
Collapse
|
111
|
Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 3550430 DOI: 10.1128/mcb.7.3.1111] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactose or galactose induces the expression of the lactose-galactose regulon in Kluyveromyces lactis. We show here that the regulon is not induced in strains defective in LAC9. We demonstrate that this gene codes for a regulatory protein that acts in a positive manner to induce transcription. The LAC9 gene was isolated by complementation of a lac9 defective strain. DNA sequence analysis of the gene gave a deduced protein of 865 amino acids. Comparison of this sequence with that of the GAL4 protein of Saccharomyces cerevisiae revealed three regions of homology. One region of about 90 amino acid occurs at the amino terminus, which is known to mediate binding of GAL4 protein to upstream activator sequences. We speculate that a portion of this region, adjacent to the "metal-binding finger," specifies DNA binding. We discuss possible functions of the two other regions of homology. The functional implications of these structural similarities were examined. When LAC9 was introduced into a gal4 defective strain of S. cerevisiae it complemented the mutation and activated the galactose-melibiose regulon. However, LAC9 did not simply mimic GAL4. Unlike normal S. cerevisiae carrying GAL4, the strain carrying LAC9 gave constitutive expression of GAL1 and MEL1, two genes in the regulon. The strain did show glucose repression of the regulon, but repression was less severe with LAC9 than with GAL4. We discuss the implications of these results and how they may facilitate our understanding of the LAC9 and GAL4 regulatory proteins.
Collapse
|
112
|
Johnston M, Dover J. Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionarily conserved DNA binding domain. Proc Natl Acad Sci U S A 1987; 84:2401-5. [PMID: 3550810 PMCID: PMC304659 DOI: 10.1073/pnas.84.8.2401] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The protein encoded by the GAL4 gene of the yeast Saccharomyces cerevisiae binds to DNA upstream of several genes and activates transcription. To try to understand these processes, we have undertaken a genetic analysis of GAL4. Here we report that nearly all missense mutations in GAL4, selected in vivo to lack function of the protein, cluster in the small region of the gene that encodes the DNA binding domain. About half of these mutations alters a cysteine-rich region of the protein highly homologous to several eukaryotic DNA binding proteins; the other half alters some of the 20 amino acids adjacent to the cysteine-rich region. Nearly all of the missense mutations that alter the DNA binding domain abolish the DNA binding activity of GAL4 protein measured in vitro. In contrast, nearly all of the mutations that alter the 3' 95% of the gene that encodes the transcription activation function are nonsense or frameshift mutations. These results support the idea that the conserved cysteine-rich sequence motif is directly involved in binding of several eukaryotic transcriptional regulatory proteins to DNA.
Collapse
|
113
|
Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Res 1987; 15:2499-513. [PMID: 3031601 PMCID: PMC340665 DOI: 10.1093/nar/15.6.2499] [Citation(s) in RCA: 355] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A cDNA clone of rat uterus estrogen receptor (ER) has been isolated and sequenced. This clone contains a complete open reading frame encoding 600 amino acid residues which is 5 and 11 amino acids larger than the corresponding molecules of human and chicken, respectively. The molecular weight of this protein is calculated to be 67,029. When this clone was ligated to the pSV2 vector and transfected into COS7 cells, a protein was produced that had the same affinity to estrogen as rat uterus ER. This sequence shows 88% homology with human ER; 528 amino acids are identical and 14 amino acids are conservative substitutions. The comparison of rat, human and chicken ER sequences indicate the presence of three highly conserved regions suggesting that these regions play important roles in ER function. The putative DNA-binding domain is completely identical in rat, human and chicken. The C-terminal half region which is thought to be the estrogen binding domain is also highly conserved and is rich in hydrophobic amino acid residues. Southern blot analysis of genomic DNA with ER cDNA as a probe has shown that related sequences are present in the genome.
Collapse
|
114
|
Wray LV, Witte MM, Dickson RC, Riley MI. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:1111-21. [PMID: 3550430 PMCID: PMC365183 DOI: 10.1128/mcb.7.3.1111-1121.1987] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lactose or galactose induces the expression of the lactose-galactose regulon in Kluyveromyces lactis. We show here that the regulon is not induced in strains defective in LAC9. We demonstrate that this gene codes for a regulatory protein that acts in a positive manner to induce transcription. The LAC9 gene was isolated by complementation of a lac9 defective strain. DNA sequence analysis of the gene gave a deduced protein of 865 amino acids. Comparison of this sequence with that of the GAL4 protein of Saccharomyces cerevisiae revealed three regions of homology. One region of about 90 amino acid occurs at the amino terminus, which is known to mediate binding of GAL4 protein to upstream activator sequences. We speculate that a portion of this region, adjacent to the "metal-binding finger," specifies DNA binding. We discuss possible functions of the two other regions of homology. The functional implications of these structural similarities were examined. When LAC9 was introduced into a gal4 defective strain of S. cerevisiae it complemented the mutation and activated the galactose-melibiose regulon. However, LAC9 did not simply mimic GAL4. Unlike normal S. cerevisiae carrying GAL4, the strain carrying LAC9 gave constitutive expression of GAL1 and MEL1, two genes in the regulon. The strain did show glucose repression of the regulon, but repression was less severe with LAC9 than with GAL4. We discuss the implications of these results and how they may facilitate our understanding of the LAC9 and GAL4 regulatory proteins.
Collapse
|
115
|
Baum JA, Geever R, Giles NH. Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 1987; 7:1256-66. [PMID: 2951591 PMCID: PMC365200 DOI: 10.1128/mcb.7.3.1256-1266.1987] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The qa-1F regulatory gene of Neurospora crassa encodes an activator protein required for quinic acid induction of transcription in the qa gene cluster. This activator protein was expressed in insect cell culture with a baculovirus expression vector. The activator binds to 13 sites in the gene cluster that are characterized by a conserved 16-base-pair sequence of partial dyad symmetry. One site is located between the divergently transcribed qa-1F and qa-1S regulatory genes, corroborating prior evidence that qa-1F is autoregulated and controls expression of the qa-1S repressor. Multiple upstream sites located at variable positions 5' to the qa structural genes appear to allow for greater transcriptional control by qa-1F. Full-length and truncated activator peptides were synthesized in vitro, and the DNA-binding domain was localized to the first 183 amino acids. A 28-amino acid sequence within this region shows striking homology to N-terminal sequences from other lower-eucaryotic activator proteins. A qa-1F(Ts) mutation is located within this putative DNA-binding domain.
Collapse
|
116
|
Wingender E, Seifart KH. Transkription in Eukaryonten – die Rolle von Transkriptionskomplexen und ihren Komponenten. Angew Chem Int Ed Engl 1987. [DOI: 10.1002/ange.19870990307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
117
|
Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol Cell Biol 1987. [PMID: 3025612 DOI: 10.1128/mcb.6.11.3774] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the gcr mutation is known to have a profound effect on the levels of most glycolytic enzymes, reducing them to 5% of normal or less in growth on noncarbohydrates. Here I report the preparation of chromosomal gcr insertion and deletion mutations. The null mutations were recessive, were not lethal, and caused a pattern of glycolytic enzyme deficiency similar to that seen earlier for the gcr1-1 allele, including the partial inducibility by glucose of the residual enzyme activities. DNA sequence analysis showed that GCR1 encoded a protein of molecular weight 94,414, with a very low codon bias index, characteristic of several S. cerevisiae regulatory genes; adjacent 5' and 3' sequences contained elements suggesting that it was transcribed, polyadenylated, and translated. RNA gel transfer hybridization experiments with purified polyadenylated RNA and a probe complementary to the 5' portion of the open reading frame showed that Ger was expressed as a polyadenylated transcript. Together with previous work, the present results suggest that the Gcr product may be a transcriptional factor necessary specifically for the high-level transcription of a limited set of genes whose products, the enzymes of glycolysis, constitute a substantial fraction of cell proteins and are responsible for the primary metabolic flux in many cells.
Collapse
|
118
|
Geever RF, Baum JA, Case ME, Giles NH. Regulation of the QA gene cluster of Neurospora crassa. Antonie Van Leeuwenhoek 1987; 53:343-8. [PMID: 2961304 DOI: 10.1007/bf00400558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- R F Geever
- Department of Genetics, University of Georgia, Athens 30602
| | | | | | | |
Collapse
|
119
|
Cigan AM, Donahue TF. Sequence and structural features associated with translational initiator regions in yeast--a review. Gene X 1987; 59:1-18. [PMID: 3325335 DOI: 10.1016/0378-1119(87)90261-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have compared the translational initiator regions of 131 yeast genes. 95% utilize the first AUG from the 5' end of the message as the start codon for translation. Yeast leader regions in general are rich in adenine nucleotides (nt), have an average length of 52 nt, and are void of significant secondary structure. Sequences immediately adjacent to AUG start codons are preferred, however, the bias in nucleotide distribution (5'-A-YAA-UAAUGUCU-3') does not reflect a higher eukaryotic consensus (5'-CACCAUGG-3') with the exception of an adenine nucleotide preference at the -3 position. A minority of yeast mRNAs that contain AUG codons in the leader region that do not serve as the start codon for the primary gene product differ from the majority of mRNAs by one or more of these general properties. This analysis appears to indicate that basic features associated with yeast leader regions are consistent with a general mechanism of initiation of protein synthesis in eukaryotes, as proposed by the ribosomal 'scanning' model, but perhaps only basic features associated with ribosomal recognition of an AUG start codon are intact.
Collapse
Affiliation(s)
- A M Cigan
- Department of Molecular Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|
120
|
McClellan JA, Palecek E, Lilley DM. (A-T)n tracts embedded in random sequence DNA--formation of a structure which is chemically reactive and torsionally deformable. Nucleic Acids Res 1986; 14:9291-309. [PMID: 3797241 PMCID: PMC311959 DOI: 10.1093/nar/14.23.9291] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alternating d(A-T)n sequences which are contiguous with DNA of effectively random sequence have an abnormal conformation in linear DNA molecules. These regions are strongly reactive towards chemical modification by osmium tetroxide, and are preferentially cleaved by micrococcal nuclease. Both the chemical modification and the enzymic cutting occur uniformly through the alternating tract, and there is no evidence for enzyme or chemical sensitivity in the interfaces between the tract and DNA of normal conformation. These reactivities have a requirement for an alternating sequence. In addition to chemical reactivity, alternating (A-T)n sequences exhibit anomalously small twist changes on cruciform formation, suggesting that the pre-extruded DNA is underwound. We propose that the alternating sequences adopt an altered conformation which is subject to easy torsional deformation.
Collapse
|
121
|
Hartig A, Ruis H. Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:487-90. [PMID: 3536508 DOI: 10.1111/j.1432-1033.1986.tb10065.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A 2642-base-pair DNA fragment containing the catalase T (CTT1) structural gene of the yeast Saccharomyces cerevisiae and its flanking regions has been sequenced. The gene codes for a protein of 562 amino acids (relative molecular mass 64,449) and appears to contain no intron. The amino acid sequence of catalase T derived from the DNA sequence shows 40.7% homology (52.2% including conservative replacements) to that of bovine liver catalase. All amino acids previously postulated to participate directly in catalysis by liver catalase and most of the amino acids of the immediate environment of hemin, the prosthetic group of catalase, are conserved in catalase T. The data obtained indicate that the folding of polypeptide chains of the two catalases compared has been conserved within a central region consisting mainly of the beta-barrel domain, which bears the prosthetic group, and a major part of the "wrapping domain". N- and C-terminal regions involved in subunit interactions are less well conserved. It is suggested that their structure is more similar to that of the corresponding regions of Penicillium vitale catalase. However, catalase T lacks the C-terminal flavodoxin-like domain present in this protein.
Collapse
|
122
|
Baker HV. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol Cell Biol 1986; 6:3774-84. [PMID: 3025612 PMCID: PMC367138 DOI: 10.1128/mcb.6.11.3774-3784.1986] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, the gcr mutation is known to have a profound effect on the levels of most glycolytic enzymes, reducing them to 5% of normal or less in growth on noncarbohydrates. Here I report the preparation of chromosomal gcr insertion and deletion mutations. The null mutations were recessive, were not lethal, and caused a pattern of glycolytic enzyme deficiency similar to that seen earlier for the gcr1-1 allele, including the partial inducibility by glucose of the residual enzyme activities. DNA sequence analysis showed that GCR1 encoded a protein of molecular weight 94,414, with a very low codon bias index, characteristic of several S. cerevisiae regulatory genes; adjacent 5' and 3' sequences contained elements suggesting that it was transcribed, polyadenylated, and translated. RNA gel transfer hybridization experiments with purified polyadenylated RNA and a probe complementary to the 5' portion of the open reading frame showed that Ger was expressed as a polyadenylated transcript. Together with previous work, the present results suggest that the Gcr product may be a transcriptional factor necessary specifically for the high-level transcription of a limited set of genes whose products, the enzymes of glycolysis, constitute a substantial fraction of cell proteins and are responsible for the primary metabolic flux in many cells.
Collapse
|
123
|
Salmeron JM, Johnston SA. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. Nucleic Acids Res 1986; 14:7767-81. [PMID: 3022234 PMCID: PMC311795 DOI: 10.1093/nar/14.19.7767] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The galactose metabolism positive regulatory gene from Kluyveromyces lactis, LAC9, has been isolated through its ability to activate expression of galactose metabolism enzyme genes in Saccharomyces cerevisiae. The LAC9 gene also activates expression of the S. cerevisiae alpha-galactosidase (MEL1) and K. lactis beta-galactosidase (LAC4) genes in S. cerevisiae. Although LAC9-activated gene expression in K. lactis is not glucose repressed, activation of MEL1 gene expression by LAC9 in S. cerevisiae is. The LAC9 gene is expressed at an extremely low level as a approximately 2.9-kb mRNA, and encodes a protein of 865 amino acids. Although the LAC9 gene is functionally analogous to the S. cerevisiae GAL4 gene, the bulk of its protein sequence shows little homology to that of GAL4. Two of the three regions of homology that do exist, however, are restricted to areas of GAL4 protein already implicated in nuclear localization, DNA binding, and transcriptional activation.
Collapse
|
124
|
Jeltsch JM, Krozowski Z, Quirin-Stricker C, Gronemeyer H, Simpson RJ, Garnier JM, Krust A, Jacob F, Chambon P. Cloning of the chicken progesterone receptor. Proc Natl Acad Sci U S A 1986; 83:5424-8. [PMID: 2426697 PMCID: PMC386299 DOI: 10.1073/pnas.83.15.5424] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monospecific antibodies directed against the chicken progesterone receptor (PR) form B were used to screen a randomly primed phage lambda gt11 cDNA expression library prepared from size-fractionated chicken oviduct mRNA. Two independent immunoreactive clones, lambda cPR1 and lambda cPR2, were isolated. Antibodies selected from anti-PR form B antiserum on matrices of lambda cPR1 and lambda cPR2 fusion proteins detected two proteins on electrophoretic immunoblots of crude and purified PR preparations. These proteins had the same apparent molecular weights as did PR forms A and B crosslinked with the tritiated progestin R 5020. Thus, lambda cPR1 and lambda cPR2 fusion proteins contain epitopes present in both PR forms A and B. A cDNA clone, lambda cPR3, containing the inserts of both lambda cPR1 and lambda cPR2, was isolated from a randomly primed lambda gt10 oviduct cDNA library, indicating that both cDNA inserts were derived from the same oviduct mRNA. Additional evidence that these cDNAs correspond to PR mRNA was provided by sequencing the lambda cPR3 cDNA insert, since it was found to encode the sequence of three tryptic peptides prepared from purified PR form B. A fourth and a fifth cDNA clone, lambda cPR4 and lambda cPR5, were sequentially isolated from the same lambda gt10 cDNA library beginning with a probe derived from the 3' end of the lambda cPR3 insert. Partial DNA sequencing of lambda cPR4 and lambda cPR5 revealed the presence of a sequence coding for a cysteine-rich domain that is strikingly homologous to the amino acid sequences present in the putative DNA-binding domain of the human and chicken estrogen receptors, human glucocorticoid receptor, and v-erbA gene product of the avian erythroblastosis virus.
Collapse
|
125
|
Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 1986; 14:5125-43. [PMID: 3526280 PMCID: PMC311530 DOI: 10.1093/nar/14.13.5125] [Citation(s) in RCA: 859] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Codon usage data has been compiled for 110 yeast genes. Cluster analysis on relative synonymous codon usage revealed two distinct groups of genes. One group corresponds to highly expressed genes, and has much more extreme synonymous codon preference. The pattern of codon usage observed is consistent with that expected if a need to match abundant tRNAs, and intermediacy of tRNA-mRNA interaction energies are important selective constraints. Thus codon usage in the highly expressed group shows a higher correlation with tRNA abundance, a greater degree of third base pyrimidine bias, and a lesser tendency to the A+T richness which is characteristic of the yeast genome. The cluster analysis can be used to predict the likely level of gene expression of any gene, and identifies the pattern of codon usage likely to yield optimal gene expression in yeast.
Collapse
|
126
|
Messenguy F, Dubois E, Descamps F. Nucleotide sequence of the ARGRII regulatory gene and amino acid sequence homologies between ARGRII PPRI and GAL4 regulatory proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:77-81. [PMID: 3709534 DOI: 10.1111/j.1432-1033.1986.tb09640.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report here the DNA sequence of the ARGRII gene, one of the three regulatory genes involved in controlling the anabolism and catabolism of arginine in yeast. This gene encodes a protein of 880 amino acids with a deduced molecular mass of about 100 kDa. The ARGRII protein shows significant homology with two other regulatory proteins of yeast, PPRI and GAL4.
Collapse
|
127
|
Legrain M, De Wilde M, Hilger F. Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4. Nucleic Acids Res 1986; 14:3059-73. [PMID: 3008105 PMCID: PMC339721 DOI: 10.1093/nar/14.7.3059] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Saccharomyces cerevisiae PHO4 gene, which positively controls the expression of phosphatase genes, has been isolated by complementation of a pho4 mutation. The isolated DNA directed integration at the chromosomal PHO4 locus. The nucleotide sequence of PHO4 has a coding region of 930 nucleotides, flanked by sequences with typical transcription initiation and termination signals. The 5' region has characteristics of low-expression promoters and carries several uncommon elements, whose significance is not known. The predicted primary structure of the PHO4 protein, of 309 residues, does not show sequence elements typical of DNA-binding proteins. The transcription of PHO4 is independent of inorganic phosphate. Like other regulatory genes, PHO4 is transcribed at a very low level and the translation of its message uses preferentially several codons which are not employed for highly expressed genes.
Collapse
|
128
|
Hartshorne TA, Blumberg H, Young ET. Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA. Nature 1986; 320:283-7. [PMID: 3515197 DOI: 10.1038/320283a0] [Citation(s) in RCA: 191] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Classical yeast genetics coupled with the cloning of regulatory genes by complementation of function is a powerful means of identifying and isolating trans-acting regulatory elements. One such regulatory gene is ADR1 which encodes a protein required for transcriptional activation of the glucose-repressible alcohol dehydrogenase (ADH2) gene. We now report the nucleotide sequence of ADR1; it encodes a polypeptide chain of 1,323 amino acids, of which the amino-terminal 302 amino acids are sufficient to stimulate ADH2 transcription. This active amino-terminal region shows amino-acid sequence homology with the repetitive DNA-binding domain of TFIIIA, an RNA polymerase III transcription factor of Xenopus laevis. Similar domains are found in proteins encoded at the Krüppel and Serendipity loci of Drosophila melanogaster. We discuss the implications of this structural homology and suggest that a similar domain may exist in other yeast regulatory proteins such as those encoded by GAL4 (ref. 13) and PPR1 (ref.14).
Collapse
|
129
|
Abstract
Transcription of the two unlinked structural genes URA1 and URA3 of Saccharomyces cerevisiae is positively regulated by the gene product PPR1. We have used S1 digestion and primer extension mapping to investigate the RNAs produced in different genetic backgrounds: wild-type, ppr1 deletion mutants, constitutively induced and non-inducible ppr1 mutants. Results show that each structural gene specifies multiple messenger RNA classes with different 5'-terminal sequences. The basal level of these transcripts does not require a functional PPR1 gene. Induction of URA1 results from an even increase of the level of synthesis of all the transcripts in contrast to that of URA3 which is effected by selectively increasing the levels of synthesis of one subset of transcripts. The PPR1-mediated control was also studied in the foreign genetic background of Schizosaccharomyces pombe using autonomously replicating hybrid plasmids carrying the gene URA1 or URA3 along with the regulatory gene PPR1, either in a constitutive or non-inducible allelic form. The 5' ends of the transcripts URA1 and URA3 made in S. pombe map upstream from the initiation sites used in S. cerevisiae. In contrast to S. cerevisiae, in S. pombe the URA3 but not URA1 transcripts respond to the PPR1-induction. We have identified a minimal control region for the PPR1-specific induction of URA1, that includes sequences located between the T-A-T-A box and the translation start codon. This region contains sequence features in common with URA3. There is an extensive alternating Pu:Py region including the T-A-T-A box of both promoters and an eight base-pair exact homology; further downstream, there is another 11 base-pair highly conserved sequence which either overlaps or lies in close proximity to the unregulated start sites of URA1 in S. pombe and of URA3 in S. cerevisiae. A positive regulatory model taking into accounts all these observations is presented.
Collapse
|
130
|
Séraphin B, Simon M, Faye G. Primary structure of a gene for subunit V of the cytochrome c oxidase from Saccharomyces cerevisiae. Curr Genet 1985; 9:435-9. [PMID: 2836092 DOI: 10.1007/bf00434047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have isolated a gene coding for cytochrome c oxidase subunit V by genetic complementation in yeast. This protein is made as a 153 amino acid long precursor; its amino-terminal extension of 20 amino acids contains four basic residues and no acidic one, a feature common to most pre-sequences of imported mitochondrial proteins.
Collapse
Affiliation(s)
- B Séraphin
- Institut Curie, Section de Biologie, Orsay, France
| | | | | |
Collapse
|
131
|
Liljelund P, Losson R, Kammerer B, Lacroute F. Yeast regulatory gene PPR1. II. Chromosomal localization, meiotic map, suppressibility, dominance/recessivity and dosage effect. J Mol Biol 1984; 180:251-65. [PMID: 6096562 DOI: 10.1016/s0022-2836(84)80003-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Saccharomyces cerevisiae gene PPR1 encodes a positive regulator of the expression of the two unlinked structural genes URA1 and URA3. The gene has been mapped to a position 6.5 cM from the centromere of chromosome XII. Uninducible alleles have been selected and used to establish a meiotic map. Suppressible alleles have been identified. The sequencing of a suppressible allele confirms the nonsense nature of the mutation as well as the reading frame deduced from the nucleotide sequence. No evidence of intracistronic complementation was found, and enzymatic analysis of leaky mutants did not reveal any mutations dissociating regulation of URA1 from that of URA3. Three in vitro-constructed deletions of PPR1 have been integrated at the chromosomal locus, giving strains with a completely negative phenotype. These deletion mutants display the wild-type basal level of URA1 and URA3 expression and show a semi-dominant phenotype in heteroallelic ppr1+/ppr1-delta diploids. Amplifying PPR1 by introduction into yeast on a multicopy vector increases the induction factor of URA1 and URA3 expression. These results show that the extent of regulation of the two structural genes is dependent on the concentration of the active PPR1 protein.
Collapse
|