101
|
Zweitzig DR, Riccardello NM, Sodowich BI, O’Hara SM. Characterization of a novel DNA polymerase activity assay enabling sensitive, quantitative and universal detection of viable microbes. Nucleic Acids Res 2012; 40:e109. [PMID: 22495933 PMCID: PMC3413125 DOI: 10.1093/nar/gks316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022] Open
Abstract
During the past 50 years, in vitro measurement of DNA polymerase activity has become an essential molecular biology tool. Traditional methods used to measure DNA polymerase activity in vitro are undesirable due to the usage of radionucleotides. Fluorescence-based DNA polymerase assays have been developed; however, they also suffer from various limitations. Herein we present a rapid, highly sensitive and quantitative assay capable of measuring DNA polymerase extension activity from purified enzymes or directly from microbial lysates. When tested with purified DNA polymerase, the assay detected as little as 2 × 10(-11)U of enzyme (∼ 50 molecules), while demonstrating excellent linearity (R(2)=0.992). The assay was also able to detect endogenous DNA polymerase extension activity down to less than 10 colony forming units (cfu) of input Gram-positive or Gram-negative bacteria when coupled to bead mill lysis while maintaining an R(2)=0.999. Furthermore, preliminary evidence presented here suggests that DNA polymerase extension activity is an indicator of microbial viability, as demonstrated by the reproducibly strong concordance between assay signal and bacterial colony formation. Together, the innovative methodology described here represents a significant advancement toward sensitive detection of potentially any microorganism containing active DNA polymerase within a given sample matrix.
Collapse
Affiliation(s)
| | | | | | - S. Mark O’Hara
- ZEUS Scientific Incorporated, Research and Development, 200 Evans Way, Branchburg, NJ 08876, USA
| |
Collapse
|
102
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
103
|
Abstract
DNA synthesis has been extensively studied, but the chemical reaction itself has not been visualized. Here we follow the course of phosphodiester bond formation using time-resolved X-ray crystallography. Native human DNA polymerase η, DNA and dATP were co-crystallized at pH 6.0 without Mg(2+). The polymerization reaction was initiated by exposing crystals to 1 mM Mg(2+) at pH 7.0, and stopped by freezing at desired time points for structural analysis. The substrates and two Mg(2+) ions are aligned within 40 s, but the bond formation is not evident until 80 s. From 80 to 300 s structures show a mixture of decreasing substrate and increasing product of the nucleotidyl-transfer reaction. Transient electron densities indicate that deprotonation and an accompanying C2'-endo to C3'-endo conversion of the nucleophile 3'-OH are rate limiting. A third Mg(2+) ion, which arrives with the new bond and stabilizes the intermediate state, may be an unappreciated feature of the two-metal-ion mechanism.
Collapse
|
104
|
Miropolskaya N, Nikiforov V, Klimasauskas S, Artsimovitch I, Kulbachinskiy A. Modulation of RNA polymerase activity through the trigger loop folding. Transcription 2012; 1:89-94. [PMID: 21326898 DOI: 10.4161/trns.1.2.12544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/19/2022] Open
Abstract
Folding of the trigger loop of RNA polymerase promotes nucleotide addition through creating a closed, catalytically competent conformation of the active center. Here, we discuss the impact of adjacent RNA polymerase elements, including the F loop and the jaw domain, as well as external regulatory factors on the trigger loop folding and catalysis.
Collapse
|
105
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
106
|
Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer TJ, Ordoukhanian P, Romesberg FE, Marx A. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat Chem Biol 2012; 8:612-4. [PMID: 22660438 PMCID: PMC3690913 DOI: 10.1038/nchembio.966] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023]
Abstract
Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
Collapse
Affiliation(s)
- Karin Betz
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 2012; 10:34. [PMID: 22520345 PMCID: PMC3331839 DOI: 10.1186/1741-7007-10-34] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
108
|
Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res 2012; 40:5511-22. [PMID: 22406830 PMCID: PMC3384344 DOI: 10.1093/nar/gks229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
109
|
Abstract
Viral polymerases play a central role in viral genome replication and transcription. Based on the genome type and the specific needs of particular virus, RNA-dependent RNA polymerase, RNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and DNA-dependent RNA polymerases are found in various viruses. Viral polymerases are generally active as a single protein capable of carrying out multiple functions related to viral genome synthesis. Specifically, viral polymerases use variety of mechanisms to recognize initial binding sites, ensure processive elongation, terminate replication at the end of the genome, and also coordinate the chemical steps of nucleic acid synthesis with other enzymatic activities. This review focuses on different viral genome replication and transcription strategies, and the polymerase interactions with various viral proteins that are necessary to complete genome synthesis.
Collapse
Affiliation(s)
- Kyung H Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
110
|
Human DNA polymerase η is pre-aligned for dNTP binding and catalysis. J Mol Biol 2011; 415:627-34. [PMID: 22154937 DOI: 10.1016/j.jmb.2011.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/23/2022]
Abstract
Pre-steady-state kinetic studies on Y-family DNA polymerase η (Polη) have suggested that the polymerase undergoes a rate-limiting conformational change step before the phosphoryl transfer of the incoming nucleotide to the primer terminus. However, the nature of this rate-limiting conformational change step has been unclear, due in part to the lack of structural information on the Polη binary complex. We present here for the first time a crystal structure of human Polη (hPolη) in binary complex with its DNA substrate. We show that the hPolη domains move only slightly on dNTP binding and that the polymerase by and large is pre-aligned for dNTP binding and catalysis. We also show that there is no major reorientation of the DNA from a nonproductive to a productive configuration and that the active site is devoid of metals in the absence of dNTP. Together, these observations lead us to suggest that the rate-limiting conformational change step in the Polη replication cycle likely corresponds to a rate-limiting entry of catalytic metals in the active site.
Collapse
|
111
|
Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc Natl Acad Sci U S A 2011; 108:17644-8. [PMID: 22006298 DOI: 10.1073/pnas.1114496108] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C • A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.
Collapse
|
112
|
Aggarwal S, Dewhurst S, Takimoto T, Kim B. Biochemical impact of the host adaptation-associated PB2 E627K mutation on the temperature-dependent RNA synthesis kinetics of influenza A virus polymerase complex. J Biol Chem 2011; 286:34504-13. [PMID: 21816827 DOI: 10.1074/jbc.m111.262048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most avian influenza A viruses, which preferentially replicate at the high temperatures found in the digestive tract of birds, have a glutamic acid at residue 627 of the viral RNA polymerase PB2 subunit (Glu-627), whereas the human viruses, which optimally replicate at the low temperatures observed in the human respiratory tract, have a lysine (Lys-627). The mechanism of action for this mutation is still not understood, although interaction with host factors has been proposed to play a major role. In this study, we explored an alternative, yet related, hypothesis that this PB2 mutation may alter the temperature-dependent enzymatic polymerase activity of the viral polymerase. First, the avian polymerase protein, which was purified from baculovirus expression system, indeed remained significantly active at higher temperatures (i.e. 37 and 42 °C), whereas the human E627K mutant drastically lost activity at these high temperatures. Second, our steady-state kinetics data revealed that the human E627K mutant polymerase is catalytically more active than the avian Glu-627 polymerase at 34 °C. Importantly, the E627K mutation elevates apparent K(cat) at low temperatures with little effect on K(m), suggesting that the E627K mutation alters the biochemical steps involved in enzyme catalysis rather than the interaction with the incoming NTP. Third, this temperature-dependent kinetic impact of the human E627K mutation was also observed with different RNA templates, with different primers and also in the presence of nucleoprotein. In conclusion, our study suggests that the amino acid sequence variations at residue 627 of PB2 subunit can directly alter the enzyme kinetics of influenza polymerase.
Collapse
Affiliation(s)
- Shilpa Aggarwal
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
113
|
Choi JY, Eoff RL, Pence MG, Wang J, Martin MV, Kim EJ, Folkmann LM, Guengerich FP. Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication. J Biol Chem 2011; 286:31180-93. [PMID: 21784862 DOI: 10.1074/jbc.m111.258038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hyperthermophilic crenarchaeon Sulfolobus solfataricus P2 encodes three B-family DNA polymerase genes, B1 (Dpo1), B2 (Dpo2), and B3 (Dpo3), and one Y-family DNA polymerase gene, Dpo4, which are related to eukaryotic counterparts. Both mRNAs and proteins of all four DNA polymerases were constitutively expressed in all growth phases. Dpo2 and Dpo3 possessed very low DNA polymerase and 3' to 5' exonuclease activities in vitro. Steady-state kinetic efficiencies (k(cat)/K(m)) for correct nucleotide insertion by Dpo2 and Dpo3 were several orders of magnitude less than Dpo1 and Dpo4. Both the accessory proteins proliferating cell nuclear antigen and the clamp loader replication factor C facilitated DNA synthesis with Dpo3, as with Dpo1 and Dpo4, but very weakly with Dpo2. DNA synthesis by Dpo2 and Dpo3 was remarkably decreased by single-stranded binding protein, in contrast to Dpo1 and Dpo4. DNA synthesis in the presence of proliferating cell nuclear antigen, replication factor C, and single-stranded binding protein was most processive with Dpo1, whereas DNA lesion bypass was most effective with Dpo4. Both Dpo2 and Dpo3, but not Dpo1, bypassed hypoxanthine and 8-oxoguanine. Dpo2 and Dpo3 bypassed uracil and cis-syn cyclobutane thymine dimer, respectively. High concentrations of Dpo2 or Dpo3 did not attenuate DNA synthesis by Dpo1 or Dpo4. We conclude that Dpo2 and Dpo3 are much less functional and more thermolabile than Dpo1 and Dpo4 in vitro but have bypass activities across hypoxanthine, 8-oxoguanine, and either uracil or cis-syn cyclobutane thymine dimer, suggesting their catalytically limited roles in translesion DNA synthesis past deaminated, oxidized base lesions and/or UV-induced damage.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Role of high-fidelity Escherichia coli DNA polymerase I in replication bypass of a deoxyadenosine DNA-peptide cross-link. J Bacteriol 2011; 193:3815-21. [PMID: 21622737 DOI: 10.1128/jb.01550-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N⁶-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N⁶-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N⁶-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N⁶-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N⁶-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions.
Collapse
|
115
|
Garalde DR, Simon CA, Dahl JM, Wang H, Akeson M, Lieberman KR. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection. J Biol Chem 2011; 286:14480-92. [PMID: 21362617 DOI: 10.1074/jbc.m111.218750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.
Collapse
Affiliation(s)
- Daniel R Garalde
- Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
116
|
Mechanism of replication blocking and bypass of Y-family polymerase {eta} by bulky acetylaminofluorene DNA adducts. Proc Natl Acad Sci U S A 2010; 107:20720-5. [PMID: 21076032 DOI: 10.1073/pnas.1008894107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterocyclic aromatic amines produce bulky C8 guanine lesions in vivo, which interfere and disrupt DNA and RNA synthesis. These lesions are consequently strong replication blocks. In addition bulky adducts give rise to point and frameshift mutations. The translesion synthesis (TLS) DNA polymerase η is able to bypass slowly C8 bulky adduct lesions such as the widely studied 2-aminofluorene-dG and its acetylated analogue mainly in an error-free manner. Replicative polymerases are in contrast fully blocked by the acetylated lesion. Here, we show that TLS efficiency of Pol η depends critically on the size of the bulky adduct forming the lesion. Based on the crystal structure, we show why the bypass reaction is so difficult and we provide a model for the bypass reaction. In our model, TLS is accomplished without rotation of the lesion into the anti conformation as previously thought.
Collapse
|
117
|
Olasagasti F, Lieberman KR, Benner S, Cherf GM, Dahl JM, Deamer DW, Akeson M. Replication of individual DNA molecules under electronic control using a protein nanopore. NATURE NANOTECHNOLOGY 2010; 5:798-806. [PMID: 20871614 PMCID: PMC3711841 DOI: 10.1038/nnano.2010.177] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/04/2010] [Indexed: 05/20/2023]
Abstract
Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.
Collapse
Affiliation(s)
- Felix Olasagasti
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Kate R. Lieberman
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Seico Benner
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Gerald M. Cherf
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Joseph M. Dahl
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - David W. Deamer
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
| | - Mark Akeson
- Department of Biomolecular Engineering Baskin School of Engineering MS SOE2 University of California Santa Cruz, CA 95064
- Correspondence and requests for materials should be addressed to [MA].
| |
Collapse
|
118
|
Holzberger B, Marx A. Replacing 32 Proline Residues by a Noncanonical Amino Acid Results in a Highly Active DNA Polymerase. J Am Chem Soc 2010; 132:15708-13. [DOI: 10.1021/ja106525y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bastian Holzberger
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraβe 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraβe 10, 78457 Konstanz, Germany
| |
Collapse
|
119
|
Chandani S, Jacobs C, Loechler EL. Architecture of y-family DNA polymerases relevant to translesion DNA synthesis as revealed in structural and molecular modeling studies. J Nucleic Acids 2010; 2010. [PMID: 20936174 PMCID: PMC2945684 DOI: 10.4061/2010/784081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/26/2010] [Indexed: 12/22/2022] Open
Abstract
DNA adducts, which block replicative DNA polymerases (DNAPs), are often bypassed by lesion-bypass DNAPs, which are mostly in the Y-Family. Y-Family DNAPs can do non-mutagenic or mutagenic dNTP insertion, and understanding this difference is important, because mutations transform normal into tumorigenic cells. Y-Family DNAP architecture that dictates mechanism, as revealed in structural and modeling studies, is considered. Steps from adduct blockage of replicative DNAPs, to bypass by a lesion-bypass DNAP, to resumption of synthesis by a replicative DNAP are described. Catalytic steps and protein conformational changes are considered. One adduct is analyzed in greater detail: the major benzo[a]pyrene adduct (B[a]P-N2-dG), which is bypassed non-mutagenically (dCTP insertion) by Y-family DNAPs in the IV/κ-class and mutagenically (dATP insertion) by V/η-class Y-Family DNAPs. Important architectural differences between IV/κ-class versus V/η-class DNAPs are discussed, including insights gained by analyzing ~400 sequences each for bacterial DNAPs IV and V, along with sequences from eukaryotic DNAPs kappa, eta and iota. The little finger domains of Y-Family DNAPs do not show sequence conservation; however, their structures are remarkably similar due to the presence of a core of hydrophobic amino acids, whose exact identity is less important than the hydrophobic amino acid spacing.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
120
|
Dieckman LM, Johnson RE, Prakash S, Washington MT. Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. Biochemistry 2010; 49:7344-50. [PMID: 20666462 DOI: 10.1021/bi100556m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic DNA polymerase delta (pol delta) is a member of the B family of polymerases and synthesizes most of the lagging strand during DNA replication. Yeast pol delta is a heterotrimer comprised of three subunits: the catalytic subunit (Pol3) and two accessory subunits (Pol31 and Pol32). Although pol delta is one of the major eukaryotic replicative polymerase, the mechanism by which it incorporates nucleotides is unknown. Here we report both steady state and pre-steady state kinetic studies of the fidelity of pol delta. We found that pol delta incorporates nucleotides with an error frequency of 10(-4) to 10(-5). Furthermore, we showed that for correct versus incorrect nucleotide incorporation, there are significant differences between both pre-steady state kinetic parameters (apparent K(d)(dNTP) and k(pol)). Somewhat surprisingly, we found that pol delta synthesizes DNA at a slow rate with a k(pol) of approximately 1 s(-1). We suggest that, unlike its prokaryotic counterparts, pol delta requires replication accessory factors like proliferating cell nuclear antigen to achieve rapid rates of nucleotide incorporation.
Collapse
Affiliation(s)
- Lynne M Dieckman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
121
|
Venkatramani R, Radhakrishnan R. Computational delineation of the catalytic step of a high-fidelity DNA polymerase. Protein Sci 2010; 19:815-25. [PMID: 20162624 DOI: 10.1002/pro.361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Bacillus fragment, belonging to a class of high-fidelity polymerases, demonstrates high processivity (adding approximately 115 bases per DNA binding event) and exceptional accuracy (1 error in 10(6) nucleotide incorporations) during DNA replication. We present analysis of structural rearrangements and energetics just before and during the chemical step (phosphodiester bond formation) using a combination of classical molecular dynamics, mixed quantum mechanics molecular mechanics simulations, and free energy computations. We find that the reaction is associative, proceeding via the two-metal-ion mechanism, and requiring the proton on the terminal primer O3' to transfer to the pyrophosphate tail of the incoming nucleotide before the formation of the pentacovalent transition state. Different protonation states for key active site residues direct the system to alternative pathways of catalysis and we estimate a free energy barrier of approximately 12 kcal/mol for the chemical step. We propose that the protonation of a highly conserved catalytic aspartic acid residue is essential for the high processivity demonstrated by the enzyme and suggest that global motions could be part of the reaction free energy landscape.
Collapse
|
122
|
|
123
|
Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 2010; 465:1039-43. [PMID: 20577207 DOI: 10.1038/nature09104] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/19/2010] [Indexed: 11/09/2022]
Abstract
DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.
Collapse
|
124
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
125
|
Primer-independent initiation of RNA synthesis by SeMV recombinant RNA-dependent RNA polymerase. Virology 2010; 401:280-92. [DOI: 10.1016/j.virol.2010.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
|
126
|
Monsees GM, Kraft P, Chanock SJ, Hunter DJ, Han J. Comprehensive screen of genetic variation in DNA repair pathway genes and postmenopausal breast cancer risk. Breast Cancer Res Treat 2010; 125:207-14. [PMID: 20496165 DOI: 10.1007/s10549-010-0947-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
Mistakes in DNA repair can result in sustained damage and genetic instability. We comprehensively evaluated common variants in DNA repair pathway genes for their association with postmenopausal breast cancer risk with and without respect to estrogen receptor (ER) and progesterone receptor (PR) subtypes. In this study of 1,145 prospectively ascertained breast cancer cases and 1,142 matched controls from the Nurses' Health Study Cancer Genetic Markers of Susceptibility project, we evaluated 1,314 common genetic variants in 68 candidate genes. These variants were chosen to represent five DNA repair pathways including base excision repair, nucleotide excision repair, double-strand break repair (homologous recombination and non-homologous end-joining), direct reversal repair, and mismatch repair, along with candidate DNA polymerases, Fanconi Anemia complementation groups, and other genes relevant to DNA damage recognition and response. Main effects, pathway effects, and pair-wise interactions were evaluated using Logistic Regression, and the Admixture Maximum Likelihood (AML) and Kernel Machine tests. Eight linked loci within XRCC4 were associated with susceptibility to PR- breast cancer (main effect p-values corrected for multiple testing at the within-gene level < 0.04). These loci drove the association between the non-homologous end-joining pathway, and PR- breast cancer (AML p-value for the full pathway = 0.002; p-value when the eight loci were removed = 0.86). A Kernel machine test of no linear or quadratic effects, or pairwise interaction, yielded a p-value of 0.85. Common variation alone in DNA repair genes plays at most a small role in determining postmenopausal breast cancer risk among women of European ancestry.
Collapse
Affiliation(s)
- Genevieve M Monsees
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
127
|
Rucker R, Oelschlaeger P, Warshel A. A binding free energy decomposition approach for accurate calculations of the fidelity of DNA polymerases. Proteins 2010; 78:671-80. [PMID: 19842163 DOI: 10.1002/prot.22596] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DNA polymerase beta (pol beta) is a small eukaryotic enzyme with the ability to repair short single-stranded DNA gaps that has found use as a model system for larger replicative DNA polymerases. For all DNA polymerases, the factors determining their catalytic power and fidelity are the interactions between the bases of the base pair, amino acids near the active site, and the two magnesium ions. In this report, we study effects of all three aspects on human pol beta transition state (TS) binding free energies by reproducing a consistent set of experimentally determined data for different structures. Our calculations comprise the combination of four different base pairs (incoming pyrimidine nucleotides incorporated opposite both matched and mismatched purines) with four different pol beta structures (wild type and three mutants). We generate three fragments of the incoming deoxynucleoside 5'-triphosphate-TS and run separate calculations for the neutral base part and the highly charged triphosphate part, using different dielectric constants in order to account for the specific dielectric response. This new approach improves our ability to predict the effect of matched and mismatched base pairing and of mutations in DNA polymerases on fidelity and may be a useful tool in studying the potential of DNA polymerase mutations in the development of cancer. It also supports our point of view with regards to the origin of the structural control of fidelity, allowing for a quantified description of the fidelity of DNA polymerases.
Collapse
Affiliation(s)
- Robert Rucker
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
128
|
Johansson E, Macneill SA. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 2010; 35:339-47. [PMID: 20163964 DOI: 10.1016/j.tibs.2010.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
Abstract
Three multi-subunit DNA polymerase enzymes lie at the heart of the chromosome replication machinery in the eukaryotic cell nucleus. Through a combination of genetic, molecular biological and biochemical analysis, significant advances have been made in understanding the essential roles played by each of these enzymes at the replication fork. Until very recently, however, little information was available on their three-dimensional structures. Lately, a series of crystallographic and electron microscopic studies has been published, allowing the structures of the complexes and their constituent subunits to be visualised in detail for the first time. Taken together, these studies provide significant insights into the molecular makeup of the replication machinery in eukaryotic cells and highlight a number of key areas for future investigation.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
129
|
Golosov AA, Warren JJ, Beese LS, Karplus M. The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis. Structure 2010; 18:83-93. [PMID: 20152155 PMCID: PMC3325112 DOI: 10.1016/j.str.2009.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/20/2009] [Accepted: 10/22/2009] [Indexed: 11/17/2022]
Abstract
High-fidelity DNA polymerases copy DNA rapidly and accurately by adding correct deoxynucleotide triphosphates to a growing primer strand of DNA. Following nucleotide incorporation, a series of conformational changes translocate the DNA substrate by one base pair step, readying the polymerase for the next round of incorporation. Molecular dynamics simulations indicate that the translocation consists globally of a polymerase fingers-opening transition, followed by the DNA displacement and the insertion of the template base into the preinsertion site. They also show that the pyrophosphate release facilitates the opening transition and that the universally conserved Y714 plays a key role in coupling polymerase opening to DNA translocation. The transition involves several metastable intermediates in one of which the O helix is bent in the vicinity of G711. Completion of the translocation appears to require a gating motion of the O1 helix, perhaps facilitated by the presence of G715. These roles are consistent with the high level of conservation of Y714 and the two glycine residues at these positions. It is likely that a corresponding mechanism is applicable to other polymerases.
Collapse
Affiliation(s)
- Andrei A Golosov
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
130
|
Mondon P, Grand D, Souyris N, Emond S, Bouayadi K, Kharrat H. Mutagen: a random mutagenesis method providing a complementary diversity generated by human error-prone DNA polymerases. Methods Mol Biol 2010; 634:373-86. [PMID: 20676997 DOI: 10.1007/978-1-60761-652-8_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Random mutagenesis is one of the most effective methodologies to generate variant libraries for directed protein evolution. Indeed, this approach requires no structural or mechanistic information and can uncover unexpected beneficial mutations. Here, we describe a new random mutagenesis method based on the use of human error-prone DNA polymerases (pol beta, pol eta and pol iota). This approach allows the random introduction of mutations through a single replication step followed by a selective PCR amplification of the replicated mutated sequences. The libraries generated using this methodology display different mutation rates and complementary mutational spectra. By taking advantage of the mutation bias of naturally highly error-prone DNA polymerases, MutaGen thus appears as a very useful tool for gene and protein randomization.
Collapse
Affiliation(s)
- Philippe Mondon
- Antibody Engineering and Molecular Evolution Department, MilleGen SA, Labège, France.
| | | | | | | | | | | |
Collapse
|
131
|
Heyes DJ, Levy C, Lafite P, Roberts IS, Goldrick M, Stachulski AV, Rossington SB, Stanford D, Rigby SEJ, Scrutton NS, Leys D. Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. J Biol Chem 2009; 284:35514-23. [PMID: 19815542 PMCID: PMC2790981 DOI: 10.1074/jbc.m109.056630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/24/2009] [Indexed: 11/06/2022] Open
Abstract
The enzyme CMP-Kdo synthetase (KdsB) catalyzes the addition of 2-keto-3-deoxymanno-octulonic acid (Kdo) to CTP to form CMP-Kdo, a key reaction in the biosynthesis of lipopolysaccharide. The reaction catalyzed by KdsB and the related CMP-acylneuraminate synthase is unique among the sugar-activating enzymes in that the respective sugars are directly coupled to a cytosine monophosphate. Using inhibition studies, in combination with isothermal calorimetry, we show the substrate analogue 2beta-deoxy-Kdo to be a potent competitive inhibitor. The ligand-free Escherichia coli KdsB and ternary complex KdsB-CTP-2beta-deoxy-Kdo crystal structures reveal that Kdo binding leads to active site closure and repositioning of the CTP phosphates and associated Mg(2+) ion (Mg-B). Both ligands occupy conformations compatible with an S(n)2-type attack on the alpha-phosphate by the Kdo 2-hydroxyl group. Based on strong similarity with DNA/RNA polymerases, both in terms of overall chemistry catalyzed as well as active site configuration, we postulate a second Mg(2+) ion (Mg-A) is bound by the catalytically competent KdsB-CTP-Kdo ternary complex. Modeling of this complex reveals the Mg-A coordinated to the conserved Asp(100) and Asp(235) in addition to the CTP alpha-phosphate and both the Kdo carboxylic and 2-hydroxyl groups. EPR measurements on the Mn(2+)-substituted ternary complex support this model. We propose the KdsB/CNS sugar-activating enzymes catalyze the formation of activated sugars, such as the abundant CMP-5-N-acetylneuraminic acid, by recruitment of two Mg(2+) to the active site. Although each metal ion assists in correct positioning of the substrates and activation of the alpha-phosphate, Mg-A is responsible for activation of the sugar-hydroxyl group.
Collapse
Affiliation(s)
- Derren J. Heyes
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Colin Levy
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Pierre Lafite
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Ian S. Roberts
- the Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester M13 9PT, and
| | - Marie Goldrick
- the Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester M13 9PT, and
| | - Andrew V. Stachulski
- the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Steven B. Rossington
- the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Deborah Stanford
- the Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester M13 9PT, and
| | - Stephen E. J. Rigby
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - Nigel S. Scrutton
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| | - David Leys
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN
| |
Collapse
|
132
|
Jain R, Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Replication across template T/U by human DNA polymerase-iota. Structure 2009; 17:974-80. [PMID: 19604477 DOI: 10.1016/j.str.2009.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/21/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
Human DNA polymerase-iota (Poliota) incorporates correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. In fact, the fidelity opposite template T is so poor that Poliota inserts an incorrect dGTP approximately 10 times better than it inserts the correct dATP. We determine here how a template T/U is accommodated in the Poliota active site and why a G is incorporated more efficiently than an A. We show that in the absence of incoming dATP or dGTP (binary complex), template T/U exists in both syn and anti conformations, but in the presence of dATP or dGTP (ternary complexes), template T/U is predominantly in the anti conformation. We also show that dATP and dGTP insert differently opposite template T/U, and that the basis of selection of dGTP over dATP is a hydrogen bond between the N2 amino group of dGTP and Gln59 of Poliota.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
133
|
Streckenbach F, Rangam G, Möller HM, Marx A. Steric constraints dependent on nucleobase pair orientation vary in different DNA polymerase active sites. Chembiochem 2009; 10:1630-3. [PMID: 19544344 DOI: 10.1002/cbic.200900123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Finding the right fit: Herein, we report on the development of novel steric probes and present initial insights into their interplay with DNA polymerases. Our findings provide experimental evidence for varied enzyme-substrate interactions that might account for the varied selectivity previously observed.
Collapse
Affiliation(s)
- Frank Streckenbach
- Department of Chemistry, and Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | | | | | | |
Collapse
|
134
|
Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 2009; 16:979-86. [PMID: 19718023 PMCID: PMC3055789 DOI: 10.1038/nsmb.1663] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/21/2009] [Indexed: 11/11/2022]
Abstract
DNA polymerase δ (Polδ) is a high fidelity polymerase that plays a central role in replication from yeast to humans. We present here the crystal structure of the catalytic subunit of yeast Polδ in ternary complex with a template-primer and an incoming nucleotide. The structure, determined at 2.0Å resolution, catches the enzyme in the act of replication. The structure reveals how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the “sensing” interactions near the primer terminus that signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of mutations in Polδ̣ that cause cancers.
Collapse
Affiliation(s)
- Michael K Swan
- Department of Structural & Chemical Biology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
135
|
Seo KY, Yin J, Donthamsetti P, Chandani S, Lee CH, Loechler EL. Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli. J Mol Biol 2009; 392:270-82. [PMID: 19607844 DOI: 10.1016/j.jmb.2009.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022]
Abstract
Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ta]-B[a]P-N(2)-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ta]-B[a]P-N(2)-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the "roof-amino acid" (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ta]-B[a]P-N(2)-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose beta-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP eta (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP kappa (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/eta class to the IV/kappa class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.
Collapse
Affiliation(s)
- Kwang Young Seo
- Biology Department, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
136
|
Gyarfas B, Olasagasti F, Benner S, Garalde D, Lieberman KR, Akeson M. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution. ACS NANO 2009; 3:1457-1466. [PMID: 19489560 DOI: 10.1021/nn900303g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA polymerases are molecular motors that catalyze template-dependent DNA replication, advancing along template DNA by one nucleotide with each catalytic cycle. Nanopore-based measurements have emerged as a single molecule technique for the study of these enzymes. Using the alpha-hemolysin nanopore, we determined the position of DNA templates bearing inserts of abasic (1',2'-dideoxy) residues, bound to the Klenow fragment of Escherichia coli DNA polymerase I (KF) or to bacteriophage T7 DNA polymerase. Hundreds of individual polymerase complexes were analyzed at 5 A precision within minutes. We generated a map of current amplitudes for DNA-KF-deoxynucleoside triphosphate (dNTP) ternary complexes, using a series of templates bearing blocks of three abasic residues that were displaced by approximately 5 A in the nanopore lumen. Plotted as a function of the distance of the abasic insert from n = 0 in the active site of the enzyme held atop the pore, this map has a single peak. The map is similar when the primer length, the DNA sequences flanking the abasic insert, and the DNA sequences in the vicinity of the KF active site are varied. Primer extension catalyzed by KF using a three abasic template in the presence of a mixture of dNTPs and 2',3'-dideoxynucleoside triphosphates resulted in a ladder of ternary complexes with discrete amplitudes that closely corresponded to this map. An ionic current map measured in the presence of 0.15 M KCl mirrored the map obtained with 0.3 M KCl, permitting experiments with a broader range of mesophilic DNA and RNA processing enzymes. We used the abasic templates to show that capture of complexes with the KF homologue, T7 DNA polymerase, yields an amplitude map nearly indistinguishable from the KF map.
Collapse
Affiliation(s)
- Brett Gyarfas
- Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
137
|
McCauley MJ, Williams MC. Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 2009; 91:265-82. [PMID: 19173290 DOI: 10.1002/bip.21123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optical tweezers are ideally suited to perform force microscopy experiments that isolate a single biomolecule, which then provides multiple binding sites for ligands. The captured complex may be subjected to a spectrum of forces, inhibiting or facilitating ligand activity. In the following experiments, we utilize optical tweezers to characterize and quantify DNA binding of various ligands. High mobility group type B (HMGB) proteins, which bind to double-stranded DNA, are shown to serve the dual purpose of stabilizing and enhancing the flexibility of double stranded DNA. Unusual intercalating ligands are observed to thread into and lengthen the double-stranded structure. Proteins binding to both double- and single-stranded DNA, such as the alpha polymerase subunit of E. coli Pol III, are characterized, and the subdomains containing the distinct sites responsible for binding are isolated. Finally, DNA binding of bacteriophage T4 and T7 single-stranded DNA (ssDNA) binding proteins is measured for a range of salt concentrations, illustrating a binding model for proteins that slide along double-stranded DNA, ultimately binding tightly to ssDNA. These recently developed methods quantify both the binding activity of the ligand as well as the mode of binding.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | |
Collapse
|
138
|
Archaeal eukaryote-like Orc1/Cdc6 initiators physically interact with DNA polymerase B1 and regulate its functions. Proc Natl Acad Sci U S A 2009; 106:7792-7. [PMID: 19416914 DOI: 10.1073/pnas.0813056106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archaeal DNA replication machinery represents a core version of that found in eukaryotes. However, the proteins essential for the coordination of origin selection and the functioning of DNA polymerase have not yet been characterized in archaea, and they are still being investigated in eukaryotes. In the current study, the Orc1/Cdc6 (SsoCdc6) proteins from the crenarchaeon Sulfolobus solfataricus were found to physically interact with its DNA polymerase B1 (SsoPolB1). These SsoCdc6 proteins stimulated the DNA-binding ability of SsoPolB1 and differentially regulated both its polymerase and nuclease activities. Furthermore, the proteins also mutually regulated their interactions with SsoPolB1. In addition, SsoPolB1c467, a nuclease domain-deleted mutant of SsoPolB1 defective in DNA binding, retains the ability to physically interact with SsoCdc6 proteins. Its DNA polymerase activity could be stimulated by these proteins. We report on a linkage between the initiator protein Orc1/Cdc6 and DNA polymerase in the archaeon. Our present and previous findings indicate that archaeal Orc1/Cdc6 proteins could potentially play critical roles in the coordination of origin selection and cell-cycle control of replication.
Collapse
|
139
|
Wang L, Broyde S, Zhang Y. Polymerase-tailored variations in the water-mediated and substrate-assisted mechanism for nucleotidyl transfer: insights from a study of T7 DNA polymerase. J Mol Biol 2009; 389:787-96. [PMID: 19389406 DOI: 10.1016/j.jmb.2009.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/13/2009] [Accepted: 04/15/2009] [Indexed: 01/06/2023]
Abstract
The nucleotidyl transfer reaction catalyzed by DNA polymerases is the critical step governing the accurate transfer of genetic information during DNA replication, and its malfunctioning can cause mutations leading to human diseases, including cancer. Here, utilizing ab initio quantum mechanical/molecular mechanical calculations with free-energy perturbation, we carried out an extensive investigation of the nucleotidyl transfer reaction mechanism in the well-characterized high-fidelity replicative DNA polymerase from phage T7. Our defined mechanism entails an initial concerted deprotonation of a conserved crystal water molecule with protonation of the gamma-phosphate of the deoxynucleotide triphosphate(dNTP) via a solvent water molecule, and then the proton on the primer 3'-terminus is transferred to the resulting hydroxide ion. Subsequently, the nucleophilic attack takes place, with the formation of a metastable pentacovalent phosphorane intermediate. Finally, the pyrophosphate leaves, facilitated by the relay of the proton on the gamma-phosphate to the alpha-beta bridging oxygen via solvent water. The computed activation free-energy barrier is consistent with kinetic data for the chemistry step with correct nucleotide incorporation in T7 DNA polymerase. This variant of the water-mediated and substrate-assisted mechanism has features tailored to the structure of the T7 DNA polymerase. However, a unifying theme in the water-mediated and substrate-assisted mechanism is the cycling through crystal and solvent water molecules of the proton originating from the primer 3'-terminus to the alpha-beta bridging oxygen of the deoxynucleotide triphosphate; this neutralizes the evolving negative charge as pyrophosphate leaves and restores the polymerase to its pre-chemistry state. These unifying features are likely requisite elements for nucleotidyl transfer reactions.
Collapse
Affiliation(s)
- Lihua Wang
- Biology Department, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
140
|
Nakane S, Nakagawa N, Kuramitsu S, Masui R. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity. Nucleic Acids Res 2009; 37:2037-52. [PMID: 19211662 PMCID: PMC2665239 DOI: 10.1093/nar/gkp064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.
Collapse
Affiliation(s)
- Shuhei Nakane
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
141
|
Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:93-102. [DOI: 10.1007/978-0-387-09599-8_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
142
|
Rodríguez I, Lázaro JM, Salas M, de Vega M. Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase. Nucleic Acids Res 2008; 37:193-203. [PMID: 19033368 PMCID: PMC2615600 DOI: 10.1093/nar/gkn928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The polymerization domain of phi29 DNA polymerase acquires a toroidal shape by means of an arch-like structure formed by the specific insertion TPR2 (Terminal Protein Region 2) and the thumb subdomain. TPR2 is connected to the fingers and palm subdomains through flexible regions, suggesting that it can undergo conformational changes. To examine whether such changes take place, we have constructed a phi29 DNA polymerase mutant able to form a disulfide bond between the apexes of TPR2 and thumb to limit the mobility of TPR2. Biochemical analysis of the mutant led us to conclude that TPR2 moves away from the thumb to allow the DNA polymerase to replicate circular ssDNA. Despite the fact that no TPR2 motion is needed to allow the polymerase to use the terminal protein (TP) as primer during the initiation of phi29 TP-DNA replication, the disulfide bond prevents the DNA polymerase from entering the elongation phase, suggesting that TPR2 movements are necessary to allow the TP priming domain to move out from the polymerase during transition from initiation to elongation. Furthermore, the TPR2-thumb bond does not affect the equilibrium between the polymerization and exonuclease activities, leading us to propose a primer-terminus transference model between both active sites.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
143
|
Chandani S, Loechler EL. Y-Family DNA polymerases may use two different dNTP shapes for insertion: a hypothesis and its implications. J Mol Graph Model 2008; 27:759-69. [PMID: 19188081 DOI: 10.1016/j.jmgm.2008.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 01/14/2023]
Abstract
Chemicals and radiation can damage DNA leading to the formation of adducts/lesions, which - if not removed by DNA repair pathways - usually block replicative DNA polymerases (DNAPs). To overcome such potentially lethal blockage, cells have lesion bypass DNAPs, which are often in the Y-Family and include several classes. One class includes human DNAP kappa and E. coli DNAP IV, and they insert dCTP in the non-mutagenic pathway opposite [+ta]-B[a]P-N(2)-dG, which is the major adduct formed by the environmental carcinogen benzo[a]pyrene. Another class includes hDNAP eta and ecDNAP V, and they insert dATP opposite [+ta]-B[a]P-N(2)-dG in the dominant G-->T mutagenic pathway. Herein we develop a hypothesis for why the IV/kappa-class preferentially does cellular dCTP insertion. On the minor groove side of the active site, Y-Family DNAPs have a cleft/hole that can be analyzed based on an analogy to a "chimney." Our models of DNAP IV show a large chimney opening from which the pyrene of [+ta]-B[a]P-N(2)-dG can protrude, which allows canonical adduct-dG:dCTP pairing. In contrast, our models of DNAP V have small chimney openings that forces adduct-dG downward in the active site such that canonical adduct-dG:dCTP pairing is not possible. Based on X-ray structures, sequence alignment and our modeled structures of Y-Family DNAPs, chimney opening size seems primarily controlled by one amino acid ("flue-handle"), which dictates whether nearby amino acids ("flue") plug the chimney or not. Based on this analysis, a correlation is apparent: the flue is closed in V/eta-class DNAPs giving small chimney openings, while the flue is open for the IV/kappa-class giving large chimney openings. Secondarily, a hypothesis is developed for why the V/eta-class might preferentially do cellular dATP insertion opposite [+ta]-B[a]P-N(2)-dG: the small chimney forces adduct-dG lower in the active site, possibly leading to catalysis using a non-canonical dNTP shape that permits syn-adenine:adduct-dG base pairing. In summary, a hypothesize is developed that the pyrene moiety of [+ta]-B[a]P-N(2)-dG protrudes from the large chimney opening of DNAP IV, thus permitting canonical dCTP:adduct-dG pairing, while the small chimney opening of DNAP V forces [+ta]-B[a]P-N(2)-dG lower down in the active site, in which syn-adenine can pair with adduct-dG via a non-canonical dNTP shape.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
144
|
Palud A, Villani G, L'Haridon S, Querellou J, Raffin JP, Henneke G. Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance? Mol Microbiol 2008; 70:746-61. [PMID: 18826407 DOI: 10.1111/j.1365-2958.2008.06446.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spontaneous and induced abasic sites in hyperthermophiles DNA have long been suspected to occur at high frequency. Here, Pyrococcus abyssi was used as an attractive model to analyse the impact of such lesions onto the maintenance of genome integrity. We demonstrated that endogenous AP sites persist at a slightly higher level in P. abyssi genome compared with Escherichia coli. Then, the two replicative DNA polymerases, PabpolB and PabpolD, were characterized in presence of DNA containing abasic sites. Both Pabpols had abortive DNA synthesis upon encountering AP sites. Under running start conditions, PabpolB could incorporate in front of the damage and even replicate to the full-length oligonucleotides containing a specific AP site, but only when present at a molar excess. Conversely, bypassing activity of PabpolD was strictly inhibited. The tight regulation of nucleotide incorporation opposite the AP site was assigned to the efficiency of the proof-reading function, because exonuclease-deficient enzymes exhibited effective TLS. Steady-state kinetics reinforced that Pabpols are high-fidelity DNA polymerases onto undamaged DNA. Moreover, Pabpols preferentially inserted dAMP opposite an AP site, albeit inefficiently. While the template sequence of the oligonucleotides did not influence the nucleotide insertion, the DNA topology could impact on the progression of Pabpols. Our results are interpreted in terms of DNA damage tolerance.
Collapse
Affiliation(s)
- Adeline Palud
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, 29280 Plouzané, France
| | | | | | | | | | | |
Collapse
|
145
|
McCauley MJ, Shokri L, Sefcikova J, Venclovas Č, Beuning PJ, Williams MC. Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit. ACS Chem Biol 2008; 3:577-87. [PMID: 18652472 PMCID: PMC2665888 DOI: 10.1021/cb8001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The α subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the α subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the α subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of α and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH)2 motif contributes significantly to dsDNA binding.
Collapse
Affiliation(s)
- Micah J. McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - Leila Shokri
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Česlovas Venclovas
- Laboratory of Bioinformatics, Institute of Biotechnology, Vilnius LT-02241, Lithuania
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
146
|
Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 2008; 69:1071-90. [PMID: 18647240 DOI: 10.1111/j.1365-2958.2008.06364.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.
Collapse
Affiliation(s)
- Nathan D Thomsen
- Quantitative Biology Institute and Department of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
147
|
Di Pasquale F, Fischer D, Grohmann D, Restle T, Geyer A, Marx A. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I. J Am Chem Soc 2008; 130:10748-57. [PMID: 18627154 DOI: 10.1021/ja8028284] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.
Collapse
Affiliation(s)
- Francesca Di Pasquale
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 2008; 7:1276-88. [PMID: 18555749 DOI: 10.1016/j.dnarep.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/03/2008] [Accepted: 04/09/2008] [Indexed: 12/24/2022]
Abstract
Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (C>A>-1 deletion >G >>> U), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | | | | | | | | | | |
Collapse
|
149
|
Han J, Haiman C, Niu T, Guo Q, Cox DG, Willett WC, Hankinson SE, Hunter DJ. Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat 2008; 115:613-22. [PMID: 18551366 DOI: 10.1007/s10549-008-0089-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/30/2022]
Abstract
PURPOSE We comprehensively evaluated genetic variants in DNA repair genes with premenopausal breast cancer risk. METHODS In this nested case-control study of 239 prospectively ascertained premenopausal breast cancer cases and 477 matched controls within the Nurses' Health Study II, we evaluated 1,463 genetic variants in 60 candidate genes across five DNA repair pathways, along with DNA polymerases, Fanconi Anemia complementation groups, and other related genes. RESULTS Four variants were associated with breast cancer risk with a significance level of <0.01; two in the XPF gene and two in the XRCC3 gene. An increased risk was found in those harboring a greater number of missense putative risk alleles (a priori defined in an independent study) in the non-homologous end-joining (NHEJ) repair pathway of double-strand breaks (odds ratio (OR) per risk allele, 1.37 (95% confidence interval (CI), 1.03-1.82), P trend, 0.03). CONCLUSIONS This study implicates variants of genes in the double-strand break repair pathway in the etiology of premenopausal breast cancer.
Collapse
Affiliation(s)
- Jiali Han
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Venkatramani R, Radhakrishnan R. Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus. Proteins 2008; 71:1360-72. [PMID: 18058909 PMCID: PMC3023110 DOI: 10.1002/prot.21824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the preorganization of the active site for DNA replication in the closed (active) state of the Bacillus fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (G) and 8oxoG bases in DNA suggest that the lesion introduces structural and energetic changes at the catalytic site to favor dATP insertion. Despite the formation of a stable Watson-Crick pairing in the 8oxoG:dCTP system, the catalytic geometry is severely distorted to possibly slow down catalysis. Indeed, our calculated free energy landscapes associated with active site preorganization suggest additional barriers to assemble an efficient catalytic site, which need to be overcome during dCTP incorporation opposite 8oxoG relative to that opposite undamaged G. In contrast, the catalytic geometry for the Hoogsteen pairing in the 8oxoG:dATP system is highly organized and poised for efficient nucleotide incorporation via the "two-metal-ion" catalyzed phosphoryl transfer mechanism. However, the free energy calculations suggest that the catalytic geometry during dATP incorporation opposite 8oxoG is considerably less plastic than that during dCTP incorporation opposite G despite a very similar, well organized catalytic site for both systems. A correlation analysis of the dynamics trajectories suggests the presence of significant coupling between motions of the polymerase fingers and the primary distance for nucleophilic attack (i.e., between the terminal primer O3' and the dNTP P(alpha.) atoms) during correct dCTP incorporation opposite undamaged G. This coupling is shown to be disrupted during nucleotide incorporation by the polymerase with oxidatively damaged DNA/dNTP substrates. We also suggest that the lesion affects DNA interactions with key polymerase residues, thereby affecting the enzymes ability to discriminate against non-complementary DNA/dNTP substrates. Taken together, our results provide a unified structural, energetic, and dynamic platform to rationalize experimentally observed relative nucleotide incorporation rates for correct dCTP/incorrect dATP insertion opposite an undamaged/oxidatively damaged template G by BF.
Collapse
Affiliation(s)
- Ravindra Venkatramani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|