101
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
102
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
103
|
Faieta M, Di Cecca S, de Rooij DG, Luchetti A, Murdocca M, Di Giacomo M, Di Siena S, Pellegrini M, Rossi P, Barchi M. A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11. Chromosoma 2015; 125:189-203. [PMID: 26440409 PMCID: PMC4830894 DOI: 10.1007/s00412-015-0544-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022]
Abstract
Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11+/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11−/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination.
Collapse
Affiliation(s)
- Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Stefano Di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andrea Luchetti
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | | | - Manuela Pellegrini
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
104
|
Chung G, Rose AM, Petalcorin MIR, Martin JS, Kessler Z, Sanchez-Pulido L, Ponting CP, Yanowitz JL, Boulton SJ. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes Dev 2015; 29:1969-79. [PMID: 26385965 PMCID: PMC4579353 DOI: 10.1101/gad.266056.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023]
Abstract
The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation.
Collapse
Affiliation(s)
- George Chung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark I R Petalcorin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Julie S Martin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Luis Sanchez-Pulido
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Simon J Boulton
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| |
Collapse
|
105
|
Mei F, Chen PF, Dombecki CR, Aljabban I, Nabeshima K. A Defective Meiotic Outcome of a Failure in Homologous Pairing and Synapsis Is Masked by Meiotic Quality Control. PLoS One 2015; 10:e0134871. [PMID: 26247362 PMCID: PMC4527744 DOI: 10.1371/journal.pone.0134871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Successful gamete production is ensured by meiotic quality control, a process in which germ cells that fail in bivalent chromosome formation are eliminated during meiotic prophase. To date, numerous meiotic mutants have been isolated in a variety of model organisms, using defects associated with a failure in bivalent formation as hallmarks of the mutant. Presumably, the meiotic quality control mechanism in those mutants is overwhelmed. In these mutants, all germ cells fail in bivalent formation, and a subset of cells seem to survive the elimination process and develop into gametes. It is possible that mutants that are partially defective in bivalent formation were missed in past genetic screens, because no evident meiotic defects associated with failure in bivalent formation would have been detectable. Meiotic quality control effectively eliminates most failed germ cells, leaving predominately successful ones. Here, we provide evidence supporting this possibility. The Caenorhabditis elegans mrg-1 loss-of-function mutant does not appear to be defective in bivalent formation in diakinesis oocytes. However, defects in homologous chromosome pairing and synapsis during the preceding meiotic prophase, prerequisites for successful bivalent formation, were observed in most, but not all, germ cells. Failed bivalent formation in the oocytes became evident once meiotic quality control was abrogated in the mrg-1 mutant. Both double-strand break repair and synapsis checkpoints are partly responsible for eliminating failed germ cells in the mrg-1 mutant. Interestingly, removal of both checkpoint activities from the mrg-1 mutant is not sufficient to completely suppress the increased germline apoptosis, suggesting the presence of a novel meiotic checkpoint mechanism.
Collapse
Affiliation(s)
- Frank Mei
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter F. Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carolyn R. Dombecki
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Imad Aljabban
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kentaro Nabeshima
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
106
|
Inagaki A, Roset R, Petrini JHJ. Functions of the MRE11 complex in the development and maintenance of oocytes. Chromosoma 2015; 125:151-62. [PMID: 26232174 PMCID: PMC4734907 DOI: 10.1007/s00412-015-0535-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11ATLD1 allele. Mre11ATLD1/ATLD1 females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1−/− and Trp13Gt/Gt mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11ATLD1/ATLD1. Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11ATLD1/ATLD1 follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.
Collapse
Affiliation(s)
- Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Ramon Roset
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Institut de Recerca Biomèdica de Lleida, 25198, Lleida, Spain
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
107
|
Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 2015; 48:187-214. [PMID: 25421598 DOI: 10.1146/annurev-genet-120213-092304] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system.
Collapse
Affiliation(s)
- Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | | | |
Collapse
|
108
|
DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2015; 78:469-86. [PMID: 25184562 DOI: 10.1128/mmbr.00059-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
Collapse
|
109
|
Gao J, Kim HM, Elia AE, Elledge SJ, Colaiácovo MP. NatB domain-containing CRA-1 antagonizes hydrolase ACER-1 linking acetyl-CoA metabolism to the initiation of recombination during C. elegans meiosis. PLoS Genet 2015; 11:e1005029. [PMID: 25768301 PMCID: PMC4359108 DOI: 10.1371/journal.pgen.1005029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
The formation of DNA double-strand breaks (DSBs) must take place during meiosis to ensure the formation of crossovers, which are required for accurate chromosome segregation, therefore avoiding aneuploidy. However, DSB formation must be tightly regulated to maintain genomic integrity. How this regulation operates in the context of different chromatin architectures and accessibility, and how it is linked to metabolic pathways, is not understood. We show here that global histone acetylation levels undergo changes throughout meiotic progression. Moreover, perturbations to global histone acetylation levels are accompanied by changes in the frequency of DSB formation in C. elegans. We provide evidence that the regulation of histone acetylation requires CRA-1, a NatB domain-containing protein homologous to human NAA25, which controls the levels of acetyl-Coenzyme A (acetyl-CoA) by antagonizing ACER-1, a previously unknown and conserved acetyl-CoA hydrolase. CRA-1 is in turn negatively regulated by XND-1, an AT-hook containing protein. We propose that this newly defined protein network links acetyl-CoA metabolism to meiotic DSB formation via modulation of global histone acetylation. Achieving accurate chromosome segregation is a critical outcome for any cell division process. Programmed DNA double-strand break formation is a central mechanism set in place to promote faithful chromosome segregation during meiosis. A subset of these DSBs is repaired as crossovers via reciprocal exchange of genetic information between homologous chromosomes resulting in physical attachments (chiasmata) between homologs, which ensure proper chromosome alignment at the metaphase plate at meiosis I, and also promote genetic diversity. How this regulation operates in the context of different chromatin architectures and accessibility, and how it is linked to metabolic pathways, is not understood. In this study, we found that CRA-1, a NatB domain-containing protein, promotes histone acetylation by maintaining the levels of acetyl-Coenzyme A (acetyl-CoA) through antagonizing ACER-1, a previously unknown and conserved acetyl-CoA hydrolase. CRA-1 is in turn negatively regulated by XND-1, an AT-hook containing protein. We leveraged this discovery to find a connection between the levels of acetyl-CoA, histone acetylation and DSB formation. We identified a novel protein network that links the regulation of DSB formation to the modulation of global levels of histone acetylation, and revealed a link between metabolism and the regulation of DSB formation.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew E. Elia
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
110
|
Kang HA, Shin HC, Kalantzi AS, Toseland CP, Kim HM, Gruber S, Peraro MD, Oh BH. Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res 2015; 43:3841-56. [PMID: 25740648 PMCID: PMC4402518 DOI: 10.1093/nar/gkv172] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/20/2015] [Indexed: 11/14/2022] Open
Abstract
In meiotic DNA recombination, the Hop2-Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2-Mnd1 reveals that it forms a curved rod-like structure consisting of three leucine zippers and two kinked junctions. One end of the rod is linked to two juxtaposed winged-helix domains, and the other end is capped by extra α-helices to form a helical bundle-like structure. Deletion analysis shows that the helical bundle-like structure is sufficient for interacting with the Dmc1-ssDNA nucleofilament, and molecular modeling suggests that the curved rod could be accommodated into the helical groove of the nucleofilament. Remarkably, the winged-helix domains are juxtaposed at fixed relative orientation, and their binding to DNA is likely to perturb the base pairing according to molecular simulations. These findings allow us to propose a model explaining how Hop2-Mnd1 juxtaposes Dmc1-bound ssDNA with distorted recipient double-stranded DNA and thus facilitates strand invasion.
Collapse
Affiliation(s)
- Hyun-Ah Kang
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Alexandra-Styliani Kalantzi
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Christopher P Toseland
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am, Klopferspitz 18, 82152 Martinsried, Germany
| | - Hyun-Min Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am, Klopferspitz 18, 82152 Martinsried, Germany
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
111
|
Shinohara M, Hayashihara K, Grubb JT, Bishop DK, Shinohara A. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J Cell Sci 2015; 128:1494-506. [PMID: 25736290 DOI: 10.1242/jcs.161554] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as '9-1-1' in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51-Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM.
Collapse
Affiliation(s)
- Miki Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kayoko Hayashihara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jennifer T Grubb
- Department of Radiation Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation Oncology/Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
112
|
Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res 2015; 43:2489-98. [PMID: 25712102 PMCID: PMC4357700 DOI: 10.1093/nar/gkv061] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
113
|
Kusch T. Brca2-Pds5 complexes mobilize persistent meiotic recombination sites to the nuclear envelope. J Cell Sci 2015; 128:717-27. [PMID: 25588834 DOI: 10.1242/jcs.159988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Homologous recombination is required for reciprocal exchange between homologous chromosome arms during meiosis. Only select meiotic recombination events become chromosomal crossovers; the majority of recombination outcomes are noncrossovers. Growing evidence suggests that crossovers are repaired after noncrossovers. Here, I report that persisting recombination sites are mobilized to the nuclear envelope of Drosophila pro-oocytes during mid-pachytene. Their number correlates with the average crossover rate per meiosis. Proteomic and interaction studies reveal that the recombination mediator Brca2 associates with lamin and the cohesion factor Pds5 to secure persistent recombination sites at the nuclear envelope. In Rad51(-/-) females, all persistent DNA breaks are directed to the nuclear envelope. By contrast, a reduction of Pds5 or Brca2 levels abolishes the movement and has a negative impact on crossover rates. The data suggest that persistent meiotic DNA double-strand breaks might correspond to crossovers, which are mobilized to the nuclear envelope for their repair. The identification of Brca2-Pds5 complexes as key mediators of this process provides a first mechanistic explanation for the contribution of lamins and cohesins to meiotic recombination.
Collapse
Affiliation(s)
- Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
114
|
Wu Z, Ji J, Tang D, Wang H, Shen Y, Shi W, Li Y, Tan X, Cheng Z, Luo Q. OsSDS is essential for DSB formation in rice meiosis. FRONTIERS IN PLANT SCIENCE 2015; 6:21. [PMID: 25691887 PMCID: PMC4315026 DOI: 10.3389/fpls.2015.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
SDS is a meiosis specific cyclin-like protein and required for DMC1 mediated double-strand break (DSB) repairing in Arabidopsis. Here, we found its rice homolog, OsSDS, is essential for meiotic DSB formation. The Ossds mutant is normal in vegetative growth but both male and female gametes are inviable. The Ossds meiocytes exhibit severe defects in homologous pairing and synapsis. No γH2AX immunosignals in Ossds meiocytes together with the suppression of chromosome fragmentation in Ossds-1 Osrad51c, both provide strong evidences that OsSDS is essential for meiotic DSB formation. Immunostaining investigations revealed that meiotic chromosome axes are normally formed but both SC installation and localization of recombination elements are failed in Ossds. We suspected that this cyclin protein has been differentiated pretty much between monocots and dicots on its function in meiosis.
Collapse
Affiliation(s)
- Zhigang Wu
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xuelin Tan
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China e-mail:
| | - Qiong Luo
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
- Qiong Luo, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Heilongtan, Guandu District, Kunming 650201, China e-mail:
| |
Collapse
|
115
|
Shodhan A, Lukaszewicz A, Novatchkova M, Loidl J. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics 2014; 198:983-93. [PMID: 25217051 PMCID: PMC4224184 DOI: 10.1534/genetics.114.169698] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022] Open
Abstract
ZMM proteins have been defined in budding yeast as factors that are collectively involved in the formation of interfering crossovers (COs) and synaptonemal complexes (SCs), and they are a hallmark of the predominant meiotic recombination pathway of most organisms. In addition to this so-called class I CO pathway, a minority of crossovers are formed by a class II pathway, which involves the Mus81-Mms4 endonuclease complex. This is the only CO pathway in the SC-less meiosis of the fission yeast. ZMM proteins (including SC components) were always found to be co-occurring and hence have been regarded as functionally linked. Like the fission yeast, the protist Tetrahymena thermophila does not possess a SC, and its COs are dependent on Mus81-Mms4. Here we show that the ZMM proteins Msh4 and Msh5 are required for normal chiasma formation, and we propose that they have a pro-CO function outside a canonical class I pathway in Tetrahymena. Thus, the two-pathway model is not tenable as a general rule.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, A-130 Vienna, Austria IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
116
|
Baptissart M, Vega A, Martinot E, Volle DH. Male fertility: Is spermiogenesis the critical step for answering biomedical issues? SPERMATOGENESIS 2014; 3:e24114. [PMID: 23885302 PMCID: PMC3710220 DOI: 10.4161/spmg.24114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Regarding male fertility, biomedical issues have opposite goals to treat infertility or develop contraceptive drugs. Recently, the identification of the molecular mechanisms involved in germ cell differentiation suggest that spermiogenesis has to be put at the crossroad to reach these goals. Concerning fertility issues, citizens in our modern world are schizophrenic. On one side, couples have the possibility to control conception; and on the other side, more and more couples suffer from the misfortune of being infertile. These two societal problems lead to intensive research and conflicting government policies. However, these opposing goals rely on a better understanding of germ cell differentiation.
Collapse
Affiliation(s)
- Marine Baptissart
- Inserm U 1103; Génétique Reproduction et Développement (GReD); F-63177 AUBIERE, France ; Clermont Université; Université Blaise Pascal; GReD, BP 10448; F-63000 CLERMONT-FERRAND, France ; CNRS; UMR 6293; GReD; F-63177 AUBIERE, France ; Centre de Recherche en Nutrition Humaine d'Auvergne; F-63000 CLERMONT-FERRAND, France
| | | | | | | |
Collapse
|
117
|
Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 2014; 7:a016634. [PMID: 25324213 DOI: 10.1101/cshperspect.a016634] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence.
Collapse
Affiliation(s)
- Isabel Lam
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
118
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
119
|
Anderson LK, Lohmiller LD, Tang X, Hammond DB, Javernick L, Shearer L, Basu-Roy S, Martin OC, Falque M. Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers. Proc Natl Acad Sci U S A 2014; 111:13415-20. [PMID: 25197066 PMCID: PMC4169947 DOI: 10.1073/pnas.1406846111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Crossovers (COs) shuffle genetic information and allow balanced segregation of homologous chromosomes during the first division of meiosis. In several organisms, mutants demonstrate that two molecularly distinct pathways produce COs. One pathway produces class I COs that exhibit interference (lowered probability of nearby COs), and the other pathway produces class II COs with little or no interference. However, the relative contributions, genomic distributions, and interactions of these two pathways are essentially unknown in nonmutant organisms because marker segregation only indicates that a CO has occurred, not its class type. Here, we combine the efficiency of light microscopy for revealing cellular functions using fluorescent probes with the high resolution of electron microscopy to localize and characterize COs in the same sample of meiotic pachytene chromosomes from wild-type tomato. To our knowledge, for the first time, every CO along each chromosome can be identified by class to unveil specific characteristics of each pathway. We find that class I and II COs have different recombination profiles along chromosomes. In particular, class II COs, which represent about 18% of all COs, exhibit no interference and are disproportionately represented in pericentric heterochromatin, a feature potentially exploitable in plant breeding. Finally, our results demonstrate that the two pathways are not independent because there is interference between class I and II COs.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Leslie D Lohmiller
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Xiaomin Tang
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - D Boyd Hammond
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Lauren Javernick
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Lindsay Shearer
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878; and
| | - Sayantani Basu-Roy
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Olivier C Martin
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
120
|
Genetic evidence suggests that Spata22 is required for the maintenance of Rad51 foci in mammalian meiosis. Sci Rep 2014; 4:6148. [PMID: 25142975 PMCID: PMC4139951 DOI: 10.1038/srep06148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/01/2014] [Indexed: 11/08/2022] Open
Abstract
Meiotic nodules are the sites of double-stranded DNA break repair. Rpa is a single-stranded DNA-binding protein, and Rad51 is a protein that assists in the repair of DNA double strand breaks. The localisation of Rad51 to meiotic nodules before the localisation of Rpa in mice introduces the issue of whether Rpa is involved in presynaptic filament formation during mammalian meiosis. Here, we show that a protein with unknown function, Spata22, colocalises with Rpa in meiotic nodules in rat spermatocytes. In spermatocytes of Spata22-deficient mutant rats, meiosis was arrested at the zygotene-like stage, and a normal number of Rpa foci was observed during leptotene- and zygotene-like stages. The number of Rad51 foci was initially normal but declined from the leptotene-like stage. These results suggest that both formation and maintenance of Rpa foci are independent of Spata22, and the maintenance, but not the formation, of Rad51 foci requires Spata22. We propose a possible model of presynaptic filament formation in mammalian meiosis, which involves Rpa and Spata22.
Collapse
|
121
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
122
|
Cooper TJ, Wardell K, Garcia V, Neale MJ. Homeostatic regulation of meiotic DSB formation by ATM/ATR. Exp Cell Res 2014; 329:124-31. [PMID: 25116420 DOI: 10.1016/j.yexcr.2014.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.
Collapse
Affiliation(s)
- Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Kayleigh Wardell
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Valerie Garcia
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
123
|
Wang H, Li Y, Truong LN, Shi LZ, Hwang PYH, He J, Do J, Cho MJ, Li H, Negrete A, Shiloach J, Berns MW, Shen B, Chen L, Wu X. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 2014; 54:1012-1021. [PMID: 24837675 PMCID: PMC4105207 DOI: 10.1016/j.molcel.2014.04.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/04/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
Chromosomal rearrangements often occur at genomic loci with DNA secondary structures, such as common fragile sites (CFSs) and palindromic repeats. We developed assays in mammalian cells that revealed CFS-derived AT-rich sequences and inverted Alu repeats (Alu-IRs) are mitotic recombination hotspots, requiring the repair functions of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) and the Mre11/Rad50/Nbs1 complex (MRN). We also identified an endonuclease activity of CtIP that is dispensable for end resection and homologous recombination (HR) at I-SceI-generated "clean" double-strand breaks (DSBs) but is required for repair of DSBs occurring at CFS-derived AT-rich sequences. In addition, CtIP nuclease-defective mutants are impaired in Alu-IRs-induced mitotic recombination. These studies suggest that an end resection-independent CtIP function is important for processing DSB ends with secondary structures to promote HR. Furthermore, our studies uncover an important role of MRN, CtIP, and their associated nuclease activities in protecting CFSs in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yongjiang Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linda Z Shi
- The Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patty Yi-Hwa Hwang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing He
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Johnny Do
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Jeffrey Cho
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alejandro Negrete
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michael W Berns
- The Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Biomedical Engineering, Beckman Laser Institute, University of California at Irvine, Irvine, CA 92612, USA
| | - Binghui Shen
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Longchuan Chen
- Department of Pathology, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Xiaohua Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
124
|
Bugreev DV, Huang F, Mazina OM, Pezza RJ, Voloshin ON, Camerini-Otero RD, Mazin AV. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat Commun 2014; 5:4198. [PMID: 24943459 PMCID: PMC4279451 DOI: 10.1038/ncomms5198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a “molecular trigger” of RAD51 DNA strand exchange.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Fei Huang
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| |
Collapse
|
125
|
Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS One 2014; 9:e96648. [PMID: 24797370 PMCID: PMC4010517 DOI: 10.1371/journal.pone.0096648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs) in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation) in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.
Collapse
|
126
|
Ito M, Kugou K, Fawcett JA, Mura S, Ikeda S, Innan H, Ohta K. Meiotic recombination cold spots in chromosomal cohesion sites. Genes Cells 2014; 19:359-73. [PMID: 24635992 DOI: 10.1111/gtc.12138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/25/2013] [Indexed: 01/26/2023]
Abstract
Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.
Collapse
Affiliation(s)
- Masaru Ito
- Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
Chinone A, Matsumoto M. DrRad51 is required for chiasmata formation in meiosis in planarian Dugesia ryukyuensis. Mol Reprod Dev 2014; 81:409-21. [PMID: 24488935 DOI: 10.1002/mrd.22308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Rad51, a conserved eukaryotic protein, mediates the homologous-recombination repair of DNA double-strand breaks that occur during both mitosis and meiosis. During prophase I of meiosis, homologous recombination enhances the linkage between homologous chromosomes to increase the accuracy of segregation at anaphase I. In polyploidy situations, however, difficulties with homologous chromosome segregation often disrupt meiosis. Yet, triploid individuals of the planarian Dugesia ryukyuensis are able to produce functional gametes through a specialized form of meiosis. To shed light on the molecular mechanisms that promote successful meiosis in triploid D. ryukyuensis, we investigated rad51 gene function. We isolated three genes of the Rad51 family, the Rad51 homolog Dr-rad51 and the Rad51 paralogs Dr-rad51B and Dr-rad51C. Dr-rad51 was expressed in germ-line and presumably in somatic stem cells, but was not necessary for the regeneration of somatic tissue. RNA-interference (RNAi) depletion of Dr-rad51 during sexualization did not affect chromosome behavior in zygotene oocytes, but did result in the loss of chiasmata at the diplotene stage. Thus, homologous recombination does not appear to be necessary for synapsis, but is needed for crossover and proper segregation in D. ryukyuensis.
Collapse
Affiliation(s)
- Ayako Chinone
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
128
|
Thacker D, Mohibullah N, Zhu X, Keeney S. Homologue engagement controls meiotic DNA break number and distribution. Nature 2014; 510:241-6. [PMID: 24717437 PMCID: PMC4057310 DOI: 10.1038/nature13120] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
Abstract
Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. This study tests the hypothesis that DSB control involves a network of intersecting negative regulatory circuits. Using multiple complementary methods, we show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. ZMM-dependent DSB control is genetically distinct from a pathway tying break formation to meiotic progression through the Ndt80 transcription factor. These counterintuitive findings suggest that homologous chromosomes that have successfully engaged one another stop making breaks. Genome-wide DSB maps uncover distinct responses by different subchromosomal domains to the zmm mutation zip3, and show that Zip3 is required for the previously unexplained tendency of DSB density to vary with chromosome size. Thus, feedback tied to ZMM function contributes in unexpected ways to spatial patterning of recombination.
Collapse
Affiliation(s)
- Drew Thacker
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Neeman Mohibullah
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Xuan Zhu
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Scott Keeney
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA [3] Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
129
|
Luo Q, Li Y, Shen Y, Cheng Z. Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 2014; 41:125-37. [PMID: 24656233 DOI: 10.1016/j.jgg.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/26/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.
Collapse
Affiliation(s)
- Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
130
|
Lu P, Wijeratne AJ, Wang Z, Copenhaver GP, Ma H. Arabidopsis PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions. J Genet Genomics 2014; 41:165-75. [PMID: 24656236 DOI: 10.1016/j.jgg.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/26/2023]
Abstract
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.
Collapse
Affiliation(s)
- Pingli Lu
- Institute of Plant Biology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Asela J Wijeratne
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhengjia Wang
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; School of Forestry and Biotechnology, Zhejiang A&F University, Linan 311300, China
| | - Gregory P Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-3280, USA
| | - Hong Ma
- Institute of Plant Biology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
131
|
Pradillo M, Varas J, Oliver C, Santos JL. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:23. [PMID: 24596572 PMCID: PMC3925842 DOI: 10.3389/fpls.2014.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 05/02/2023]
Abstract
Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1. Here we summarize the current progresses on the function of both recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model species Arabidopsis thaliana. Similarities and differences respect to the function of these proteins in other organisms are also indicated.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | | | | | | |
Collapse
|
132
|
Tang D, Miao C, Li Y, Wang H, Liu X, Yu H, Cheng Z. OsRAD51C is essential for double-strand break repair in rice meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:167. [PMID: 24847337 PMCID: PMC4019848 DOI: 10.3389/fpls.2014.00167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/08/2014] [Indexed: 05/18/2023]
Abstract
RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.
Collapse
Affiliation(s)
- Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chunbo Miao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaofei Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang Distict, Beijing 100101, China e-mail:
| |
Collapse
|
133
|
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol 2013; 31:660-72. [PMID: 24336924 DOI: 10.1093/molbev/mst258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Collapse
Affiliation(s)
- Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
134
|
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. PLANT REPRODUCTION 2013; 26:351-67. [PMID: 23995700 PMCID: PMC3825497 DOI: 10.1007/s00497-013-0234-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/17/2013] [Indexed: 05/21/2023]
Abstract
The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic Botany, Albrecht-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany,
| | | |
Collapse
|
135
|
Stevens D, Oegema K, Desai A. Meiotic double-strand breaks uncover and protect against mitotic errors in the C. elegans germline. Curr Biol 2013; 23:2400-6. [PMID: 24239117 DOI: 10.1016/j.cub.2013.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/13/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
In sexually reproducing multicellular organisms, genetic information is propagated via the germline, the specialized tissue that generates haploid gametes. The C. elegans germline generates gametes in an assembly line-like process-mitotic divisions under the control of the stem cell niche produce nuclei that, upon leaving the niche, enter into meiosis and progress through meiotic prophase [1]. Here, we characterize the effects of perturbing cell division in the mitotic region of the C. elegans germline. We show that mitotic errors result in a spindle checkpoint-dependent cell-cycle delay, but defective nuclei are eventually formed and enter meiosis. These defective nuclei are eliminated by programmed cell death during meiotic prophase. The cell death-based removal of defective nuclei does not require the spindle checkpoint but instead depends on the DNA damage checkpoint. Removal of nuclei resulting from errors in mitosis also requires Spo11, the enzyme that creates double-strand breaks to initiate meiotic recombination. Consistent with this, double-strand breaks are increased in number and persist longer in germlines with mitotic defects. These findings reveal that the process of initiating meiotic recombination inherently selects against nuclei with abnormal chromosomal content generated by mitotic errors, thereby ensuring the genomic integrity of gametes.
Collapse
Affiliation(s)
- Deanna Stevens
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
136
|
A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation. G3-GENES GENOMES GENETICS 2013; 3:1927-43. [PMID: 24062528 PMCID: PMC3815056 DOI: 10.1534/g3.113.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nbs1, a core component of the Mre11-Rad50-Nbs1 complex, plays an essential role in the cellular response to DNA double-strand breaks (DSBs) and poorly understood roles in meiosis. We used the basidiomycete Coprinus cinereus to examine the meiotic roles of Nbs1. We identified the C. cinereus nbs1 gene and demonstrated that it corresponds to a complementation group previously known as rad3. One allele, nbs1-2, harbors a point mutation in the Nbs1 FHA domain and has a mild spore viability defect, increased frequency of meiosis I nondisjunction, and an altered crossover distribution. The nbs1-2 strain enters meiosis with increased levels of phosphorylated H2AX, which we hypothesize represent unrepaired DSBs formed during premeiotic replication. In nbs1-2, there is no apparent induction of Spo11-dependent DSBs during prophase. We propose that replication-dependent DSBs, resulting from defective replication fork protection and processing by the Mre11-Rad50-Nbs1 complex, are competent to form meiotic crossovers in C. cinereus, and that these crossovers lead to high levels of faithful chromosome segregation. In addition, although crossover distribution is altered in nbs1-2, the majority of crossovers were found in subtelomeric regions, as in wild-type. Therefore, the location of crossovers in C. cinereus is maintained when DSBs are induced via a Spo11-independent mechanism.
Collapse
|
137
|
Lukaszewicz A, Howard-Till RA, Loidl J. Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex. Nucleic Acids Res 2013; 41:9296-309. [PMID: 23935123 PMCID: PMC3814389 DOI: 10.1093/nar/gkt703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.
Collapse
Affiliation(s)
| | | | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
138
|
Hong S, Kim KP. Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae. Mol Cells 2013; 36:446-54. [PMID: 24213600 PMCID: PMC3887942 DOI: 10.1007/s10059-013-0215-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of "partner choice" in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most doublestrand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
139
|
Rockmill B, Lefrançois P, Voelkel-Meiman K, Oke A, Roeder GS, Fung JC. High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity. PLoS Genet 2013; 9:e1003932. [PMID: 24204324 PMCID: PMC3814317 DOI: 10.1371/journal.pgen.1003932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis). Most eukaryotes depend on the meiotic division to segregate each pair of chromosomes properly into their gametes. Chromosome segregation mistakes happening during meiosis are responsible for most miscarriages as well as many diseases such as Down's and Kleinfelter's syndromes in humans. Proper chromosome segregation during meiosis depends on efficient and regulated recombination events that link homologous chromosomes prior to the first meiotic division. These linkages are initiated at double-stranded breaks (DSBs) in chromosomal DNA by Spo11 and associated proteins. We isolated a valuable new set of SPO11 alleles in yeast with a wide range of Spo11 activity. Genetic analysis and high throughput sequencing of tetrads from these mutants has revealed unexpected features of meiotic recombination. First, Spo11 DSBs likely continue to form throughout a pachytene arrest in cells compromised for Spo11 activity. Second, the number of recombination initiation events in a given meiosis influences the repair outcome of those events. In addition, our results provide support for crossover homeostasis – a phenomenon in which crossovers are disproportionately maintained over other types of repair in the face of a decrease in DSBs.
Collapse
Affiliation(s)
- Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Karen Voelkel-Meiman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
140
|
Zhao W, Saro D, Hammel M, Kwon Y, Xu Y, Rambo RP, Williams GJ, Chi P, Lu L, Pezza RJ, Camerini-Otero RD, Tainer JA, Wang HW, Sung P. Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res 2013; 42:906-17. [PMID: 24150939 PMCID: PMC3902922 DOI: 10.1093/nar/gkt924] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Hop2–Mnd1 complex functions with the DMC1 recombinase in meiotic recombination. Hop2–Mnd1 stabilizes the DMC1-single-stranded DNA (ssDNA) filament and promotes the capture of the double-stranded DNA partner by the recombinase filament to assemble the synaptic complex. Herein, we define the action mechanism of Hop2–Mnd1 in DMC1-mediated recombination. Small angle X-ray scattering analysis and electron microscopy reveal that the heterodimeric Hop2–Mnd1 is a V-shaped molecule. We show that the protein complex harbors three distinct DNA binding sites, and determine their functional relevance. Specifically, the N-terminal double-stranded DNA binding functions of Hop2 and Mnd1 co-operate to mediate synaptic complex assembly, whereas ssDNA binding by the Hop2 C-terminus helps stabilize the DMC1-ssDNA filament. A model of the Hop2-Mnd1-DMC1-ssDNA ensemble is proposed to explain how it mediates homologous DNA pairing in meiotic recombination.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA, Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA and Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Evidence for distinct functions of MRE11 in Arabidopsis meiosis. PLoS One 2013; 8:e78760. [PMID: 24205310 PMCID: PMC3804616 DOI: 10.1371/journal.pone.0078760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/22/2013] [Indexed: 01/09/2023] Open
Abstract
The evolutionary conserved Mre11/Rad50/Nbs1 complex functions as one of the guardians of genome integrity in eukaryotes; it is required for the double-strand break repair, meiosis, DNA checkpoint, and telomere maintenance. To better understand the role of the MRE11 gene in Arabidopsis, we performed comparative analysis of several mre11 alleles with respect to genome stability and meiosis. The mre11-4 and mre11-2 alleles presumably produce truncated MRE11 proteins composed of the first 499 and 529 amino acids, respectively. Although the putative MRE11 truncated proteins differ only by 30 amino acids, the mutants exhibited strikingly different phenotypes in regards to growth morphology, genome stability and meiosis. While the mre11-2 mutants are fully fertile and undergo normal meiosis, the mre11-4 plants are sterile due to aberrant repair of meiotic DNA breaks. Structural homology analysis suggests that the T-DNA insertion in the mre11-4 allele probably disrupted the putative RAD50 interaction and/or homodimerization domain, which is assumed to be preserved in mre11-2 allele. Intriguingly, introgression of the atm-2 mutant plant into the mre11-2 background renders the double mutant infertile, a phenotype not observed in either parent line. This data indicate that MRE11 partially compensates for ATM deficiency in meiosis of Arabidopsis.
Collapse
|
142
|
Miyoshi T, Ito M, Ohta K. Spatiotemporal regulation of meiotic recombination by Liaisonin. BIOARCHITECTURE 2013; 3:20-4. [PMID: 23572041 PMCID: PMC3639241 DOI: 10.4161/bioa.23966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sexual reproduction involves diversification of genetic information in successive generations. Meiotic recombination, which substantially contributes to the increase in genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 requires additional partner proteins for its DNA cleavage reaction. DSBs are preferentially introduced at defined chromosomal sites called "recombination hotspots." Recent studies have revealed that meiotically established higher-order chromosome structures, such as chromosome axes and loops, are also crucial in the control of DSB formation. Most of the DSB sites are located within chromatin loop regions, while many of the proteins involved in DSB formation reside on chromosomal axes. Hence, DSB proteins and DSB sites seem to be distantly located. To resolve this paradox, we conducted comprehensive proteomics and ChIP-chip analyses on Spo11 partners in Schizosaccharomyces pombe, in combination with mutant studies. We identified two distinct DSB complexes, the "DSBC (DSB Catalytic core)" and "SFT (Seven-Fifteen-Twenty four; Rec7-Rec15-Rec24)" subcomplexes. The DSBC subcomplex contains Spo11 and functions as the catalytic core for the DNA cleavage reaction. The SFT subcomplex is assumed to execute regulatory functions. To activate the DSBC subcomplex, the SFT subcomplex tethers hotspots to axes via its interaction with Mde2, which can interact with proteins in both DSBC and SFT subcomplexes. Thus, Mde2 is likely to bridge these two subcomplexes, forming a "tethered loop-axis complex." It should be noted that Mde2 expression is strictly regulated by S phase checkpoint monitoring of the completion of DNA replication. From these observations, we proposed that Mde2 is a central coupler for meiotic recombination initiation to establish a tethered loop-axis complex in liaison with the S phase checkpoint.
Collapse
|
143
|
Schütte B, El Hajj N, Kuhtz J, Nanda I, Gromoll J, Hahn T, Dittrich M, Schorsch M, Müller T, Haaf T. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology 2013; 1:822-9. [PMID: 23996961 PMCID: PMC4033565 DOI: 10.1111/j.2047-2927.2013.00122.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility.
Collapse
Affiliation(s)
- B Schütte
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Rosu S, Zawadzki KA, Stamper EL, Libuda DE, Reese AL, Dernburg AF, Villeneuve AM. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet 2013; 9:e1003674. [PMID: 23950729 PMCID: PMC3738457 DOI: 10.1371/journal.pgen.1003674] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.
Collapse
Affiliation(s)
- Simona Rosu
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karl A. Zawadzki
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ericca L. Stamper
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
| | - Diana E. Libuda
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Angela L. Reese
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
145
|
Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet 2013; 9:e1003679. [PMID: 23990794 PMCID: PMC3749324 DOI: 10.1371/journal.pgen.1003679] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance. For most eukaryotes, recombination between homologous chromosomes during meiosis is an essential aspect of sexual reproduction. Meiotic recombination is initiated by programmed double-strand breaks in DNA, which have the potential to induce mutations if not efficiently repaired. To better understand the mechanisms that govern the initiation of recombination and regulate the formation of double-strand breaks, we use the nematode Caenorhabditis elegans as a model system. Here we describe a new gene, dsb-1, that is required for double-strand break formation in C. elegans. Through analysis of the encoded DSB-1 protein we illuminate an important regulatory pathway that promotes crossover recombination events on all chromosome pairs to ensure successful meiosis.
Collapse
Affiliation(s)
- Ericca L. Stamper
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
| | - Stacia E. Rodenbusch
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
| | - Simona Rosu
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Anne M. Villeneuve
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley; Berkeley, California, United States of America
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
146
|
Gray S, Allison RM, Garcia V, Goldman ASH, Neale MJ. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR). Open Biol 2013; 3:130019. [PMID: 23902647 PMCID: PMC3728922 DOI: 10.1098/rsob.130019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.
Collapse
Affiliation(s)
- Stephen Gray
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
147
|
Abstract
Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae.
Collapse
|
148
|
Ji J, Tang D, Wang M, Li Y, Zhang L, Wang K, Li M, Cheng Z. MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma 2013; 122:363-76. [PMID: 23793712 DOI: 10.1007/s00412-013-0421-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/23/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Mre11, a conserved protein found in organisms ranging from yeast to multicellular organisms, is required for normal meiotic recombination. Mre11 interacts with Rad50 and Nbs1/Xrs2 to form a complex (MRN/X) that participates in double-strand break (DSB) ends processing. In this study, we silenced the MRE11 gene in rice and detailed its function using molecular and cytological methods. The OsMRE11-deficient plants exhibited normal vegetative growth but could not set seed. Cytological analysis indicated that in the OsMRE11-deficient plants, homologous pairing was totally inhibited, and the chromosomes were completely entangled as a formation of multivalents at metaphase I, leading to the consequence of serious chromosome fragmentation during anaphase I. Immunofluorescence studies further demonstrated that OsMRE11 is required for homologous synapsis and DSB processing but is dispensable for meiotic DSB formation. We found that OsMRE11 protein was located on meiotic chromosomes from interphase to late pachytene. This protein showed normal localization in zep1, Oscom1 and Osmer3, as well as in OsSPO11-1(RNAi) plants, but not in pair2 and pair3 mutants. Taken together, our results provide evidence that OsMRE11 performs a function essential for maintaining the normal HR process and inhibiting non-homologous recombination during meiosis.
Collapse
Affiliation(s)
- Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Homologous recombination is associated with the dynamic assembly and disassembly of DNA-protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.
Collapse
|
150
|
Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast. PLoS One 2013; 8:e65875. [PMID: 23762445 PMCID: PMC3677890 DOI: 10.1371/journal.pone.0065875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/29/2013] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.
Collapse
|