101
|
Fusser M, Nesse GJ, Khobta A, Xia N, Li H, Klungland A, Epe B. Spontaneous mutagenesis in Csb m/m Ogg1 −/− mice is attenuated by dietary resveratrol. Carcinogenesis 2010; 32:80-5. [DOI: 10.1093/carcin/bgq196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
102
|
Baas DC, Despriet DD, Gorgels TGMF, Bergeron-Sawitzke J, Uitterlinden AG, Hofman A, van Duijn CM, Merriam JE, Smith RT, Barile GR, ten Brink JB, Vingerling JR, Klaver CCW, Allikmets R, Dean M, Bergen AAB. The ERCC6 gene and age-related macular degeneration. PLoS One 2010; 5:e13786. [PMID: 21072178 PMCID: PMC2967476 DOI: 10.1371/journal.pone.0013786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the developed countries and is caused by both environmental and genetic factors. A recent study (Tuo et al., PNAS) reported an association between AMD and a single nucleotide polymorphism (SNP) (rs3793784) in the ERCC6 (NM_000124) gene. The risk allele also increased ERCC6 expression. ERCC6 is involved in DNA repair and mutations in ERCC6 cause Cockayne syndrome (CS). Amongst others, photosensitivity and pigmentary retinopathy are hallmarks of CS. Methodology/Principal Findings Separate and combined data from three large AMD case-control studies and a prospective population-based study (The Rotterdam Study) were used to analyse the genetic association between ERCC6 and AMD (2682 AMD cases and 3152 controls). We also measured ERCC6 mRNA levels in retinal pigment epithelium (RPE) cells of healthy and early AMD affected human donor eyes. Rs3793784 conferred a small increase in risk for late AMD in the Dutch population (The Rotterdam and AMRO-NL study), but this was not replicated in two non-European studies (AREDS, Columbia University). In addition, the AMRO-NL study revealed no significant association for 9 other variants spanning ERCC6. Finally, we determined that ERCC6 expression in the human RPE did not depend on rs3793784 genotype, but, interestingly, on AMD status: Early AMD-affected donor eyes had a 50% lower ERCC6 expression than healthy donor eyes (P = 0.018). Conclusions/Significance Our meta-analysis of four Caucasian cohorts does not replicate the reported association between SNPs in ERCC6 and AMD. Nevertheless, our findings on ERCC6 expression in the RPE suggest that ERCC6 may be functionally involved in AMD. Combining our data with those of the literature, we hypothesize that the AMD-related reduced transcriptional activity of ERCC6 may be caused by diverse, small and heterogeneous genetic and/or environmental determinants.
Collapse
Affiliation(s)
- Dominique C. Baas
- Department of Clinical and Molecular Ophthalmogenetics, The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Dominiek D. Despriet
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo G. M. F. Gorgels
- Department of Clinical and Molecular Ophthalmogenetics, The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Julie Bergeron-Sawitzke
- Basic Science Program, Human Genetics Section, SAIC-Frederick, Frederick, Maryland, United States of America
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joanna E. Merriam
- Department of Ophthalmology, and Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - R. Theodore Smith
- Department of Ophthalmology, and Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Gaetano R. Barile
- Department of Ophthalmology, and Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Jacoline B. ten Brink
- Department of Clinical and Molecular Ophthalmogenetics, The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Johannes R. Vingerling
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, and Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Michael Dean
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Arthur A. B. Bergen
- Department of Clinical and Molecular Ophthalmogenetics, The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
103
|
Chun SG, Yee NS. Werner syndrome as a hereditary risk factor for exocrine pancreatic cancer: potential role of WRN in pancreatic tumorigenesis and patient-tailored therapy. Cancer Biol Ther 2010; 10:430-7. [PMID: 20657174 DOI: 10.4161/cbt.10.5.12763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advanced age is considered a risk factor for pancreatic cancer, but this relationship at the molecular and genetic level remains unclear. We present a clinical case series focusing on an association between pancreatic adenocarcinoma and Werner syndrome (WS) that is an autosomal recessive genetic disorder characterized by accelerated aging and cancer predisposition, and is caused by loss-of-function mutations in the WS RecQ helicase gene (WRN). Although pancreatic adenocarcinoma mostly occurs in a sporadic fashion, a minority of cases occurs in the context of susceptible individuals with hereditary syndromes. While WS has not been previously recognized as a risk factor for developing malignant tumors of the exocrine pancreas, the clinicopathologic features of three reported patients suggest a contributory role of WRN deficiency in pancreatic carcinogenesis. Molecular genetic analyses support the role of WRN as a tumor suppressor gene, although recent evidence reveals that WRN can alternatively promote oncogenicity depending on the molecular context. Based upon the clinico-pathologic features of these patients and the role of WRN in experimental models, we propose that its loss-of-function predisposes the development of pancreatic adenocarcinoma through epigenetic silencing or loss-of-heterozygosity of WRN. To test this hypothesis, we are investigating the mechanistic role of WRN in pancreatic cancer models including a pancreatic adenocarcinoma cell line generated from a human with WS. These studies are expected to provide new insight into the relationship between aging and pancreatic tumorigenesis, and facilitate development of novel strategies for patient-tailored interventions in this deadly malignancy.
Collapse
Affiliation(s)
- Stephen G Chun
- Department of Surgery, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | |
Collapse
|
104
|
Lagali PS, Corcoran CP, Picketts DJ. Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet 2010; 78:321-33. [DOI: 10.1111/j.1399-0004.2010.01503.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
105
|
Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 2010; 31:113-26. [PMID: 19894250 DOI: 10.1002/humu.21154] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/).
Collapse
Affiliation(s)
- V Laugel
- Laboratory of Medical Genetics, University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Pines A, Hameetman L, de Wilde J, Alekseev S, de Gruijl FR, Vrieling H, Mullenders LHF. Enhanced global genome nucleotide excision repair reduces UV carcinogenesis and nullifies strand bias in p53 mutations in Csb-/- mice. J Invest Dermatol 2010; 130:1746-9. [PMID: 20147962 DOI: 10.1038/jid.2010.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
107
|
Affiliation(s)
- Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
108
|
Abbasi R, Ramroth H, Becher H, Dietz A, Schmezer P, Popanda O. Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms inERCC5,ERCC6andRAD23Bbut not by polymorphisms in five other nucleotide excision repair genes. Int J Cancer 2009; 125:1431-9. [PMID: 19444904 DOI: 10.1002/ijc.24442] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rashda Abbasi
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
109
|
Susa D, De Bruin RWF, Mitchell JR, Roest HP, Hoeijmakers JHJ, Ijzermans JNM. Mechanisms of ageing in chronic allograft nephropathy. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060600756058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Osenbroch PØ, Auk-Emblem P, Halsne R, Strand J, Forstrøm RJ, van der Pluijm I, Eide L. Accumulation of mitochondrial DNA damage and bioenergetic dysfunction in CSB defective cells. FEBS J 2009; 276:2811-21. [PMID: 19389114 DOI: 10.1111/j.1742-4658.2009.07004.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cockayne syndrome (CS) is a complex, progressive disease that involves neurological and developmental impairment and premature aging. The majority of CS patients have mutations in the CSB gene. The CSB protein is involved in multiple DNA repair pathways and CSB mutated cells are sensitive to a broad spectrum of genotoxic agents. We tested the hypothesis that sensitivity to such genotoxins could be mediated by mitochondrial dysfunction as a consequence of the CSB mutation. mtDNA from csb(m/m) mice accumulates oxidative damage including 8-oxoguanine, and cells from this mouse are hypersensitive to the mitochondrial oxidant menadione. Inhibitors of mitochondrial complexes and the glycolysis inhibitor 2-deoxyglucose kill csb(m/m) cells more efficiently than wild-type cells, via a mechanism that does not correlate with mtDNA damage formation. Menadione depletes cellular ATP, and recovery after depletion is slower in csb(m/m) cells. The bioenergetic alteration in csb(m/m) cells parallels the simpler organization of supercomplexes consisting of complexes I, III and IV in addition to partially disassembled complex V in the inner mitochondrial membrane. Exposing wild-type cells to DNA intercalating agents induces complex alterations, suggesting a link between mtDNA integrity, respiratory complexes and mitochondrial function. Thus, mitochondrial dysfunction may play a role in the pathology of CS.
Collapse
Affiliation(s)
- Pia Ø Osenbroch
- Institute of Clinical Biochemistry, Faculty division Rikshospitalet, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
111
|
Susa D, Mitchell JR, Verweij M, van de Ven M, Roest H, van den Engel S, Bajema I, Mangundap K, Ijzermans JNM, Hoeijmakers JHJ, de Bruin RWF. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice. Aging Cell 2009; 8:192-200. [PMID: 19338497 DOI: 10.1111/j.1474-9726.2009.00463.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system, progressive sensineuronal hearing loss and retinal degeneration. We tested the effects of congenital nucleotide excision DNA repair deficiency on acute oxidative stress sensitivity in vivo. Surprisingly, we found mouse models of Cockayne syndrome less susceptible than wild type animals to surgically induced renal ischemia reperfusion injury, a multifactorial injury mediated in part by oxidative damage. Renal failure-related mortality was significantly reduced in Csb(-/-) mice, kidney function was improved and proliferation was significantly higher in the regenerative phase following ischemic injury. Protection from ischemic damage correlated with improved baseline glucose tolerance and insulin sensitivity and a reduced inflammatory response following injury. Protection was further associated with genetic ablation of a different Cockayne syndrome-associated gene, Csa. Our data provide the first functional in vivo evidence that congenital DNA repair deficiency can induce protection from acute stress in at least one organ. This suggests that while specific types of unrepaired endogenous DNA damage may lead to detrimental effects in certain tissues, they may at the same time elicit beneficial adaptive changes in others and thus contribute to the tissue specificity of disease symptoms.
Collapse
Affiliation(s)
- Denis Susa
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Schumacher B, Hoeijmakers JH, Garinis GA. Sealing the gap between nuclear DNA damage and longevity. Mol Cell Endocrinol 2009; 299:112-7. [PMID: 19027821 DOI: 10.1016/j.mce.2008.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 08/03/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
A number of progeroid syndromes with defects in the cellular response to DNA damage suggest that progressive genome instability represents an important aspect of the aging process. Here, we review a number of mouse models for progeroid syndromes that are caused by inherited defects in nucleotide excision repair and are characterized by rapid onset of aging symptoms and premature death. We argue that alterations in genome maintenance pathways impact complex physiological processes that may affect the onset of clinically defined age-related pathologies, including cancer as well as pathways that are normally associated with longevity.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Genetics, Centre for Biomedical Genetics, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands. [corrected]
| | | | | |
Collapse
|
113
|
Abstract
The ability to respond to genotoxic stress is a prerequisite for the successful development of the nervous system. Mutations in various DNA repair factors can lead to human diseases that are characterized by pronounced neuropathology. In many of these syndromes the neurological component is among the most deleterious aspects of the disease. The nervous system poses a particular challenge in terms of clinical intervention, as the neuropathology associated with these diseases often arises during nervous system development and can be fully penetrant by childhood. Understanding how DNA repair deficiency affects the nervous system will provide a rational basis for therapies targeted at ameliorating the neurological problems in these syndromes.
Collapse
|
114
|
Ma H, Hu Z, Wang H, Jin G, Wang Y, Sun W, Chen D, Tian T, Jin L, Wei Q, Lu D, Huang W, Shen H. ERCC6/CSB gene polymorphisms and lung cancer risk. Cancer Lett 2009; 273:172-6. [DOI: 10.1016/j.canlet.2008.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 03/31/2008] [Accepted: 08/04/2008] [Indexed: 12/01/2022]
|
115
|
An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol 2008; 29:1276-90. [PMID: 19114557 DOI: 10.1128/mcb.01229-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Patients carrying mutations in the XPB helicase subunit of the basal transcription and nucleotide excision repair (NER) factor TFIIH display the combined cancer and developmental-progeroid disorder xeroderma pigmentosum/Cockayne syndrome (XPCS). Due to the dual transcription repair role of XPB and the absence of animal models, the underlying molecular mechanisms of XPB(XPCS) are largely uncharacterized. Here we show that severe alterations in Xpb cause embryonic lethality and that knock-in mice closely mimicking an XPCS patient-derived XPB mutation recapitulate the UV sensitivity typical for XP but fail to show overt CS features unless the DNA repair capacity is further challenged by crossings to the NER-deficient Xpa background. Interestingly, the Xpb(XPCS) Xpa double mutants display a remarkable interanimal variance, which points to stochastic DNA damage accumulation as an important determinant of clinical diversity in NER syndromes. Furthermore, mice carrying the Xpb(XPCS) mutation together with a point mutation in the second TFIIH helicase Xpd are healthy at birth but display neonatal lethality, indicating that transcription efficiency is sufficient to permit embryonal development even when both TFIIH helicases are crippled. The double-mutant cells exhibit sensitivity to oxidative stress, suggesting a role for endogenous DNA damage in the onset of XPB-associated CS.
Collapse
|
116
|
Khobta A, Kitsera N, Speckmann B, Epe B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair (Amst) 2008; 8:309-17. [PMID: 19061977 DOI: 10.1016/j.dnarep.2008.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
We have analysed the effect of oxidative guanine lesions on the expression of a transfected reporter gene in mouse embryonic fibroblasts deficient in Cockayne syndrome B protein (Csb) and/or the 8-oxoguanine DNA glycosylase (Ogg1). We used a highly sensitive flow cytometry-based approach and quantitative real-time PCR to measure the changes in gene expression caused by the presence of oxidised guanine residues generated by photosensitisation in the vector DNA. In wild-type cells, small numbers (one or three) of oxidised guanines did not affect gene expression at short times after transfections, whereas progressive reduction of the transgene expression was observed at later time points. Although Ogg1 has a major contribution to the repair of oxidised guanine bases, its absence did not have a strong effect on the gene expression. In contrast, the lack of functional Csb protein caused a pronounced inactivation of the damaged reporter gene. Most strikingly, an additional Ogg1 deficiency significantly attenuated this effect. The results indicate that the processing of oxidative guanine modifications by Ogg1 can mediate host cell inactivation rather than reactivation of the damaged genes and that this effect is strongly enhanced in the absence of Csb.
Collapse
Affiliation(s)
- Andriy Khobta
- Johannes Gutenberg University of Mainz, Institute of Pharmacy, Mainz, Germany.
| | | | | | | |
Collapse
|
117
|
Animal Models of Xeroderma Pigmentosum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:152-60. [DOI: 10.1007/978-0-387-09599-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
118
|
8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc Natl Acad Sci U S A 2008; 105:18877-82. [PMID: 19020090 DOI: 10.1073/pnas.0806464105] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
8-Oxoguanine (8OG) is efficiently bypassed by RNA polymerases in vitro and in bacterial cells in vivo, leading to mutant transcripts by directing incorporation of an incorrect nucleotide during transcription. Such transcriptional mutagenesis (TM) may produce a pool of mutant proteins. In contrast, transcription-coupled repair safeguards against DNA damage, contingent upon the ability of lesions to arrest elongating RNA polymerase. In mammalian cells, the Cockayne syndrome B protein (Csb) mediates transcription-coupled repair, and its involvement in the repair of 8OG is controversial. The DNA glycosylase Ogg1 initiates base excision repair of 8OG, but its influence on TM is unknown. We have developed a mammalian system for TM in congenic mouse embryonic fibroblasts (MEFs), either WT or deficient in Ogg1 (ogg(-/-)), Csb (csb(-/-)), or both. This system uses expression of the Ras oncogene in which an 8OG replaces guanine in codon 61. Repair of 8OG restores the WT sequence; however, bypass and misinsertion opposite this lesion during transcription leads to a constitutively active mutant Ras protein and activation of downstream signaling events, including increased phosphorylation of ERK kinase. Upon transfection of MEFs with replication-incompetent 8OG constructs, we observed a marked increase in phospho-ERK in ogg(-/-) and csb(-/-)ogg(-/-) cells at 6 h, indicating persistence of the lesion and the occurrence of TM. This effect is absent in WT and csb(-/-) cells, suggesting rapid repair. These studies provide evidence that 8OG causes TM in mammalian cells, leading to a phenotypic change with important implications for the role of TM in tumorigenesis.
Collapse
|
119
|
New aspects on mechanisms of chemical carcinogenesis: emphasis on species and gender/sex differences and developmental/aging determinants. Arch Toxicol 2008; 82:875-80. [DOI: 10.1007/s00204-008-0368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 09/23/2008] [Indexed: 02/07/2023]
|
120
|
Andressoo JO, Hoeijmakers JHJ, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:45-83. [PMID: 18727498 DOI: 10.1007/1-4020-3764-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jaan-Olle Andressoo
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
121
|
Schumacher B, van der Pluijm I, Moorhouse MJ, Kosteas T, Robinson AR, Suh Y, Breit TM, van Steeg H, Niedernhofer LJ, van IJcken W, Bartke A, Spindler SR, Hoeijmakers JHJ, van der Horst GTJ, Garinis GA. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 2008; 4:e1000161. [PMID: 18704162 PMCID: PMC2493043 DOI: 10.1371/journal.pgen.1000161] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension. To identify mechanisms that regulate mammalian longevity, we have quantified the expression parallels of a number of long-lived mice that show delayed aging and DNA repair mutants that age and die prematurely. Unexpectedly, we found significant, genome-wide similarities and a widespread overlap of over-represented biological processes in the transcriptomes of these disparate mouse strains. Subsequent analysis revealed that similar responses are triggered constitutively in a number of organs in aged mice. Thus, both intrinsic and environmental stressors (e.g., aging, genome instability, or food shortage) induce survival responses aimed at overcoming crisis and extending lifespan. Such survival responses are likely to allow assessment of biological age as well as provide valuable targets for therapies aimed at health-span extension.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J. Moorhouse
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theodore Kosteas
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Andria Rasile Robinson
- University of Pittsburgh Cancer Institute, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yousin Suh
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Timo M. Breit
- Integrative Bioinformatics Unit, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Harry van Steeg
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology, and Genetics (TOX), Bilthoven, The Netherlands
| | - Laura J. Niedernhofer
- University of Pittsburgh Cancer Institute, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Wilfred van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, School of Medicine, Southern Illinois University, Springfield, Illinois, United States of America
| | - Stephen R. Spindler
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
| | - Jan H. J. Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - George A. Garinis
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
- * E-mail: (GTJvdH); (GAG)
| |
Collapse
|
122
|
Rolseth V, Rundén-Pran E, Luna L, McMurray C, Bjørås M, Ottersen OP. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains. DNA Repair (Amst) 2008; 7:1578-88. [PMID: 18603019 DOI: 10.1016/j.dnarep.2008.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 12/22/2022]
Abstract
High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.
Collapse
Affiliation(s)
- Veslemøy Rolseth
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet HF, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
123
|
Cleaver JE, Revet I. Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging. Mech Ageing Dev 2008; 129:492-7. [PMID: 18336867 PMCID: PMC2517418 DOI: 10.1016/j.mad.2008.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/18/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
Cancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair. Cancer arises from surviving cells, or even stem cells, that have down-regulated many pathways, including apoptosis, that regulate genomic stability in a multi-step process. Neurodegeneration however occurs in nondividing neurons in which the persistence of apoptosis in response to reactive oxygen species is, itself, pathological. Questions that remain open concern: sources and chemical nature of naturally occurring DNA damaging agents, especially whether mitochondria are the true source; the target tissues for DNA damage and repair; do the human DNA repair deficient diseases delineate specific pathways of DNA damage relevant to clinical outcomes; if naturally occurring reactive oxygen species are pathological in human repair deficient disease, would anti-oxidants or anti-apoptotic agents be feasible therapeutic agent?
Collapse
Affiliation(s)
- J E Cleaver
- Department of Dermatology and UCSF Cancer Center, University of California-San Francisco, CA 94143-0808, USA.
| | | |
Collapse
|
124
|
Park JY, Cho MO, Leonard S, Calder B, Mian IS, Kim WH, Wijnhoven S, van Steeg H, Mitchell J, van der Horst GTJ, Hoeijmakers J, Cohen P, Vijg J, Suh Y. Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice. PLoS One 2008; 3:e2346. [PMID: 18545656 PMCID: PMC2396506 DOI: 10.1371/journal.pone.0002346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/02/2008] [Indexed: 01/08/2023] Open
Abstract
Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.
Collapse
Affiliation(s)
- Jung Yoon Park
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mi-Ook Cho
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shanique Leonard
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brent Calder
- Buck Institute for Age Research, Novato, California, United States of America
| | - I. Saira Mian
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Susan Wijnhoven
- National Institute of Public Health and the Environment, Laboratory of Toxicology, Pathology and Genetics, Bilthoven, the Netherlands
| | - Harry van Steeg
- National Institute of Public Health and the Environment, Laboratory of Toxicology, Pathology and Genetics, Bilthoven, the Netherlands
| | - James Mitchell
- MGC-Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jan Hoeijmakers
- MGC-Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pinchas Cohen
- Pediatric Endocrinology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jan Vijg
- Buck Institute for Age Research, Novato, California, United States of America
| | - Yousin Suh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
125
|
Niedernhofer LJ. Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mech Ageing Dev 2008; 129:408-15. [PMID: 18538374 DOI: 10.1016/j.mad.2008.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/14/2008] [Accepted: 04/19/2008] [Indexed: 12/29/2022]
Abstract
Nucleotide excision repair (NER) is a multi-step DNA repair mechanism that removes helix-distorting modified nucleotides from the genome. NER is divided into two subpathways depending on the location of DNA damage in the genome and how it is first detected. Global genome NER identifies and repairs DNA lesions throughout the genome. This subpathway of NER primarily protects against the accumulation of mutations in the genome. Transcription-coupled (TC)-NER rapidly repairs lesions in the transcribed strand of DNA that block transcription by RNA polymerase II. TC-NER prevents cell death in response to stalled transcription. Defects in NER cause three distinct human diseases: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Each of these syndromes is characterized by premature onset of pathologies that overlap with those associated with old age in humans. This reveals the contribution of DNA damage to multiple age-related diseases. Tissues affected include the skin, eye, bone marrow, nervous system and endocrine axis. This review emphasizes accelerated aging associated with xeroderma pigmentosum and discusses the cause of these pathologies, either mutation accumulation or cell death as a consequence of failure to repair DNA damage.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, UP Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
126
|
Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 2008; 129:441-8. [PMID: 18541289 DOI: 10.1016/j.mad.2008.04.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
Cockayne Syndrome (CS) is a rare human genetic disorder characterized by progressive multisystem degeneration and segmental premature aging. The CS complementation group B (CSB) protein is engaged in transcription coupled and global nucleotide excision repair, base excision repair and general transcription. However, the precise molecular function of the CSB protein is still unclear. In the current review we discuss the involvement of CSB in some of these processes, with focus on the role of CSB in repair of oxidative damage, as deficiencies in the repair of these lesions may be an important aspect of the premature aging phenotype of CS.
Collapse
Affiliation(s)
- Tinna Stevnsner
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
127
|
An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 2008; 4:e1000031. [PMID: 18369450 PMCID: PMC2268245 DOI: 10.1371/journal.pgen.1000031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. For reasons that are still unclear, genetic defects in DNA repair can cause diseases that resemble aspects of premature ageing (“segmental progerias”). Cockayne syndrome (CS) is a particularly devastating progeria most commonly caused by mutations in the CSB chromatin remodeling gene. About 43 million years ago, before humans diverged from marmosets, one of the last PiggyBac transposable elements to invade the human lineage landed within intron 5 of the 21 exon CSB gene. As a result, the CSB locus now encodes two equally abundant proteins generated by alternative mRNA splicing: the original full length CSB protein, and a novel CSB-PiggyBac fusion protein in which the N-terminus of CSB is fused to the complete PiggyBac transposase. Conservation of the CSB-PiggyBac fusion protein since marmoset suggests that it is normally beneficial, demonstrating once again that “selfish” transposable elements can be exploited or “domesticated” by the host. More importantly, almost all CSB mutations that cause CS continue to make the CSB-PiggyBac fusion protein, whereas a mutation that compromises both does not cause CS. Thus the fusion protein which is beneficial in the presence of functional CSB may be harmful in its absence. This may help clarify the cause of CS and other progerias.
Collapse
|
128
|
Melis JP, Wijnhoven SW, Beems RB, Roodbergen M, van den Berg J, Moon H, Friedberg E, van der Horst GT, Hoeijmakers JH, Vijg J, van Steeg H. Mouse Models for Xeroderma Pigmentosum Group A and Group C Show Divergent Cancer Phenotypes. Cancer Res 2008; 68:1347-53. [DOI: 10.1158/0008-5472.can-07-6067] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
129
|
Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008; 27:589-605. [PMID: 18285820 PMCID: PMC2262034 DOI: 10.1038/emboj.2008.15] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/16/2008] [Indexed: 12/12/2022] Open
Abstract
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.
Collapse
Affiliation(s)
- Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute/UHN, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
130
|
Hinkal G, Donehower LA. How does suppression of IGF-1 signaling by DNA damage affect aging and longevity? Mech Ageing Dev 2008; 129:243-53. [PMID: 18374391 DOI: 10.1016/j.mad.2008.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 01/01/2023]
Abstract
Long-lived animals have evolved a robust set of defenses to maintain genomic integrity over their entire lifespan. The DNA damage response and DNA repair pathways are critical pillars of organismal defenses, minimizing somatic mutations in both post-mitotic and mitotic cells. These genomic maintenance systems not only prevent the premature emergence of cancers but may also maintain normal tissue function and organismal longevity. Genetic defects in a number of DNA repair and DNA damage response genes often leads to a dramatic increase in cancer incidence; in other cases, premature aging or progeroid syndromes may be induced. In this review, we discuss two recent reports of two nucleotide excision repair-deficient models that exhibit dramatic premature aging and shortened longevity. The DNA repair defects were also associated with a significant inhibition of the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis, an endocrine signaling pathway shown to influence aging and longevity in both vertebrates and invertebrates. Potential mechanisms of how DNA damage might affect IGF-1 signaling and aging are discussed, with a particular emphasis on the role of such signaling alterations in the adult tissue stem cell compartments.
Collapse
Affiliation(s)
- George Hinkal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
131
|
Niedernhofer LJ. Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair (Amst) 2008; 7:1180-9. [PMID: 18272436 DOI: 10.1016/j.dnarep.2007.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER-deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER-deficiency.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
132
|
Lin Z, Zhang X, Tuo J, Guo Y, Green B, Chan CC, Tan W, Huang Y, Ling W, Kadlubar FF, Lin D, Ning B. A variant of the Cockayne syndrome B gene ERCC6 confers risk of lung cancer. Hum Mutat 2008; 29:113-22. [PMID: 17854076 PMCID: PMC2441604 DOI: 10.1002/humu.20610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome B protein (ERCC6) plays an essential role in DNA repair. However, the Cockayne syndrome caused by the ERCC6 defect has not been linked to cancer predisposition; likely due to the fact that cells with severe disruption of the ERCC6 function are sensitive to lesion-induced apoptosis, thus reducing the chance of tumorigenesis. The biological function and cancer susceptibility of a common variant rs3793784:C>G (c.-6530C>G) in the ERCC6 was examined. We show that the c.-6530C allele has lower binding affinity of Sp1 by EMSA and displays a lower transcriptional activity in vitro and in vivo. We then examined the contribution of this polymorphism to the risk of lung cancer in a case-control study with 1,000 cases and 1,000 controls. The case-control analysis revealed a 1.76-fold (P= x 10(-9)) excess risk of developing lung cancer for the c.-6530CC carriers compared with noncarriers. The c.-6530CC interacts with smoking to intensify lung cancer risk, with the odds ratio (OR)=9 for developing lung cancer among heavy smokers. Our data constituted strong evidence that ERCC6 rs3793784:C>G alters its transcriptional activity and may confer personalized susceptibility to lung cancer.
Collapse
Affiliation(s)
- Zhongning Lin
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Zhang
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongli Guo
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bridgett Green
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wen Tan
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Wenhua Ling
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fred F. Kadlubar
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| | - Baitang Ning
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
- Correspondence to: Dongxin Lin, M.D., Department of Etiology and Carcinogenesis, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing 100021, China. Fax: (86)10-67722460. E-mail: , Baitang Ning, Ph.D., 3900 NCTR Road, HFT-100, Jefferson, AR 72079. E-mail:
| |
Collapse
|
133
|
Age to survive: DNA damage and aging. Trends Genet 2008; 24:77-85. [PMID: 18192065 DOI: 10.1016/j.tig.2007.11.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.
Collapse
|
134
|
Laugel V, Dalloz C, Stary A, Cormier-Daire V, Desguerre I, Renouil M, Fourmaintraux A, Velez-Cruz R, Egly JM, Sarasin A, Dollfus H. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur J Hum Genet 2008; 16:320-7. [DOI: 10.1038/sj.ejhg.5201991] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
135
|
DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst) 2008; 7:523-9. [PMID: 18248857 DOI: 10.1016/j.dnarep.2007.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/17/2007] [Accepted: 11/21/2007] [Indexed: 01/13/2023]
Abstract
Richard Cornall and collaborators recently developed a mouse model of Ligase IV syndrome with growth retardation and immunodeficiency due to a defect in nonhomologous end-joining (NHEJ) of DNA double-strand breaks. They demonstrated age-dependent loss of hematopoietic stem cell function in these mice. Simultaneously, Irving Weissman and colleagues demonstrated a similar phenomenon in Ku80(-/-) mice defective in NHEJ and telomere maintenance, Xpd(TTD) mice defective in nucleotide excision repair, and late generation mTr(-/-) missing telomerase activity. These studies strongly support the hypothesis that genomic stress causes aging by limiting the ability of stem cells to indefinitely maintain tissue homeostasis.
Collapse
|
136
|
A neurological phenotype in mice with DNA repair gene Ercc1 deficiency. DNA Repair (Amst) 2007; 7:281-91. [PMID: 18221731 DOI: 10.1016/j.dnarep.2007.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/10/2007] [Accepted: 10/15/2007] [Indexed: 11/24/2022]
Abstract
Transcription-coupled repair of endogenous DNA damage appears crucial for the maintenance of the central and peripheral nervous systems. Ercc1 is essential for nucleotide excision repair and is also involved in recombination repair and the repair of interstrand cross-links. We have investigated the neurological phenotype of Ercc1-deficient mice where the liver dysfunction has been corrected by an Ercc1 transgene controlled by a liver-specific promoter. We observed poor coordination, ataxia and loss of visual acuity, but saw no evidence of the anticipated histopathological neurodegeneration, or of abnormal neuromuscular junctions. Instead we observed uraemic encephalopathy, a brain disease resulting from kidney failure. This diagnosis was supported by histopathological signs of kidney disease, as well as proteinuria. When we examined archival sections from neural-specific Ercc1 knockout mice, which showed the same reduced growth and died at the same age as the liver-corrected Ercc1 knockouts, we found no evidence of kidney pathology or encephalopathy. Thus, while some aspects of the Ercc1-deficient phenotype are indicative of functional neurodegeneration, we obtained no structural evidence for this. The structural changes observed in the brains of liver-corrected Ercc1 knockouts appear to be a secondary consequence of kidney failure arising from Ercc1 deficiency.
Collapse
|
137
|
Astin JW, O'Neil NJ, Kuwabara PE. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst) 2007; 7:267-80. [PMID: 18053776 DOI: 10.1016/j.dnarep.2007.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/07/2007] [Accepted: 10/12/2007] [Indexed: 01/06/2023]
Abstract
The Caenorhabditis elegans rad-3 gene was identified in a genetic screen for radiation sensitive (rad) mutants. Here, we report that the UV sensitivity of rad-3 mutants is caused by a nonsense mutation in the C. elegans orthologue of the human nucleotide excision repair gene XPA. We have used the xpa-1/rad-3 mutant to examine how a defect in nucleotide excision repair (NER) perturbs development. We find that C. elegans carrying a mutation in xpa-1/rad-3 are hypersensitive and hypermutable in response to UV irradiation, but do not display hypersensitivity to oxidative stress or show obvious developmental abnormalities in the absence of UV exposure. Consistent with these observations, non-irradiated xpa-1 mutants have a similar lifespan as wild type. We further show that UV irradiated xpa-1 mutants undergo a stage-dependent decline in growth and survival, which is associated with a loss in transcriptional competence. Surprisingly, transcriptionally quiescent dauer stage larvae are able to survive a dose of UV irradiation, which is otherwise lethal to early stage larvae. We show that the loss of transcriptional competence in UV irradiated xpa-1 mutants is associated with the degradation of the large RNA polymerase II (RNA pol II) subunit, AMA-1, and have identified WWP-1 as the putative E3 ubiquitin ligase mediating this process. The absence of wwp-1 by itself does not cause sensitivity to UV irradiation, but it acts synergistically with a mutation in xpa-1 to enhance UV hypersensitivity.
Collapse
Affiliation(s)
- Jonathan W Astin
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
138
|
Trapp C, McCullough AK, Epe B. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice. Mutat Res 2007; 625:155-63. [PMID: 17675188 DOI: 10.1016/j.mrfmmm.2007.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/24/2007] [Accepted: 06/15/2007] [Indexed: 01/12/2023]
Abstract
Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1(-/-) mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes (Fpg, MutY, endonuclease III, endonuclease IV) to determine the average steady-state number of oxidative DNA modifications within intact (supercoiled) mtDNA from the livers of wild-type mice and those deficient in OGG1 and/or the Cockayne syndrome B (CSB) protein for mice aged up to 23 months. The levels of all types of oxidative modifications were found to be less than 12 per million base pairs, and the difference between wild-type and repair-deficient (Ogg1(-/-)/Csb(-/-)) mice was not significant. Thus, the increase of 8-oxoG caused by the repair deficiency in intact mtDNA is not much higher than in the nuclear DNA, i.e., not more than a few modifications per million base pairs. Based on these data, it is hypothesized that the load of oxidative base modifications in mtDNA is efficiently reduced during replication even in the absence of excision repair.
Collapse
Affiliation(s)
- Christian Trapp
- Institute of Pharmacy, University of Mainz, D-55099 Mainz, Germany
| | | | | |
Collapse
|
139
|
Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Genetic variation in the nucleotide excision repair pathway and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 15:2263-9. [PMID: 17119055 DOI: 10.1158/1055-9965.epi-06-0449] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleotide excision repair (NER) enzymes are critical for the removal of bulky DNA adducts caused by environmental carcinogens, such as heterocyclic amines and polycyclic aromatic hydrocarbons, which are found in two putative risk factors for colorectal cancer, tobacco smoke and meat cooked at high temperature. To examine the association between common genetic variants in NER genes and the risk of colorectal cancer, we conducted a case-cohort study within the CLUE II cohort. Twenty-two single nucleotide polymorphisms in 11 NER genes were genotyped in 250 colorectal cancer cases and a subcohort of 2,224 participants. Incidence rate ratios (RR) and 95% confidence intervals (95% CI) were estimated using a modified Cox regression model and robust variance estimate. The ERCC6 1213G variant, which is thought to reduce NER capacity, was associated with an increased risk of colorectal cancer compared with the homozygous wild type (RR, 1.36; 95% CI, 1.00-1.86 and RR, 2.64; 95% CI, 1.53-4.58 for the RG and GG genotypes respectively with P(trend) = 0.0006). Having at least one XPC 492H allele was also associated with an increased risk of colorectal cancer (RR, 1.75; 95% CI, 1.20-2.57). When the combined effects of ERCC6 R1213G and XPC R492H were examined, the risk of colorectal cancer significantly increased with increasing number of variant alleles (P(trend) = 0.00003). Our study suggests that genetic polymorphisms in the NER genes, ERCC6 and XPC, may be associated with an increased risk of colorectal cancer.
Collapse
Affiliation(s)
- Sonja I Berndt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
140
|
Trapp C, Schwarz M, Epe B. The Peroxisome Proliferator WY-14,643 Promotes Hepatocarcinogenesis Caused by Endogenously Generated Oxidative DNA Base Modifications in Repair-Deficient Csbm/m/Ogg1−/− Mice. Cancer Res 2007; 67:5156-61. [PMID: 17545594 DOI: 10.1158/0008-5472.can-07-0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal levels of endogenously generated oxidative DNA modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are present in apparently all mammalian cells, but their relevance for the generation of spontaneous cancers remains to be established. Both the 8-oxoG levels and the resulting spontaneous mutations are increased in the livers of Csb(m/m)/Ogg1(-/-) mice, which are deficient in the repair of 8-oxoG. In order to determine the consequences of these additional oxidative DNA modifications and mutations and thus assess the tumor initiating potency of this type of endogenous DNA damage, we treated Csb(m/m)/Ogg1(-/-) mice and repair-proficient controls with the peroxisome proliferator WY-14,643 (0.025% ad libitum), a potent inducer of liver cell proliferation. The treatment did not generate any additional oxidative DNA damage; the elevated levels of 8-oxoG in the Csb(m/m)/Ogg1(-/-) mice even decreased. Also, the spontaneous mutation frequencies observed in the lacI gene of BigBlue Csb(m/m)/Ogg1(-/-) mice, which were approximately 3-fold higher than in the repair-proficient mice, declined by 39% under the treatment, whereas the frequencies in the livers of the repair-proficient animals remained unchanged. Preneoplastic lesions (staining positive or negative for glucose-6-phoshatase) developed in the livers of both wild-type and Csb(m/m)/Ogg1(-/-) mice after 30 weeks. Both the numbers and the total volumes of the lesions were approximately 6-fold higher in the repair-deficient mice than in the wild-type mice. The results indicate that spontaneous mutations generated from endogenous oxidative DNA base damage efficiently translate into increased tumorigenesis when cell proliferation is stimulated.
Collapse
|
141
|
van der Pluijm I, Garinis GA, Brandt RMC, Gorgels TGMF, Wijnhoven SW, Diderich KEM, de Wit J, Mitchell JR, van Oostrom C, Beems R, Niedernhofer LJ, Velasco S, Friedberg EC, Tanaka K, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol 2007; 5:e2. [PMID: 17326724 PMCID: PMC1698505 DOI: 10.1371/journal.pbio.0050002] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 10/16/2006] [Indexed: 12/21/2022] Open
Abstract
Cockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csbm/m/Xpa−/− mutants causes a phenotype that reliably mimics the human progeroid CS syndrome. Newborn Csbm/m/Xpa−/− mice display attenuated growth, progressive neurological dysfunction, retinal degeneration, cachexia, kyphosis, and die before weaning. Mouse liver transcriptome analysis and several physiological endpoints revealed systemic suppression of the growth hormone/insulin-like growth factor 1 (GH/IGF1) somatotroph axis and oxidative metabolism, increased antioxidant responses, and hypoglycemia together with hepatic glycogen and fat accumulation. Broad genome-wide parallels between Csbm/m/Xpa−/− and naturally aged mouse liver transcriptomes suggested that these changes are intrinsic to natural ageing and the DNA repair–deficient mice. Importantly, wild-type mice exposed to a low dose of chronic genotoxic stress recapitulated this response, thereby pointing to a novel link between genome instability and the age-related decline of the somatotroph axis. Studies in mice defective in two DNA repair pathways (global NER and TCR; an animal model for Cockayne syndrome) highlight a link between aging, a failure to repair DNA lesions, and metabolic alterations. Normal metabolism routinely produces reactive oxygen species that damage DNA and other cellular components and is thought to contribute to the ageing process. Although DNA damage is typically kept in check by a variety of enzymes, several premature ageing disorders result from failure to remove damage from active genes. Patients with Cockayne syndrome (CS), a genetic mutation affecting one class of DNA repair enzymes, display severe growth retardation, neurological symptoms, and signs of premature ageing followed by an early death. Whereas mouse models for CS exhibit relatively mild deficits, we show that concomitant inactivation of a second DNA repair gene elicits severe CS pathology and ageing. Moreover, a few days after birth, these mice undergo systemic suppression of genes controlling growth, an unexpected decrease in oxidative metabolism, and an increased antioxidant response. Similar physiological changes are also triggered in normal mice by chronic exposure to DNA-damaging oxidative stress. From these findings, we conclude that DNA damage triggers a response aimed at limiting oxidative DNA damage levels (and associated tissue degeneration) to extend lifespan and promote healthy ageing. Better understanding of the ageing process will help to delineate intervention strategies to combat age-associated pathology.
Collapse
Affiliation(s)
- Ingrid van der Pluijm
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Garinis
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Renata M. C Brandt
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo G. M. F Gorgels
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susan W Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Karin E. M Diderich
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan de Wit
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - James R Mitchell
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Conny van Oostrom
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Rudolf Beems
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Laura J Niedernhofer
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susana Velasco
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kiyoji Tanaka
- Division of Cellular Genetics, Institute for Molecular and Cellular Biology, Osaka University, Osaka, Japan
| | - Harry van Steeg
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Jan H. J Hoeijmakers
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gijsbertus T. J van der Horst
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
142
|
Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA. DNA repair, mitochondria, and neurodegeneration. Neuroscience 2007; 145:1318-29. [PMID: 17092652 DOI: 10.1016/j.neuroscience.2006.08.061] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/22/2006] [Accepted: 08/29/2006] [Indexed: 12/21/2022]
Abstract
Accumulation of nuclear and mitochondrial DNA damage is thought to be particularly deleterious in post-mitotic cells, which cannot be replaced through cell division. Recent experimental evidence demonstrates the importance of DNA damage responses for neuronal survival. Here, we summarize current literature on DNA damage responses in the mammalian CNS in aging and neurodegeneration. Base excision repair (BER) is the main pathway for the removal of small DNA base modifications, such as alkylation, deamination and oxidation, which are generated as by-products of normal metabolism and accumulate with age in various experimental models. Using neuronal cell cultures, human brain tissue and animal models, we and others have shown an active BER pathway functioning in the brain, both in the mitochondrial and nuclear compartments. Mitochondrial DNA repair may play a more essential role in neuronal cells because these cells depend largely on intact mitochondrial function for energy metabolism. We have characterized several BER enzymes in mammalian mitochondria and have shown that BER activities change with age in mitochondria from different brain regions. Together, the results reviewed here advocate that mitochondrial DNA damage response plays an important role in aging and in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- L Weissman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute on Aging, IRP, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
143
|
RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst) 2007; 6:841-51. [PMID: 17374514 DOI: 10.1016/j.dnarep.2007.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/18/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
The blockage of transcription elongation by RNA polymerase II (RNAPII) at DNA lesions on the transcribed strand is a serious challenge to accurate transcription. Transcription-coupled DNA repair (TCR), which is assumed to be initiated by the blockage of transcription, rapidly removes lesions on the transcribed strand of expressed genes and allows the resumption of transcription. Although helix-distorting bulky damage such as a cyclobutane pyrimidine dimer is known to block transcription elongation and to be repaired by TCR, it is not clear whether oxidative DNA lesions are repaired by TCR. First, we examined whether transcription elongation by RNAPII is stalled at sites of 2-hydroxyadenine (2-OH-A), 8-oxoadenine (8-oxoA), 8-oxoguanine (8-oxoG), or thymine glycol (Tg) on the transcribed strand. Our results indicate that RNAPII incorporated nucleotides opposite the lesions and then stalled. In addition, we found that transcription elongation factor TFIIS (SII) enabled RNAPII to bypass 8-oxoG but not the other types of damage, while transcription initiation and elongation factor TFIIF did not bypass 8-oxoG. These results suggest that SII is important for preventing cellular death due to oxidative DNA damage, assisting RNAPII to bypass 8-oxoG.
Collapse
|
144
|
Wijnhoven SWP, Hoogervorst EM, de Waard H, van der Horst GTJ, van Steeg H. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat Res 2007; 614:77-94. [PMID: 16769089 DOI: 10.1016/j.mrfmmm.2005.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/23/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
145
|
Laposa RR, Huang EJ, Cleaver JE. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci U S A 2007; 104:1389-94. [PMID: 17229834 PMCID: PMC1783131 DOI: 10.1073/pnas.0610619104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, characterized by a deficiency in the DNA repair pathway of transcription-coupled nucleotide excision repair. Mice with a targeted deletion of the CSB gene (Csb-/-) exhibit a much milder ataxic phenotype than human patients. Csb-/- mice that are also deficient in global genomic repair [Csb-/-/xeroderma pigmentosum C (Xpc)-/-] are more profoundly affected, exhibiting whole-body wasting, ataxia, and neural loss by postnatal day 21. Cerebellar granule cells demonstrated high TUNEL staining indicative of apoptosis. Purkinje cells, identified by the marker calbindin, were severely depleted and, although not TUNEL-positive, displayed strong immunoreactivity for p53, indicating cellular stress. A subset of animals heterozygous for Csb and Xpc deficiencies was more mildly affected, demonstrating ataxia and Purkinje cell loss at 3 months of age. Mouse, Csb-/-, and Xpc-/- embryonic fibroblasts each exhibited increased sensitivity to UV light, which generates bulky DNA damage that is a substrate for excision repair. Whereas Csb-/-/Xpc-/- fibroblasts were more UV-sensitive than either single knockout, double-heterozygote fibroblasts had normal UV sensitivity. Csb-/- mice crossed with a strain defective in base excision repair (Ogg1) demonstrated no enhanced neurodegenerative phenotype. Complete deficiency in nucleotide excision repair therefore renders the brain profoundly sensitive to neurodegeneration in specific cell types of the cerebellum, possibly because of unrepaired endogenous DNA damage that is a substrate for nucleotide but not base excision repair.
Collapse
Affiliation(s)
- R. R. Laposa
- Departments of *Dermatology and Cancer Center and
| | - E. J. Huang
- Pathology, University of California, San Francisco, CA 94143-0808
| | | |
Collapse
|
146
|
Trapp C, Reite K, Klungland A, Epe B. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Oncogene 2007; 26:4044-8. [PMID: 17213818 DOI: 10.1038/sj.onc.1210167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Cockayne syndrome B protein (CSB) has long been known to be involved in the repair of DNA modifications that block the RNA polymerase in transcribed DNA sequences (transcription-coupled repair). Recent evidence suggests that it also has a more general role in the repair of oxidative DNA base modifications such as 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG). In mammalian cells, 8-oxoG is a substrate of the repair glycosylase OGG1. Mice without this enzyme accumulate 8-oxoG in the genome and have elevated spontaneous mutation rates. To elucidate the role of CSB in the prevention of mutations by oxidative DNA base damage, we have generated mice that are deficient in Csb or Ogg1 or both genes and carry a non-transcribed bacterial lacI gene for mutation analysis (Big Blue mice). Our results indicate that the overall spontaneous mutation frequencies in the livers of Csb(m/m)/Ogg1-/- -mice are elevated not only compared with heterozygous control mice (factor 3.3), but also with Ogg1-/- -animals (factor 1.6). Sequence analysis revealed that the additional mutations caused by CSB deficiency in an Ogg1-/- background are mostly G:C to T:A transversions and small deletions. For all mouse strains, the background levels of oxidative purine modifications in the livers correlate linearly with the numbers of G:C to T:A transversions observed. The data indicate that CSB is involved in the inhibition of mutations caused by spontaneous oxidative DNA base damage in a non-transcribed gene.
Collapse
Affiliation(s)
- C Trapp
- Institute of Pharmacy, University of Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
147
|
Sarasin A, Stary A. New insights for understanding the transcription-coupled repair pathway. DNA Repair (Amst) 2006; 6:265-9. [PMID: 17194629 DOI: 10.1016/j.dnarep.2006.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2006] [Indexed: 11/28/2022]
Abstract
Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) able to remove bulky DNA lesions located on the transcribed strands of active genes more rapidly than those located on the non-transcribed genomic DNA. Two recently published reports try to dissect the molecular mechanisms of TCR using simplified in vitro assays. A third report shows in vivo data that confirmed the in vitro ones and extends them to the role of other TCR factors such as those involved in chromatin remodeling. These approaches shed light on the interplay between stalled RNA polymerase II and NER factors necessary for efficient repair. Because severe diseases, such as Cockayne syndrome, are associated with defects or mutations in proteins required for transcription-coupled nucleotide excision repair, complete understanding of this pathway should allow us to understand this disease better and eventually to propose adequate therapies.
Collapse
Affiliation(s)
- Alain Sarasin
- Genomes and Cancers, Institut Gustave Roussy, CNRS FRE 2939, 39, rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
148
|
Gorgels TGMF, van der Pluijm I, Brandt RMC, Garinis GA, van Steeg H, van den Aardweg G, Jansen GH, Ruijter JM, Bergen AAB, van Norren D, Hoeijmakers JHJ, van der Horst GTJ. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol Cell Biol 2006; 27:1433-41. [PMID: 17145777 PMCID: PMC1800713 DOI: 10.1128/mcb.01037-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the CSB gene cause Cockayne syndrome (CS), a DNA repair disorder characterized by UV sensitivity and severe physical and neurological impairment. CSB functions in the transcription-coupled repair subpathway of nucleotide excision repair. This function may explain the UV sensitivity but hardly clarifies the other CS symptoms. Many of these, including retinopathy, are associated with premature aging. We studied eye pathology in a mouse model for CS. Csb(m/m) mice were hypersensitive to UV light and developed epithelial hyperplasia and squamous cell carcinomas in the cornea, which underscores the importance of transcription-coupled repair of photolesions in the mouse. In addition, we observed a spontaneous loss of retinal photoreceptor cells with age in the Csb(m/m) retina, resulting in a 60% decrease in the number of rods by the age of 18 months. Importantly, when Csb(m/m) mice (as well as Csa(-/-) mice) were exposed to 10 Gy of ionizing radiation, we noticed an increase in apoptotic photoreceptor cells, which was not observed in wild-type animals. This finding, together with our observation that the expression of established oxidative stress marker genes is upregulated in the Csb(m/m) retina, suggests that (endogenous) oxidative DNA lesions play a role in this CS-specific premature-aging feature and supports the oxidative DNA damage theory of aging.
Collapse
Affiliation(s)
- Theo G M F Gorgels
- Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The impetus to develop useful models of human disease and toxicity has resulted in a number of large-scale mouse mutagenesis programmes. This, in turn, has stimulated considerable concern regarding the scientific validity and welfare of genetically altered mice, and the large numbers of mice that are required by such programmes. In this paper, the scientific advantages and limitations of genetically altered mice as models of several human diseases are discussed. We conclude that, while the use of some such mouse models has contributed considerably to an understanding of human disease and toxicity, other genetically altered mouse models have limited scientific relevance, and fewer have positively contributed to the development of novel human medicines. Suggestions for improving this unsatisfactory situation are made.
Collapse
Affiliation(s)
- Nirmala Bhogal
- FRAME, 96-98 North Sherwood Street, Nottingham, NG1 4EE, UK.
| | | |
Collapse
|
150
|
Kooter IM, Pennings JLA, Fokkens PHB, Leseman DLAC, Boere AJF, Gerlofs-Nijland ME, Cassee FR, Schalk JAC, Orzechowski TJH, Schaap MM, Breit TM, Dormans JAMA, van Oostrom CTM, de Vries A, van Steeg H. Ozone induces clear cellular and molecular responses in the mouse lung independently of the transcription-coupled repair status. J Appl Physiol (1985) 2006; 102:1185-92. [PMID: 17095637 DOI: 10.1152/japplphysiol.00796.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The oxidant ozone is a well-known air pollutant, inhalation of which is associated with respiratory tract inflammation and functional alterations of the lung. It is well established as an inducer of intracellular oxidative stress. We investigated whether Cockayne syndrome B, transcription-coupled, repair-deficient mice (Csb(-/-)), known to be sensitive to oxidative stressors, respond differently to ozone than repair-proficient controls (Csb(+/-)). Mice were exposed to 0.8 parts/million ozone for 8 h, and we examined a wide range of biological parameters in the lung at the gene expression, protein, and cellular level 4 h after the ozone exposure. Relevant biological responses to ozone for both repair-deficient Csb(-/-) and repair-proficient Csb(+/-) mice, as determined by biochemical analysis of bronchoalveolar lavage fluid (e.g., increases of polymorphonuclear neutrophils, alkaline phosphatase, macrophage-inflammatory protein-2, and tumor necrosis factor-alpha), pathological examinations, and gene expression (upregulation of oxidative-stress-related genes) analyses were observed. The bronchoalveolar lavage fluid showed significantly more tumor necrosis factor-alpha in repair-deficient Csb(-/-) mice than in repair-proficient Csb(+/-) mice after ozone exposure. In addition, a clear trend was observed toward fewer differentially expressed genes with a lower fold ratio in repair-deficient Csb(-/-) mice than in repair-proficient Csb(+/-) mice. However, repair-deficient Csb(-/-) mice do not respond significantly more sensitively to ozone compared with repair-proficient Csb(+/-) mice at the level of gene expression. We conclude that, under the conditions employed here, although small differences at the transcriptional level exist between repair-proficient Csb(+/-) mice and transcription-coupled repair defective Csb(-/-) mice, these do not have a significant effect on the ozone-induced lung injury.
Collapse
Affiliation(s)
- Ingeborg M Kooter
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|