101
|
Adedeji AO, Marchand B, te Velthuis AJW, Snijder EJ, Weiss S, Eoff RL, Singh K, Sarafianos SG. Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One 2012; 7:e36521. [PMID: 22615777 PMCID: PMC3352918 DOI: 10.1371/journal.pone.0036521] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023] Open
Abstract
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5′→3′ polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ∼280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.
Collapse
Affiliation(s)
- Adeyemi O. Adedeji
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America
| | - Bruno Marchand
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America
| | - Aartjan J. W. te Velthuis
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan Weiss
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kamalendra Singh
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America
| | - Stefan G. Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
102
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 2012; 10:34. [PMID: 22520345 PMCID: PMC3331839 DOI: 10.1186/1741-7007-10-34] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
103
|
Manosas M, Spiering MM, Ding F, Croquette V, Benkovic SJ. Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res 2012; 40:6187-98. [PMID: 22434886 PMCID: PMC3401439 DOI: 10.1093/nar/gks254] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Rapid and processive leading-strand DNA synthesis in the bacteriophage T4 system requires functional coupling between the helicase and the holoenzyme, consisting of the polymerase and trimeric clamp loaded by the clamp loader. We investigated the mechanism of this coupling on a DNA hairpin substrate manipulated by a magnetic trap. In stark contrast to the isolated enzymes, the coupled system synthesized DNA at the maximum rate without exhibiting fork regression or pauses. DNA synthesis and unwinding activities were coupled at low forces, but became uncoupled displaying separate activities at high forces or low dNTP concentration. We propose a collaborative model in which the helicase releases the fork regression pressure on the holoenzyme allowing it to adopt a processive polymerization conformation and the holoenzyme destabilizes the first few base pairs of the fork thereby increasing the efficiency of helicase unwinding. The model implies that both enzymes are localized at the fork, but does not require a specific interaction between them. The model quantitatively reproduces homologous and heterologous coupling results under various experimental conditions.
Collapse
Affiliation(s)
- Maria Manosas
- Département de Physique, Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie Université Paris 06, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris 75005, France
| | | | | | | | | |
Collapse
|
104
|
Saifi B, Ferat JL. Replication fork reactivation in a dnaC2 mutant at non-permissive temperature in Escherichia coli. PLoS One 2012; 7:e33613. [PMID: 22442702 PMCID: PMC3308344 DOI: 10.1371/journal.pone.0033613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are required to recruit and deposit the replicative helicase onto single-stranded DNA prior to the formation of the replisome. dnaC2 is a thermosensitive allele of the gene specifying the helicase loader; at non-permissive temperature replication cannot initiate, but most ongoing rounds of replication continues through to completion (18% of dnaC2 cells fail to complete replication at non-permissive temperature). An assumption, which may be drawn from this observation, is that only a few replication forks are arrested under normal growth conditions. This assumption, however, is at odds with the severe and deleterious phenotypes associated with a null mutant of priA, the gene encoding a helicase implicated in the reactivation of arrested replication forks. We developed an assay that involves an abrupt inactivation of rounds of synchronized replication in a large population of cells, in order to evaluate the ability of dnaC2 cells to reactivate arrested replication forks at non-permissive temperature. We compared the rate at which arrested replication forks accumulated in dnaC2 priA+ and dnaC2 priA2 cells and observed that this rate was lower in dnaC2 priA+ cells. We conclude that while replication cannot initiate in a dnaC2 mutant at non-permissive temperature, a class of arrested replication forks (PriA-dependent and DnaC-independent) are reactivated within these cells.
Collapse
Affiliation(s)
- Boubekeur Saifi
- Centre de Genetique Moleculaire du CNRS, Gif Sur Yvette, France
| | - Jean-Luc Ferat
- Centre de Genetique Moleculaire du CNRS, Gif Sur Yvette, France
- Universite de Versailles Saint Quentin, Versailles, France
- * E-mail:
| |
Collapse
|
105
|
De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K. Replisome Stability at Defective DNA Replication Forks Is Independent of S Phase Checkpoint Kinases. Mol Cell 2012; 45:696-704. [DOI: 10.1016/j.molcel.2012.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/17/2011] [Accepted: 01/06/2012] [Indexed: 12/20/2022]
|
106
|
Single-molecule studies reveal the function of a third polymerase in the replisome. Nat Struct Mol Biol 2011; 19:113-6. [PMID: 22157955 DOI: 10.1038/nsmb.2179] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/29/2011] [Indexed: 11/08/2022]
Abstract
The Escherichia coli replisome contains three polymerases, one more than necessary to duplicate the two parental strands. Using single-molecule studies, we reveal two advantages conferred by the third polymerase. First, dipolymerase replisomes are inefficient at synthesizing lagging strands, leaving single-strand gaps, whereas tripolymerase replisomes fill strands almost to completion. Second, tripolymerase replisomes are much more processive than dipolymerase replisomes. These features account for the unexpected three-polymerase-structure of bacterial replisomes.
Collapse
|
107
|
Nitharwal RG, Verma V, Subbarao N, Dasgupta S, Choudhury NR, Dhar SK. DNA binding activity of Helicobacter pylori DnaB helicase: the role of the N-terminal domain in modulating DNA binding activities. FEBS J 2011; 279:234-50. [PMID: 22074440 DOI: 10.1111/j.1742-4658.2011.08418.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Replicative helicases are major motor proteins essential for chromosomal DNA replication in prokaryotes. Usually hexameric in solution, their DNA binding property must have different roles at stages ranging from the loading onto a branched structure at initiation from the origin to the highly processive translocation during elongation. Here, we have analysed the DNA binding activity of Helicobacter pylori (Hp) replicative helicase, DnaB. The results indicate that while the C-terminal region is important for its DNA binding activity, the N-terminus appears to dampen the protein's affinity for DNA. The masking activity of the N-terminus does not require ATP or hexamerization of HpDnaB and can be overcome by deleting the N-terminus. It can also be neutralized by engaging the N-terminus in an interaction with a partner like the C-terminus of DnaG primase. The inhibitory effect of the N-terminus on DNA binding activity is consistent with the 3D homology model of HpDnaB. Electron microscopy of the HpDnaB-ssDNA complex showed that HpDnaB preferentially bound at the ends of linear ssDNA and translocated along the DNA in the presence of ATP. These results provide an insight into the stimulatory and inhibitory effects of different regions of HpDnaB on DNA binding activities that may be central to the loading and translocation functions of DnaB helicases.
Collapse
Affiliation(s)
- Ram G Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
109
|
Patel SS, Pandey M, Nandakumar D. Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol 2011; 15:595-605. [PMID: 21865075 DOI: 10.1016/j.cbpa.2011.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 01/05/2023]
Abstract
Helicases are molecular motor proteins that couple NTP hydrolysis to directional movement along nucleic acids. A class of helicases characterized by their ring-shaped hexameric structures translocate processively and unidirectionally along single-stranded (ss) DNA to separate the strands of double-stranded (ds) DNA, aiding both in the initiation and fork progression during DNA replication. These replicative ring-shaped helicases are found from virus to human. We review recent biochemical and structural studies that have expanded our understanding on how hexameric helicases use the NTPase reaction to translocate on ssDNA, unwind dsDNA, and how their physical and functional interactions with the DNA polymerase and primase enzymes coordinate replication of the two strands of dsDNA.
Collapse
Affiliation(s)
- Smita S Patel
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | |
Collapse
|
110
|
Downey CD, Crooke E, McHenry CS. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes. J Mol Biol 2011; 412:340-53. [PMID: 21820444 DOI: 10.1016/j.jmb.2011.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX(3)δδ'χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s(-1)) compatible with double-stranded DNA replication.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
111
|
Zhu B, Lee SJ, Richardson CC. Bypass of a nick by the replisome of bacteriophage T7. J Biol Chem 2011; 286:28488-97. [PMID: 21701044 DOI: 10.1074/jbc.m111.252023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
112
|
McHenry CS. Breaking the rules: bacteria that use several DNA polymerase IIIs. EMBO Rep 2011; 12:408-14. [PMID: 21475246 DOI: 10.1038/embor.2011.51] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/16/2011] [Indexed: 02/02/2023] Open
Abstract
Studies using Escherichia coli DNA polymerase (Pol) III as the prototype for bacterial DNA replication have suggested that--in contrast to eukaryotes--one replicase performs all of the main functions at the replication fork. However, recent studies have revealed that replication in other bacteria requires two forms of Pol III, one of which seems to extend RNA primers by only a few nucleotides before transferring the product to the other polymerase--an arrangement analogous to that in eukaryotes. Yet another group of bacteria encode a second Pol III (ImuC), which apparently replaces a Pol Y-type polymerase (Pol V) that is required for induced mutagenesis in E. coli. A complete understanding of complex bacterial replicases will allow the simultaneous biochemical screening of all their components and, thus, the identification of new antibacterial compounds.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Chemistry 76, UCB 215, Boulder, Colorado 80309, USA.
| |
Collapse
|
113
|
Ribeck N, Kaplan DL, Bruck I, Saleh OA. DnaB helicase activity is modulated by DNA geometry and force. Biophys J 2011; 99:2170-9. [PMID: 20923651 DOI: 10.1016/j.bpj.2010.07.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 11/24/2022] Open
Abstract
The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity.
Collapse
Affiliation(s)
- Noah Ribeck
- Department of Physics, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
114
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
115
|
A novel replicative enzyme encoded by the linear Arthrobacter plasmid pAL1. J Bacteriol 2010; 192:4935-43. [PMID: 20675469 DOI: 10.1128/jb.00614-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Arthrobacter nitroguajacolicus Rü61a contains the linear plasmid pAL1, which codes for the degradation of 2-methylquinoline. Like other linear replicons of actinomycetes, pAL1 is characterized by short terminal inverted-repeat sequences and terminal proteins (TPpAL1) covalently attached to its 5' ends. TPpAL1, encoded by the pAL1.102 gene, interacts in vivo with the protein encoded by pAL1.101. Bioinformatic analysis of the pAL1.101 protein, which comprises 1,707 amino acids, suggested putative zinc finger and topoisomerase-primase domains and part of a superfamily 2 helicase domain in its N-terminal and central regions, respectively. Sequence motifs characteristic of the polymerization domain of family B DNA polymerases are partially conserved in a C-terminal segment. The purified recombinant protein catalyzed the deoxycytidylation of TPpAL1 in the presence of single-stranded DNA templates comprising the 3'-terminal sequence (5'-GCAGG-3'), which in pAL1 forms the terminal inverted repeat, but also at templates with 5'-(G/T)CA(GG/GC/CG)-3' ends. Enzyme assays suggested that the protein exhibits DNA topoisomerase, DNA helicase, and DNA- and protein-primed DNA polymerase activities. The pAL1.101 protein, therefore, may act as a replicase of pAL1.
Collapse
|
116
|
Abstract
Replication of DNA is carried out by the replisome, a multiprotein complex responsible for the unwinding of parental DNA and the synthesis of DNA on each of the two DNA strands. The impressive speed and processivity with which the replisome duplicates DNA are a result of a set of tightly regulated interactions between the replication proteins. The transient nature of these protein interactions makes it challenging to study the dynamics of the replisome by ensemble-averaging techniques. This review describes single-molecule methods that allow the study of individual replication proteins and their functioning within the replisome. The ability to mechanically manipulate individual DNA molecules and record the dynamic behavior of the replisome while it duplicates DNA has led to an improved understanding of the molecular mechanisms underlying DNA replication.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
117
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
118
|
Manosas M, Xi XG, Bensimon D, Croquette V. Active and passive mechanisms of helicases. Nucleic Acids Res 2010; 38:5518-26. [PMID: 20423906 PMCID: PMC2938219 DOI: 10.1093/nar/gkq273] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, we discuss the active or passive character of helicases. In the past years, several studies have used the theoretical framework proposed by Betterton and Julicher [Betterton, M.D. and Julicher, F. (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys. Rev. E, 71, 11904-11911.] to analyse the unwinding data and assess the mechanism of the helicase under study (active versus passive). However, this procedure has given rise to apparently contradictory interpretations: helicases exhibiting similar behaviour have been classified as both active and passive enzymes [Johnson, D.S., Bai, L. Smith, B.Y., Patel, S.S. and Wang, M.D. (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129, 1299-1309; Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. and Croquette, V. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism Proc. Natl Acid. Sci., 104, 19790-19795]. In this work, we show that when the helicase under study has not been previously well characterized (namely, if its step size and rate of slippage are unknown) a multi-parameter fit to the afore-mentioned model can indeed lead to contradictory interpretations. We thus propose to differentiate between active and passive helicases on the basis of the comparison between their observed translocation velocity on single-stranded nucleic acid and their unwinding rate of double-stranded nucleic acid (with various GC content and under different tensions). A threshold separating active from passive behaviour is proposed following an analysis of the reported activities of different helicases. We study and contrast the mechanism of two helicases that exemplify these two behaviours: active for the RecQ helicase and passive for the gp41 helicase.
Collapse
Affiliation(s)
- Maria Manosas
- Laboratoire de Physique Statistique, Ecole Normale Superieure, UPMC Univ Paris 06, Universit Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|
119
|
Residues in the central beta-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding. Proc Natl Acad Sci U S A 2010; 107:6782-7. [PMID: 20351255 DOI: 10.1073/pnas.1002734107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic beta-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the beta-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.
Collapse
|
120
|
Dallmann HG, Fackelmayer OJ, Tomer G, Chen J, Wiktor-Becker A, Ferrara T, Pope C, Oliveira MT, Burgers PMJ, Kaguni LS, McHenry CS. Parallel multiplicative target screening against divergent bacterial replicases: identification of specific inhibitors with broad spectrum potential. Biochemistry 2010; 49:2551-62. [PMID: 20184361 PMCID: PMC2849275 DOI: 10.1021/bi9020764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Typically, biochemical screens that employ pure macromolecular components focus on single targets or a small number of interacting components. Researches rely on whole cell screens for more complex systems. Bacterial DNA replicases contain multiple subunits that change interactions with each stage of a complex reaction. Thus, the actual number of targets is a multiple of the proteins involved. It is estimated that the overall replication reaction includes up to 100 essential targets, many suitable for discovery of antibacterial inhibitors. We have developed an assay, using purified protein components, in which inhibitors of any of the essential targets can be detected through a common readout. Use of purified components allows each protein to be set within the linear range where the readout is proportional to the extent of inhibition of the target. By performing assays against replicases from model Gram-negative and Gram-positive bacteria in parallel, we show that it is possible to distinguish compounds that inhibit only a single bacterial replicase from those that exhibit broad spectrum potential.
Collapse
Affiliation(s)
- H Garry Dallmann
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 215, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Wickersham CE, Cash KJ, Pfeil SH, Bruck I, Kaplan DL, Plaxco KW, Lipman EA. Tracking a molecular motor with a nanoscale optical encoder. NANO LETTERS 2010; 10:1022-1027. [PMID: 20121107 PMCID: PMC2842186 DOI: 10.1021/nl904192m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Optical encoders are commonly used in macroscopic machines to make precise measurements of distance and velocity by translating motion into a periodic signal. Here we show how Forster resonance energy transfer can be used to implement this technique at the single-molecule scale. We incorporate a series of acceptor dye molecules into self-assembling DNA, and the periodic signal resulting from unhindered motion of a donor-labeled molecular motor provides nanometer-scale resolution in milliseconds.
Collapse
Affiliation(s)
- Charles E. Wickersham
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Kevin J. Cash
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Shawn H. Pfeil
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Irina Bruck
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Daniel L. Kaplan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Everett A. Lipman
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
122
|
Makowska-Grzyska M, Kaguni JM. Primase directs the release of DnaC from DnaB. Mol Cell 2010; 37:90-101. [PMID: 20129058 DOI: 10.1016/j.molcel.2009.12.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
An AAA+ ATPase, DnaC, delivers DnaB helicase at the E. coli chromosomal origin by a poorly understood process. This report shows that mutant proteins bearing alanine substitutions for two conserved arginines in a motif named box VII are defective in DNA replication, but this deficiency does not arise from impaired interactions with ATP, DnaB, or single-stranded DNA. Despite their ability to deliver DnaB to the chromosomal origin to form the prepriming complex, this intermediate is inactive. Quantitative analysis of the prepriming complex suggests that the DnaB-DnaC complex contains three DnaC monomers per DnaB hexamer and that the interaction of primase with DnaB and primer formation triggers the release of DnaC, but not the mutants, from DnaB. The interaction of primase with DnaB and the release of DnaC mark discrete events in the transition from initiation to the elongation stage of DNA replication.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
123
|
Downey CD, McHenry CS. Chaperoning of a replicative polymerase onto a newly assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 2010; 37:481-91. [PMID: 20188667 PMCID: PMC2830912 DOI: 10.1016/j.molcel.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022]
Abstract
Cellular replicases contain multiprotein ATPases that load sliding clamp processivity factors onto DNA. We reveal an additional role for the DnaX clamp loader: chaperoning of the replicative polymerase onto a clamp newly bound to DNA. We show that chaperoning confers distinct advantages, including marked acceleration of initiation complex formation. We reveal a requirement for the tau form of DnaX complex to relieve inhibition by single-stranded DNA binding protein during initiation complex formation. We propose that, after loading beta(2), DnaX complex preserves an SSB-free segment of DNA immediately downstream of the primer terminus and chaperones Pol III into that position, preventing competition by SSB. The C-terminal tail of SSB stimulates reactions catalyzed by tau-containing DnaX complexes through a contact distinct from the contact involving the chi subunit. Chaperoning of Pol III by the DnaX complex provides a molecular explanation for how initiation complexes form when supported by the nonhydrolyzed analog ATPgammaS.
Collapse
Affiliation(s)
| | - Charles S. McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder CO 80309
| |
Collapse
|
124
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
125
|
Gabbai CB, Marians KJ. Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair (Amst) 2010; 9:202-9. [PMID: 20097140 DOI: 10.1016/j.dnarep.2009.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PriA, a 3'-->5' superfamily 2 DNA helicase, acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. The ability of PriA to initiate replication at stalled forked structures ensures complete genome replication and helps to protect the cell from illegitimate recombination events. This review focuses on the activities of PriA and its role in replication fork assembly and maintaining genomic integrity.
Collapse
Affiliation(s)
- Carolina B Gabbai
- Molecular Biology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | | |
Collapse
|
126
|
Abstract
Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.
Collapse
Affiliation(s)
- Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | |
Collapse
|
127
|
Gupta MK, Atkinson J, McGlynn P. DNA structure specificity conferred on a replicative helicase by its loader. J Biol Chem 2009; 285:979-87. [PMID: 19880515 DOI: 10.1074/jbc.m109.072520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prokaryotic and eukaryotic replicative helicases can translocate along single-stranded and double-stranded DNA, with the central cavity of these multimeric ring helicases being able to accommodate both forms of DNA. Translocation by such helicases along single-stranded DNA results in the unwinding of forked DNA by steric exclusion and appears critical in unwinding of parental strands at the replication fork, whereas translocation over double-stranded DNA has no well-defined role. We have found that the accessory factor, DnaC, that promotes loading of the Escherichia coli replicative helicase DnaB onto single-stranded DNA may also act to confer DNA structure specificity on DnaB helicase. When present in excess, DnaC inhibits DnaB translocation over double-stranded DNA but not over single-stranded DNA. Inhibition of DnaB translocation over double-stranded DNA requires the ATP-bound form of DnaC, and this inhibition is relieved during translocation over single-stranded DNA indicating that stimulation of DnaC ATPase is responsible for this DNA structure specificity. These findings demonstrate that DnaC may provide the DNA structure specificity lacking in DnaB, limiting DnaB translocation to bona fide replication forks. The ability of other replicative helicases to translocate along single-stranded and double-stranded DNA raises the possibility that analogous regulatory mechanisms exist in other organisms.
Collapse
Affiliation(s)
- Milind K Gupta
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | |
Collapse
|
128
|
Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori. PLoS One 2009; 4:e7515. [PMID: 19841750 PMCID: PMC2761005 DOI: 10.1371/journal.pone.0007515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.
Collapse
|
129
|
Jeong YJ, Park K, Kim DE. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci 2009; 66:3325-36. [PMID: 19629390 PMCID: PMC11115679 DOI: 10.1007/s00018-009-0094-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 01/27/2023]
Abstract
Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification.
Collapse
Affiliation(s)
- Yong-Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702 Republic of Korea
| | - Kkothanahreum Park
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul, 143-701 Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
130
|
Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 2009; 191:6888-99. [PMID: 19767439 DOI: 10.1128/jb.00920-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDDeltaN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIDeltaN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.
Collapse
|
131
|
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem 2009; 284:31672-9. [PMID: 19749191 DOI: 10.1074/jbc.m109.050740] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
132
|
Langston LD, Indiani C, O’Donnell M. Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 2009; 8:2686-91. [PMID: 19652539 PMCID: PMC2945305 DOI: 10.4161/cc.8.17.9390] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Replisomes were originally thought to be multi-protein machines with a stabile and defined structure during replication. Discovery that replisomes repeatedly discard sliding clamps and assemble a new clamp to start each Okazaki fragment provided the first hint that the replisome structure changes during replication. Recent studies reveal that the replisome is more dynamic than ever thought possible. Replisomes can utilize many different polymerases; the helicase is regulated to travel at widely different speeds; leading and lagging strands need not always act in a coupled fashion with DNA loops; and the replication fork does not always exhibit semi-discontinuous replication. We review some of these findings here and discuss their implications for cell physiology as well as enzyme mechanism.
Collapse
Affiliation(s)
- Lance D. Langston
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| | - Chiara Indiani
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| | - Mike O’Donnell
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| |
Collapse
|
133
|
Roychowdhury A, Szymanski MR, Jezewska MJ, Bujalowski W. Interactions of the Escherichia coli DnaB-DnaC protein complex with nucleotide cofactors. 1. Allosteric conformational transitions of the complex. Biochemistry 2009; 48:6712-29. [PMID: 19569622 PMCID: PMC3072150 DOI: 10.1021/bi900050x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions of nucleotide cofactors with both protein components of the Escherichia coli DnaB helicase complex with the replication factor, the DnaC protein, have been examined using MANT-nucleotide analogues. At saturation, in all examined stationary complexes, including the binary, DnaB-DnaC, and tertiary, DnaB-DnaC-ssDNA, complexes, the helicase binds six cofactor molecules. Thus, protein-protein and protein-DNA interactions do not affect the maximum stoichiometry of the helicase-nucleotide interactions. The single-stranded DNA dramatically increases the ATP analogue affinity, while it has little effect on the affinity of the NDP analogues, indicating that stationary complexes reflect allosteric interactions between the DNA- and NTP-binding site prior to the cofactor hydrolysis step and subsequent to product release. In the binary complex, the DnaC protein diminishes the intrinsic affinity and increases the negative cooperativity in the cofactor binding to the helicase; an opposite effect of the protein on the cofactor-helicase interactions occurs in the tertiary complex. The DnaC protein retains its nucleotide binding capability in the binary and tertiary complexes with the helicase. Surprisingly, the DnaC protein-nucleotide interactions, in the binary and tertiary complexes, are characterized by positive cooperativity. The DnaC assembles on the helicase as a hexamer, which exists in two conformational states and undergoes an allosteric transition, induced by the cofactor. Cooperativity of the allosteric transition depends on the structure of the phosphate group of the nucleotide. The significance of the results for the DnaB-DnaC complex activities is discussed.
Collapse
Affiliation(s)
- Anasuya Roychowdhury
- Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, and The Sealy Center for Structural Biology and Molecular Biophysics, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301, University Boulevard, Galveston, Texas 77555-1053
| | - Michal R. Szymanski
- Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, and The Sealy Center for Structural Biology and Molecular Biophysics, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301, University Boulevard, Galveston, Texas 77555-1053
| | - Maria J. Jezewska
- Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, and The Sealy Center for Structural Biology and Molecular Biophysics, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301, University Boulevard, Galveston, Texas 77555-1053
| | - Wlodzimierz Bujalowski
- Department of Biochemistry and Molecular Biology, Department of Obstetrics and Gynecology, and The Sealy Center for Structural Biology and Molecular Biophysics, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301, University Boulevard, Galveston, Texas 77555-1053
| |
Collapse
|
134
|
Abstract
Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
135
|
Abstract
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
136
|
Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem 2009; 284:9612-23. [PMID: 19208629 PMCID: PMC2666613 DOI: 10.1074/jbc.m808030200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/16/2009] [Indexed: 11/06/2022] Open
Abstract
Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD. Here we show that the nucleotide excision repair proteins UvrA and UvrB can together stimulate UvrD-catalyzed unwinding of a range of DNA substrates containing strand discontinuities, including forked DNA substrates. The stimulation is specific for UvrD, as UvrAB failed to stimulate Rep helicase, a UvrD homologue. Moreover, although UvrAB can promote limited strand displacement, stimulation of UvrD did not require the strand displacement function of UvrAB. We conclude that UvrAB, like MutL, modulate UvrD helicase activity. This stimulation likely plays a role in DNA strand and protein displacement by UvrD in nucleotide excision repair. Promotion of UvrD-catalyzed unwinding of nicked duplexes by UvrAB may also explain the need for UvrAB and UvrD in Okazaki fragment processing in cells lacking DNA polymerase I. More generally, these data support the idea that helicase activity is regulated in vivo, with helicases acting as part of multisubunit complexes rather than in isolation.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | |
Collapse
|
137
|
Chintakayala K, Machón C, Haroniti A, Larson MA, Hinrichs SH, Griep MA, Soultanas P. Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro. Mol Microbiol 2009; 72:537-49. [PMID: 19415803 PMCID: PMC3035870 DOI: 10.1111/j.1365-2958.2009.06668.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During DNA replication the helicase (DnaB) recruits the primase (DnaG) in the replisome to initiate the polymerization of new DNA strands. DnaB is attached to the tau subunit of the clamp-loader that loads the beta clamp and interconnects the core polymerases on the leading and lagging strands. The tau-DnaB-DnaG ternary complex is at the heart of the replisome and its function is likely to be modulated by a complex network of allosteric interactions. Using a stable ternary complex comprising the primase and helicase from Geobacillus stearothermophilus and the tau subunit of the clamp-loader from Bacillus subtilis we show that changes in the DnaB-tau interaction can stimulate allosterically primer synthesis by DnaG in vitro. The A550V tau mutant stimulates the primase activity more efficiently than the native protein. Truncation of the last 18 C-terminal residues of tau elicits a DnaG-stimulatory effect in vitro that appears to be suppressed in the native tau protein. Thus changes in the tau-DnaB interaction allosterically affect primer synthesis. Although these C-terminal residues of tau are not involved directly in the interaction with DnaB, they may act as a functional gateway for regulation of primer synthesis by tau-interacting components of the replisome through the tau-DnaB-DnaG pathway.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cristina Machón
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Anna Haroniti
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Marilyn A. Larson
- Department of Microbiology and Pathology, 986495 University of Nebraska Medical Center, Omaha, Nebraska 68198–6495, USA
| | - Steven H. Hinrichs
- Department of Microbiology and Pathology, 986495 University of Nebraska Medical Center, Omaha, Nebraska 68198–6495, USA
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Nebraska 68588–0304, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
138
|
Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci U S A 2009; 106:6031-8. [PMID: 19279203 DOI: 10.1073/pnas.0901403106] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the beta-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.
Collapse
|
139
|
Yao NY, O'Donnell M. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. MOLECULAR BIOSYSTEMS 2008; 4:1075-84. [PMID: 18931783 DOI: 10.1039/b811097b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replisomes are dynamic multiprotein machines capable of simultaneously replicating both strands of the DNA duplex. This review focuses on the structure and function of the E. coli replisome, many features of which generalize to other bacteria and eukaryotic cells. For example, the bacterial replisome utilizes clamps and clamp loaders to coordinate the actions required of the trombone model of lagging strand synthesis made famous by Bruce Alberts. All cells contain clamps and clamp loaders and this review summarizes their structure and function. Clamp loaders are pentameric spirals that bind DNA in a structure specific fashion and thread it through the ring shaped clamp. The recent structure of the E. coli beta clamp in complex with primed DNA has implications for how multiple polymerases function on sliding clamps and how the primed DNA template is exchanged between them. Recent studies reveal a remarkable fluidity in replisome function that enables it to bypass template lesions on either DNA strand. During these processes the polymerases within the replisome functionally uncouple from one another. Mechanistic processes that underlie these actions may involve DNA looping, similar to the trombone loops that mediate the lagging strand Okazaki fragment synthesis cycle.
Collapse
Affiliation(s)
- Nina Y Yao
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065-6399, USA
| | | |
Collapse
|
140
|
Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavaré S, Aparicio OM. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev 2008; 22:1906-20. [PMID: 18628397 DOI: 10.1101/gad.1660408] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2-Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Delta cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair.
Collapse
Affiliation(s)
- Shawn J Szyjka
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Chintakayala K, Larson MA, Griep MA, Hinrichs SH, Soultanas P. Conserved residues of the C-terminal p16 domain of primase are involved in modulating the activity of the bacterial primosome. Mol Microbiol 2008; 68:360-71. [PMID: 18366438 PMCID: PMC3035050 DOI: 10.1111/j.1365-2958.2008.06155.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC, and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Marilynn A. Larson
- Department of Pathology/Microbiology, 984080, University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68988-0304, USA
| | - Steven H. Hinrichs
- Department of Pathology/Microbiology, 984080, University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
142
|
Nathan A. T, Samir M. H, Slobodan J, Karin V. L, Patrick M. S, Nicholas E. D, Antoine M. VO. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 2008; 15:170-6. [PMID: 18223657 PMCID: PMC2651573 DOI: 10.1038/nsmb.1381] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/03/2008] [Indexed: 11/09/2022]
Abstract
We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.
Collapse
Affiliation(s)
- Tanner Nathan A.
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Hamdan Samir M.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Jergic Slobodan
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Chemistry, University of Wollongong, Wollongong NSW, AUS
| | - Loscha Karin V.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
| | - Schaeffer Patrick M.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD, AUS
| | - Dixon Nicholas E.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Chemistry, University of Wollongong, Wollongong NSW, AUS
| | - van Oijen Antoine M.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| |
Collapse
|
143
|
Chodavarapu S, Felczak MM, Yaniv JR, Kaguni JM. Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 2007; 67:781-92. [PMID: 18179598 DOI: 10.1111/j.1365-2958.2007.06094.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than other forms of HU in initiation of an oriC-containing plasmid because it more effectively promotes strand opening of oriC. Other results demonstrate that HU stabilizes the DnaA oligomer bound to oriC, and that the alpha subunit of HU interacts with the N-terminal region of DnaA. These observations support a model whereby DnaA interacts with the alpha dimer or the alphabeta heterodimer, depending on their cellular abundance, to recruit the respective form of HU to oriC. The greater activity of the alpha dimer of HU at oriC may stimulate initiation during early log phase compared with the lesser activity of the alphabeta heterodimer or the beta dimer.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
144
|
McInerney P, Johnson A, Katz F, O'Donnell M. Characterization of a triple DNA polymerase replisome. Mol Cell 2007; 27:527-38. [PMID: 17707226 DOI: 10.1016/j.molcel.2007.06.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/15/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
The replicase of all cells is thought to utilize two DNA polymerases for coordinated synthesis of leading and lagging strands. The DNA polymerases are held to DNA by circular sliding clamps. We demonstrate here that the E. coli DNA polymerase III holoenzyme assembles into a particle that contains three DNA polymerases. The three polymerases appear capable of simultaneous activity. Furthermore, the trimeric replicase is fully functional at a replication fork with helicase, primase, and sliding clamps; it produces slightly shorter Okazaki fragments than replisomes containing two DNA polymerases. We propose that two polymerases can function on the lagging strand and that the third DNA polymerase can act as a reserve enzyme to overcome certain types of obstacles to the replication fork.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
145
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
146
|
Hodgson B, Calzada A, Labib K. Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 2007; 18:3894-902. [PMID: 17652453 PMCID: PMC1995724 DOI: 10.1091/mbc.e07-05-0500] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mrc1 and Tof1 proteins are conserved throughout evolution, and in budding yeast they are known to associate with the MCM helicase and regulate the progression of DNA replication forks. Previous work has shown that Mrc1 is important for the activation of checkpoint kinases in responses to defects in S phase, but both Mrc1 and Tof1 also regulate the normal process of chromosome replication. Here, we show that these two important factors control the normal progression of DNA replication forks in distinct ways. The rate of progression of DNA replication forks is greatly reduced in the absence of Mrc1 but much less affected by loss of Tof1. In contrast, Tof1 is critical for DNA replication forks to pause at diverse chromosomal sites where nonnucleosomal proteins bind very tightly to DNA, and this role is not shared with Mrc1.
Collapse
Affiliation(s)
- Ben Hodgson
- *Cancer Research U.K., Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom; and
| | - Arturo Calzada
- Cancer Research Institute, Fundación Investigación del Cáncer-Universidad de Salamanca/Consejo Superior de Investigaciones Cientificas, 37007 Salamanca, Spain
| | - Karim Labib
- *Cancer Research U.K., Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom; and
| |
Collapse
|
147
|
McInerney P, O'Donnell M. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 2007; 282:25903-16. [PMID: 17609212 DOI: 10.1074/jbc.m703777200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.
Collapse
Affiliation(s)
- Peter McInerney
- Howard Hughes Medical Institute, Laboratory of DNA Replication, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
148
|
Zakrzewska-Czerwińska J, Jakimowicz D, Zawilak-Pawlik A, Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007; 31:378-87. [PMID: 17459114 DOI: 10.1111/j.1574-6976.2007.00070.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.
Collapse
|
149
|
Xie P. On translocation mechanism of ring-shaped helicase along single-stranded DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:737-48. [PMID: 17499029 DOI: 10.1016/j.bbapap.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/16/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
The ring-shaped helicases represent one important group of helicases that can translocate along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA by using the energy derived from NTP binding and hydrolysis. Despite intensive studies, the mechanism by which the ring-shaped helicase translocates along ssDNA and unwinds dsDNA remains undetermined. In order to understand their chemomechanical-coupling mechanism, two models on NTPase activities of the hexamers in the presence of DNA have been studied here. One model is assumed that, of the six nucleotide-binding sites, three are noncatalytic and three are catalytic. The other model is assumed that all the six nucleotide-binding sites are catalytic. In terms of the sequential NTPase activity around the ring and the previous determined crystal structure of bacteriophage T7 helicase it is shown that the obtained mechanical behaviors such as the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle using the former model are in good quantitative agreement with the previous experimental results for T7 helicase. Moreover, the acceleration of DNA unwinding rate with the stimulation of DNA synthesis by DNA polymerase can also be well explained by using the former model. In contrast, the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle obtained by using the latter model are not consistent with the experimental results for T7 helicase. Thus it is preferred that the former model is the appropriate one for the T7 helicase. Furthermore, using the former model some dynamic behaviors such as the rotational speeds of DNA relative to the T7 helicase when translocation along ssDNA and when unwinding dsDNA have been predicted, which are expected to test in order to further verify the model.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
150
|
Pomerantz RT, O'Donnell M. Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol 2007; 15:156-64. [PMID: 17350265 DOI: 10.1016/j.tim.2007.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/26/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Chromosomal replicases are multicomponent machines that copy DNA with remarkable speed and processivity. The organization of the replisome reveals a twin DNA polymerase design ideally suited for concurrent synthesis of leading and lagging strands. Recent structural and biochemical studies of Escherichia coli and eukaryotic replication components provide intricate details of the organization and inner workings of cellular replicases. In particular, studies of sliding clamps and clamp-loader subunits elucidate the mechanisms of replisome processivity and lagging strand synthesis. These studies demonstrate close similarities between the bacterial and eukaryotic replication machineries.
Collapse
Affiliation(s)
- Richard T Pomerantz
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|