101
|
Gibson EM, Henson ES, Villanueva J, Gibson SB. MEK kinase 1 induces mitochondrial permeability transition leading to apoptosis independent of cytochrome c release. J Biol Chem 2002; 277:10573-80. [PMID: 11756439 DOI: 10.1074/jbc.m108366200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of apoptosis often converges on the mitochondria to induce permeability transition and release of apoptotic proteins into the cytoplasm resulting in the biochemical and morphological alteration of apoptosis. Activation of a serine threonine kinase MEK kinase 1 (MEKK1) is involved in the induction of apoptosis. Expression of a kinase-inactive MEKK1 blocks genotoxin-induced apoptosis. Upon apoptotic stimulation, MEKK1 is cleaved into a 91-kDa kinase fragment that further induces an apoptotic response. Mutation of a consensus caspase 3 site in MEKK1 prevents its induction of apoptosis. The mechanism of MEKK1-induced apoptosis downstream of its cleavage, however, is unknown. Herein we demonstrate that full-length and cleaved MEKK1 leads to permeability transition in the mitochondria. This permeability transition occurs through opening of the permeability transition (PT) pore. Inhibiting PT pore opening and reactive oxygen species production effectively reduced MEKK1-induced apoptosis. Overexpression of MEKK1, however, failed to release cytochrome c from the mitochondria or activate caspase 9. Since Bcl2 regulates changes in mitochondria and blocks MEKK1-induced apoptosis, we determined that Bcl2 blocks MEKK1-induced apoptosis when targeted to the mitochondria. This occurs downstream of MEKK1 cleavage, since Bcl2 fails to block cleavage of MEKK1. In mouse embryonic fibroblast cells lacking caspase 3, the cleaved but not full-length MEKK1 induces apoptosis and permeability transition in the mitochondria. Overall, this suggests that cleaved MEKK1 leads to permeability transition contributing to MEKK1-induced apoptosis independent of cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Erika M Gibson
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada.
| | | | | | | |
Collapse
|
102
|
Endo K, Hirata A, Iwai K, Sakurai M, Fukushi M, Oie M, Higuchi M, Hall WW, Gejyo F, Fujii M. Human T-cell leukemia virus type 2 (HTLV-2) Tax protein transforms a rat fibroblast cell line but less efficiently than HTLV-1 Tax. J Virol 2002; 76:2648-53. [PMID: 11861831 PMCID: PMC135979 DOI: 10.1128/jvi.76.6.2648-2653.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2001] [Accepted: 11/21/2001] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are retroviruses with similar biological properties. Whereas HTLV-1 is the causative agent of an aggressive T-cell leukemia, HTLV-2 has been associated with only a few cases of lymphoproliferative disorders. Tax1 and Tax2 are the transcriptional activators of HTLV-1 and HTLV-2, respectively. Here we show that Tax2 transformed a Rat-1 fibroblast cell line to form colonies in soft agar, but the size and number of the colonies were lower than those of Tax1. Use of a chimeric Tax protein showed that the C-terminal amino acids 300 to 353 were responsible for the high transforming activity of Tax1. Activation of cellular genes by Tax1 through transcription factor NF-kappa B is reportedly essential for the transformation of Rat-1 cells. Tax2 also activated the transcription through NF-kappa B in Rat-1 cells, and such activity was equivalent to that induced by Tax1. Thus, the high transforming activity of Tax1 is mediated by mechanisms other than NF-kappa B activation. Our results showed that Tax2 has a lower transforming activity than Tax1 and suggest that the high transforming activity of Tax1 is involved in the leukemogenic property of HTLV-1.
Collapse
Affiliation(s)
- Keiichi Endo
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002; 16:439-51. [PMID: 11850407 PMCID: PMC155337 DOI: 10.1101/gad.218702] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Accepted: 12/15/2001] [Indexed: 11/24/2022]
Abstract
beta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein. This protein occupies E3RS in a specific and stoichiometric manner, stabilizes the E3 component, and is likely responsible for its nuclear localization. hnRNP-U binding was abolished by competition with a pIkappaB(alpha) peptide, or by a specific point mutation in the E3RS WD region, indicating an E3-substrate-type interaction. However, unlike pI(kappa)Balpha, which is targeted by SCF(beta-TrCP) for degradation, the E3-bound hnRNP-U is stable and is, therefore, a pseudosubstrate. Consequently, hnRNP-U engages a highly neddylated active SCF(beta-TrCP), which dissociates in the presence of a high-affinity substrate, resulting in ubiquitination of the latter. Our study points to a novel regulatory mechanism, which secures the localization, stability, substrate binding threshold, and efficacy of a specific protein-ubiquitin ligase.
Collapse
Affiliation(s)
- Matti Davis
- The Lautenberg Center for Immunology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Imaizumi Y, Sugita S, Yamamoto K, Imanishi D, Kohno T, Tomonaga M, Matsuyama T. Human T cell leukemia virus type-I Tax activates human macrophage inflammatory protein-3 alpha/CCL20 gene transcription via the NF-kappa B pathway. Int Immunol 2002; 14:147-55. [PMID: 11809734 DOI: 10.1093/intimm/14.2.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Infection by human T cell leukemia virus type (HTLV)-I is associated with several diseases, including adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. Leukocytes are attracted to the sites of inflammation by chemotactic factors. Macrophage inflammatory protein (MIP)-3 alpha/CCL20 is a recently isolated member of the CC subfamily of chemokines and has been proposed as a crucial factor to elicit inflammatory reactions. We now report that endogenous MIP-3 alpha mRNA levels are elevated in HTLV-I-infected T cell lines and in a human T cell line following the induced expression of the HTLV-I-encoded transactivator, Tax. Analysis of the human MIP-3 alpha promoter revealed that this gene is activated by Tax, via the activation of nuclear factor (NF)-kappa B, whose responsive element, -82-kappa B, is located at a position between -82 and -91 relative to the putative transcription start site. With an electromobility shift assay we further demonstrated that the -82-kappa B element was bound by the Tax-activated p50/p65 heterodimers of NF-kappa B. Expression of the specific receptor of MIP-3 alpha, CCR6, was also increased in HTLV-I-infected T cell lines, suggesting an autocrine and/or paracrine mechanism to establish the pathogenesis of HTLV-I-associated diseases.
Collapse
Affiliation(s)
- Yoshitaka Imaizumi
- Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Medical Sciences, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | |
Collapse
|
105
|
Chadee DN, Yuasa T, Kyriakis JM. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol 2002; 22:737-49. [PMID: 11784851 PMCID: PMC133545 DOI: 10.1128/mcb.22.3.737-749.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 08/07/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways coordinate critical cellular responses to mitogens, stresses, and developmental cues. The coupling of MAPK kinase kinase (MAP3K) --> MAPK kinase (MEK) --> MAPK core pathways to cell surface receptors remains poorly understood. Recombinant forms of MAP3K MEK kinase 1 (MEKK1) interact in vivo and in vitro with the STE20 protein homologue germinal center kinase (GCK), and both GCK and MEKK1 associate in vivo with the adapter protein tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). These interactions may couple TNF receptors to the SAPK/JNK family of MAPKs; however, a molecular mechanism by which these proteins might collaborate to recruit the SAPKs/JNKs has remained elusive. Here we show that endogenous GCK and MEKK1 associate in vivo. In addition, we have developed an in vitro assay system with which we demonstrate that purified, active GCK and TRAF2 activate MEKK1. The RING domain of TRAF2 is necessary for optimal in vitro activation of MEKK1, but the kinase domain of GCK is not. Autophosphorylation within the MEKK1 kinase domain activation loop is required for activation. Forced oligomerization also activates MEKK1, and GCK elicits enhanced oligomerization of coexpressed MEKK1 in vivo. These results represent the first activation of MEKK1 in vitro using purified proteins and suggest a mechanism for MEKK1 activation involving induced oligomerization and consequent autophosphorylation mediated by upstream proteins.
Collapse
Affiliation(s)
- Deborah N Chadee
- Diabetes Research Laboratory, Medical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
106
|
Ren H, Schmalstieg A, Yuan D, Gaynor RB. I-kappa B kinase beta is critical for B cell proliferation and antibody response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:577-87. [PMID: 11777949 DOI: 10.4049/jimmunol.168.2.577] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The NF-kappaB proteins are critical in the regulation of the immune and inflammatory response. Stimulation of the NF-kappaB pathway leads to increases in I-kappaB kinase beta (IKKbeta) kinase activity to result in the enhanced phosphorylation and degradation of I-kappaB and the translocation of the NF-kappaB proteins from the cytoplasm to the nucleus. In this study, a dominant-negative IKKbeta mutant expressed from the IgH promoter was used to generate transgenic mice to address the role of IKKbeta on B cell function. Although these transgenic mice were defective in activating the NF-kappaB pathway in B cells, they exhibited no defects in B lymphocyte development or basal Ig levels. However, they exhibited defects in the cell cycle progression and proliferation of B cells in response to treatment with LPS, anti-CD40, and anti-IgM. Furthermore, selective defects in the production of specific Ig subclasses in response to both T-dependent and T-independent Ags were noted. These results suggest that IKKbeta is critical for the proliferation of B cells and the control of some aspects of the humoral response.
Collapse
Affiliation(s)
- Hong Ren
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
107
|
Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M, Sun SC. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001; 20:6805-15. [PMID: 11726516 PMCID: PMC125766 DOI: 10.1093/emboj/20.23.6805] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IkappaB kinase (IKK) is a key mediator of NF-kappaB activation induced by various immunological signals. In T cells and most other cell types, the primary target of IKK is a labile inhibitor of NF-kappaB, IkappaBalpha, which is responsible for the canonical NF-kappaB activation. Here, we show that in T cells infected with the human T-cell leukemia virus (HTLV), IKKalpha is targeted to a novel signaling pathway that mediates processing of the nfkappab2 precursor protein p100, resulting in active production of the NF-kappaB subunit, p52. This pathogenic action is mediated by the HTLV-encoded oncoprotein Tax, which appears to act by physically recruiting IKKalpha to p100, triggering phosphorylation-dependent ubiquitylation and processing of p100. These findings suggest a novel mechanism by which Tax modulates the NF-kappaB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shao-Cong Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
Corresponding author e-mail:
| |
Collapse
|
108
|
Abstract
MEK kinases (MEKKs) comprise a family of related serine-threonine protein kinases that regulate mitogen-activated protein kinase (MAPK) signalling pathways leading to c-Jun NH2-terminal kinase (JNK) and p38 activation, induced by cellular stress (e.g., UV and gamma irradiation, osmotic stress, heat shock, protein synthesis inhibitors), inflammatory cytokines (e.g., tumour necrosis factor alpha, TNFalpha, and interleukin-1, IL1) and G protein-coupled receptor agonists (e.g., thrombin). These stress-activated kinases have been implicated in apoptosis, oncogenic transformation, and inflammatory responses in various cell types. At present, the signalling events involving MEKKs are not well understood. This review summarises our current knowledge concerning the regulation and function of MEKK family members, with particular emphasis on those factors capable of directly interacting with distinct MEKK isoforms.
Collapse
Affiliation(s)
- C Hagemann
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, LE1 9HN, Leicester, UK
| | | |
Collapse
|
109
|
Rivera-Walsh I, Waterfield M, Xiao G, Fong A, Sun SC. NF-kappaB signaling pathway governs TRAIL gene expression and human T-cell leukemia virus-I Tax-induced T-cell death. J Biol Chem 2001; 276:40385-8. [PMID: 11553609 DOI: 10.1074/jbc.c100501200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tax oncoprotein encoded by human T-cell leukemia virus induces both T-cell activation and apoptosis. The mechanism by which Tax induces apoptosis has remained unclear. Using genetically manipulated T-cell lines, we demonstrate that Tax-induced T-cell death is dependent on NF-kappaB signaling. Tax fails to induce apoptosis in T cells lacking IkappaB kinase gamma (IKKgamma), an essential component of the NF-kappaB signaling pathway. This defect was rescued when the mutant cells were reconstituted with exogenous IKKgamma. We further demonstrate that the Tax-induced T-cell death is mediated by TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), because this event can be effectively inhibited by a TRAIL-blocking antibody. Consistent with this functional aspect, Tax stimulates the expression of TRAIL mRNA. Finally, we provide genetic evidence demonstrating that the NF-kappaB signaling pathway is essential for TRAIL gene induction by both Tax and T-cell activation signals. These studies reveal a novel function of the NF-kappaB signaling pathway and suggest a key mechanism by which Tax induces T-cell death.
Collapse
Affiliation(s)
- I Rivera-Walsh
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
110
|
Hemelaar J, Bex F, Booth B, Cerundolo V, McMichael A, Daenke S. Human T-cell leukemia virus type 1 Tax protein binds to assembled nuclear proteasomes and enhances their proteolytic activity. J Virol 2001; 75:11106-15. [PMID: 11602750 PMCID: PMC114690 DOI: 10.1128/jvi.75.22.11106-11115.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates the HTLV-1 long terminal repeat and key regulatory proteins involved in inflammation, activation, and proliferation and may induce cell transformation. Tax is also the immunodominant target antigen for cytotoxic T cells in HTLV-1 infection. We found that Tax bound to assembled nuclear proteasomes, but Tax could not be detected in the cytoplasm. Confocal microscopy revealed a partial colocalization of Tax with nuclear proteasomes. As Tax translocated into the nucleus very quickly after synthesis, this process probably takes place prior to and independent of proteasome association. Tax mutants revealed that both the Tax N and C termini play a role in proteasome binding. We also found that proteasomes from Tax-transfected cells had enhanced proteolytic activity on prototypic peptide substrates. This effect was not due to the induction of the LMP2 and LMP7 proteasome subunits. Furthermore, Tax appeared to be a long-lived protein, with a half-life of around 15 h. These data suggest that the association of Tax with the proteasome and the enhanced proteolytic activity do not target Tax for rapid degradation and may not determine its immunodominance.
Collapse
Affiliation(s)
- J Hemelaar
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
111
|
Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A, Yamaoka S, Franchini G. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-kappaB pathway and modulation of coactivator usage. Mol Cell Biol 2001; 21:7391-402. [PMID: 11585920 PMCID: PMC99912 DOI: 10.1128/mcb.21.21.7391-7402.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The proto-oncogene c-myb is essential for a controlled balance between cell growth and differentiation. Aberrant c-Myb activity has been reported for numerous human cancers, and enforced c-Myb transcription can transform cells of lymphoid origin by stimulating cellular proliferation and inhibiting apoptotic pathways. Here we demonstrate that activation of the NF-kappaB pathway by the HTLV-1 Tax protein leads to transcriptional inactivation of c-Myb. This conclusion was supported by the fact that Tax mutants unable to stimulate the NF-kappaB pathway could not inhibit c-Myb transactivating functions. In addition, inhibition of Tax-mediated NF-kappaB activation by coexpression of IkappaBalpha restored c-Myb transcription, and Tax was unable to block c-Myb transcription in a NEMO knockout cell line. Importantly, physiological stimuli, such as signaling with the cellular cytokines tumor necrosis factor alpha, interleukin 1 beta (IL-1beta), and lipopolysaccharide, also inhibited c-Myb transcription. These results uncover a new link between extracellular signaling and c-Myb-dependent transcription. The mechanism underlying NF-kappaB-mediated repression was identified as sequestration of the coactivators CBP/p300 by RelA. Interestingly, an amino-terminal deletion form of p300 lacking the C/H1 and KIX domains and unable to bind RelA retained the ability to stimulate c-Myb transcription and prevented NF-kappaB-mediated repression.
Collapse
Affiliation(s)
- C Nicot
- Section of Animal Models and Retroviral Vaccines, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
112
|
Yamamoto Y, Kim DW, Kwak YT, Prajapati S, Verma U, Gaynor RB. IKKgamma /NEMO facilitates the recruitment of the IkappaB proteins into the IkappaB kinase complex. J Biol Chem 2001; 276:36327-36. [PMID: 11470788 DOI: 10.1074/jbc.m104090200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.
Collapse
Affiliation(s)
- Y Yamamoto
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
113
|
Habraken Y, Piret B, Piette J. S phase dependence and involvement of NF-kappaB activating kinase to NF-kappaB activation by camptothecin. Biochem Pharmacol 2001; 62:603-16. [PMID: 11585057 DOI: 10.1016/s0006-2952(01)00709-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Camptothecin (CPT) and derivatives are topoisomerase I poisons currently used as anticancer drugs. Their cytotoxicity is maximal for cells in S phase. Using asynchronous and S phase-synchronized HeLa cells, we showed that both the nuclear factor-kappaB (NF-kappaB) activation and its transcriptional activity, induced by CPT treatment, are enhanced in S phase cells. After CPT treatment, NF-kappaB activation reached a maximum within 2-3 hr and was still detectable after 24 hr. The nature of the complex evolved with time, forming mostly p50/p65 after 2 hr to almost exclusively p52 after 24 hr. In HeLa cells, the different steps of the induction were readily observable in S phase synchronized cells, whereas they were barely noticeable in a randomly growing cell population. The signal progressed through the activation of the IKK complex, the phosphorylation of IkappaBalpha, and the degradation of phosphorylated-IkappaBalpha and -IkappaBbeta. The stable expression of wild-type HA-tagged-IkappaBalpha or mutated HA-tagged-IkappaBalpha (S32,36A) allowed us to confirm the essential role of Ser32 and Ser36. NF-kappaB-activating kinase (NIK) could play a role upstream of the IKK complex, as the transient expression of a kinase inactive mutant NIK(K429,430A) abolished the activation of NF-kappaB by CPT. A kinase inactive mutant of mitogen-activated protein/ERK kinase kinase 1 (MEKK1), another kinase susceptible of acting upstream of the signalsome, did not. Cytotoxicity studies with clonal populations expressing different amounts of wild-type or mutated IkappaBalpha revealed that the overexpression of wild-type IkappaBa in large amount increases the sensitivity of HeLa cells to CPT more efficiently than a lower level of expression of non-phosphorylable IkappaBalpha.
Collapse
Affiliation(s)
- Y Habraken
- Laboratory of Virology & Immunology, University of Liège, Institute of Pathology, Belgium
| | | | | |
Collapse
|
114
|
Biswas DK, Dai SC, Cruz A, Weiser B, Graner E, Pardee AB. The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci U S A 2001; 98:10386-91. [PMID: 11517301 PMCID: PMC56970 DOI: 10.1073/pnas.151257998] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2001] [Indexed: 01/04/2023] Open
Abstract
The effect of a kinase inhibitor Go6796 on growth of epidermal growth factor (EGF)-stimulated estrogen receptor negative (ER-) breast cancer cells in vivo and role of nuclear factor kappa B (NF-kappaB) on tumorogenesis have been investigated. This was studied in an animal model by implanting ER- mouse mammary epithelial tumor cells (CSMLO) in syngeneic A-J mice. (i) Local administration of Go6976 an inhibitor of protein kinases C alpha and beta inhibited growth of tumors and caused extensive necrotic degeneration and regression of the tumors without causing any microscopically detectable damage to the vital organs liver and lung. (ii) Stable expression of dominant-negative mutants of the beta subunit (dnIkkbeta) of the inhibitory kappa B (IkappaB) kinase (dnIkk) that selectively blocked activation of NF-kappaB caused loss of tumorigenic potential of CSMLO cells. Stable expression of dnIkkbeta also blocked phorbol 12-myristate 13-acetate (PMA)-induced activation of NF-kappaB and overexpression of cyclin D1, concomitantly with the loss or reduced tumorigenic potential of these cells. Thus, results from in vivo and in vitro experiments strongly suggest the involvement of NF-kappaB in ER- mammary epithelial cell-mediated tumorigenesis. We propose that blocking NF-kappaB activation not only inhibits cell proliferation, but also antagonizes the antiapoptotic role of this transcription factor in ER- breast cancer cells. Thus, NF-kappaB is a potential target for therapy of EGFR family receptor-overexpressing ER- breast cancers.
Collapse
Affiliation(s)
- D K Biswas
- Division of Cancer Biology, Dana-Farber Cancer Institute, and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
115
|
Li X, Josef J, Marasco WA. Hiv-1 Tat can substantially enhance the capacity of NIK to induce IkappaB degradation. Biochem Biophys Res Commun 2001; 286:587-94. [PMID: 11511100 DOI: 10.1006/bbrc.2001.5442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat is a virally encoded protein that dramatically up-regulates viral replication through interactions with the HIV-1 5' long terminal repeat (LTR) and cellular transcription factors. The HIV-1 LTR is divided into three major regions: modulatory, core and TAR. The modulatory region contains numerous cis-acting sequences for the binding of transcription factors including NF-kappaB, NF-AT, and AP-1. In several reports, Tat has been found to induce NF-kappaB activation of the HIV-1 LTR, while in other studies Tat has been reported to have no effect on activation of NF-kappaB. These discrepancies may arise from differences in experimental conditions such as the source of Tat (exogenous versus endogenous), the detection methods for NF-kappaB activation (DNA binding capability versus IkappaB degradation), and the types of reporters used (HIV-1 versus non-HIV-1 derived). To reconcile these differences we examined the effect of endogenous Tat on NF-kappaB activation, on IkappaB degradation and its interaction with upstream MAP3Ks. We demonstrate that although an 80% reduction in Tat-induced HIV-1 LTR activity can be detected if the kappaB binding sites are mutated, surprisingly endogenous Tat (expressed intracellularly by transfection) lacks direct effect on IkappaB degradation. Further analysis demonstrates that although Tat alone lacks direct effect on IkappaBalpha degradation or dissociation from NF-kappaB, Tat can substantially enhance the capacity of NF-kappaB-inducing kinase (NIK), but not MEKK1, to accelerate degradation of IkappaB. We propose a model to explain these collective experimental findings.
Collapse
Affiliation(s)
- X Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
116
|
Portis T, Harding JC, Ratner L. The contribution of NF-kappa B activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. Blood 2001; 98:1200-8. [PMID: 11493471 DOI: 10.1182/blood.v98.4.1200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human T-cell leukemia virus type I is the etiologic agent of adult T-cell leukemia/lymphoma. The Tax protein of this virus is thought to contribute to cellular transformation and tumor development. In this report, we have used a Tax transgenic mouse model of tumorigenesis to study the contribution of nuclear factor (NF)-kappa B activity to spontaneous tumor cell proliferation and resistance to apoptosis. We have demonstrated elevated expression levels of NF-kappa B--inducible cytokines, including interleukin (IL)-6, IL-10, IL-15, and interferon (IFN)-gamma, in freshly isolated primary tumors from Tax transgenic mice. Inhibitors of NF-kappa B activity, sodium salicylate and cyclopentenone prostaglandins (prostaglandin A(1) and 15-deoxy-Delta(12,14)-prostaglandin J(2)), blocked spontaneous proliferation of Tax transgenic mouse spleen cells. In addition, Tax-induced tumor cells, which are resistant to irradiation-induced apoptosis, became sensitive to apoptosis in the presence of sodium salicylate and prostaglandins. These results strongly suggest that Tax-mediated induction of NF-kappa B activity contributes to tumorigenesis in vivo. (Blood. 2001;98:1200-1208)
Collapse
Affiliation(s)
- T Portis
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
117
|
Ng PW, Iha H, Iwanaga Y, Bittner M, Chen Y, Jiang Y, Gooden G, Trent JM, Meltzer P, Jeang KT, Zeichner SL. Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 2001; 20:4484-96. [PMID: 11494144 DOI: 10.1038/sj.onc.1204513] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Revised: 04/04/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
The Tax protein of human T-lymphotropic virus type 1 (HTLV-1), an oncoprotein that transactivates viral and cellular genes, plays a key role in HTLV-1 replication and pathogenesis. We used cDNA microarrays to examine Tax-mediated transcriptional changes in the human Jurkat T-cell lines JPX-9 and JPX-M which express Tax and Tax-mutant protein, respectively, under the control of an inducible promoter. Approximately 300 of the over 2000 genes examined were differentially expressed in the presence of Tax. These genes were grouped according to their function and are discussed in the context of existing findings in the literature. There was strong agreement between our results and genes previously reported as being Tax-responsive. Genes that were differentially expressed in the presence of Tax included those related to apoptosis, the cell cycle and DNA repair, signaling factors, immune modulators, cytokines and growth factors, and adhesion molecules. Functionally, we provide evidence that one of these genes, the mixed-lineage kinase MLK-3, is involved in Tax-mediated NF-kappa-B signaling. Our current results provide additional insights into Tax-mediated signaling.
Collapse
Affiliation(s)
- P W Ng
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Cammarano MS, Minden A. Dbl and the Rho GTPases activate NF kappa B by I kappa B kinase (IKK)-dependent and IKK-independent pathways. J Biol Chem 2001; 276:25876-82. [PMID: 11337492 DOI: 10.1074/jbc.m011345200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl is a guanine nucleotide exchange factor that activates the Rho family GTPases Cdc42, Rac, and Rho. Dbl and all three GTPases are strong activators of transcription factor NF kappa B, which has been shown to have an important role in Dbl-induced oncogenic transformation. Here we show that although Dbl activation of NF kappa B requires Cdc42, Rac, and Rho, the different GTPases activate NF kappa B by different mechanisms. Whereas Rac stimulates the activity of the I kappa B kinase IKK beta, Cdc42 and Rho activate NF kappa B without activating either IKK alpha or IKK beta. Like Dbl, Rac activation of IKK beta is mediated by the serine/threonine kinases NIK but not MEKK. This differs from Rac activation of the JNK pathway, which was previously shown to be mediated by MEKK. The pathway leading from Rho and Cdc42 to NF kappa B is more elusive, but our results suggest that it involves an IKK alpha/IKK beta-independent mechanism. Finally, we show that the signaling enzymes that mediate NF kappa B activation by Dbl and the Rho GTPases are also necessary for malignant transformation induced by oncogenic Dbl.
Collapse
Affiliation(s)
- M S Cammarano
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
119
|
Carter RS, Geyer BC, Xie M, Acevedo-Suárez CA, Ballard DW. Persistent activation of NF-kappa B by the tax transforming protein involves chronic phosphorylation of IkappaB kinase subunits IKKbeta and IKKgamma. J Biol Chem 2001; 276:24445-8. [PMID: 11325957 DOI: 10.1074/jbc.c000777200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tax transforming protein encoded by human T-cell leukemia virus type 1 (HTLV1) persistently activates transcription factor NF-kappaB and deregulates the expression of downstream genes that mediate cell cycle entry. We recently found that Tax binds to and chronically stimulates the catalytic function of IkappaB kinase (IKK), a cellular enzyme complex that phosphorylates and inactivates the IkappaB inhibitory subunit of NF-kappaB. We now demonstrate that the IKKbeta catalytic subunit and IKKgamma regulatory subunit of IKK are chronically phosphorylated in HTLV1-infected and Tax-transfected cells. Alanine substitutions at Ser-177 and Ser-181 in the T loop of IKKbeta protect both of these IKK subunits from Tax-directed phosphorylation and prevent the induction of IkappaB kinase activity. Each of these inhibitory effects is recapitulated in Tax transfectants expressing the bacterial protein YopJ, a potent in vivo agonist of T loop phosphorylation. Moreover, ectopically expressed forms of IKKbeta that contain glutamic acid substitutions at Ser-177 and Ser-181 have the capacity to phosphorylate a recombinant IKKgamma substrate in vitro. We conclude that Tax-induced phosphorylation of IKKbeta is required for IKKbeta activation, phosphoryl group transfer to IKKgamma, and acquisition of the deregulated IKK phenotype.
Collapse
Affiliation(s)
- R S Carter
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA
| | | | | | | | | |
Collapse
|
120
|
Jeang KT. Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev 2001; 12:207-17. [PMID: 11325603 DOI: 10.1016/s1359-6101(00)00028-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL), as well as for tropical spastic paraparesis (TSP) and HTLV-I associate myelopathy (HAM). A biological understanding of the involvement of HTLV-I and in ATL has focused significantly on the workings of the virally-encoded 40 kDa phospho-oncoprotein, Tax. Tax is a transcriptional activator. Its ability to modulate the expression and function of many cellular genes has been reasoned to be a major contributory mechanism explaining HTLV-I-mediated transformation of cells. In activating cellular gene expression, Tax impinges upon several cellular signal-transduction pathways, including those for CREB/ATF and NF-kappa B. In this paper, we review aspects of Tax's transcriptional potential with particular focus on recent evidence linking Tax to IKK (I kappa B-kinase)-complex and MAP3Ks (mitogen-activated protein kinase kinase kinases).
Collapse
Affiliation(s)
- K T Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Room 306, Building 4, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
121
|
Yoshida H, Kato N, Shiratori Y, Otsuka M, Maeda S, Kato J, Omata M. Hepatitis C virus core protein activates nuclear factor kappa B-dependent signaling through tumor necrosis factor receptor-associated factor. J Biol Chem 2001; 276:16399-16405. [PMID: 11278312 DOI: 10.1074/jbc.m006671200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) core protein, a viral nucleocapsid, has been shown to affect various intracellular events including the nuclear factor kappaB (NF-kappaB) signaling supposedly associated with inflammatory response, cell proliferation, and apoptosis. In order to elucidate the effect of HCV core protein on the NF-kappaB signaling in HeLa and HepG2 cells, a reporter assay was utilized. HCV core protein significantly activated NF-kappaB signaling in a dose-dependent manner not only in HeLa and HepG2 cells transiently transfected with core protein expression plasmid, but also in HeLa cells induced to express core protein under the control of doxycycline. HCV core protein increased the DNA binding affinity of NF-kappaB in the electrophoretic mobility shift assay. Acetyl salicylic acid, an IKKbeta-specific inhibitor, and dominant negative form of IKKbeta significantly blocked NF-kappaB activation by HCV core protein, suggesting HCV core protein activates the NF-kappaB pathway mainly through IKKbeta. Moreover, the dominant negative forms of TRAF2/6 significantly blocked activation of the pathway by HCV core protein, suggesting HCV core protein mimics proinflammatory cytokine activation of the NF-kappaB pathway through TRAF2/6. In fact, HCV core protein activated interleukin-1beta promoter mainly through NF-kappaB pathway. Therefore, this function of HCV core protein may play an important role in the inflammatory reaction induced by this hepatotropic virus.
Collapse
Affiliation(s)
- H Yoshida
- Department of Gastroenterology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Delhase M, Karin M. The I kappa B kinase: a master regulator of NF-kappa B, innate immunity, and epidermal differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:491-503. [PMID: 11232326 DOI: 10.1101/sqb.1999.64.491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M Delhase
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
123
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1337] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Nawata H, Maeda Y, Sumimoto Y, Miyatake J, Kanamaru A. A mechanism of apoptosis induced by all-trans retinoic acid on adult T-cell leukemia cells: a possible involvement of the Tax/NF-kappaB signaling pathway. Leuk Res 2001; 25:323-31. [PMID: 11248329 DOI: 10.1016/s0145-2126(00)00126-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, five single clones were randomly established by limiting dilution method from each of the HTLV-I positive T cell lines - HUT 102 and ATL-2, and examined for the all-trans retinoic acid (ATRA) sensitivity, respectively. For each clone, we found a significant correlation between the reduction in 3[H]-thymidine incorporation and the reduction in CD25 expression (r=0.701, P<0.05) following treatment with 10(-5) M ATRA for 48 h. Agarose gel electrophoresis revealed DNA fragmentation of the cell lines treated with ATRA, indicative of apoptosis. These results suggested that the tax gene in the HTLV-I genome might be a key molecule involved in cell proliferation and CD25 expression. Thereafter, we transfected the tax gene in the expression vector (pCMV-Tax-neo) into the HTLV-I(-) T cell line Jurkat and examined the effects of ATRA on cell growth. The results showed that ATRA sensitivity was acquired by the Jurkat cells transfected with the tax gene expression vector, but not in those transfected with the control vector. We also observed NF-kappaB transcriptional activity on Jurkat cells transfected with the tax gene by CAT assay in the presence or absence of ATRA. NF-kappaB transcriptional activity was decreased significantly on Jurkat cells transfected with the tax gene after ATRA treatment. Taken together, these results indicate that ATRA may affect or block the Tax/NF-kappaB signaling pathway in ATL cells.
Collapse
Affiliation(s)
- H Nawata
- Third Department of Internal Medicine, Kinki University School of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, 589-8511, Osaka, Japan
| | | | | | | | | |
Collapse
|
125
|
Purcell NH, Yu C, He D, Xiang J, Paran N, DiDonato JA, Yamaoka S, Shaul Y, Lin A. Activation of NF-kappaB by hepatitis B virus X protein through an IkappaB kinase-independent mechanism. Am J Physiol Gastrointest Liver Physiol 2001; 280:G669-77. [PMID: 11254493 DOI: 10.1152/ajpgi.2001.280.4.g669] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
pX, the hepatitis B virus-encoded transcription coactivator, is involved in viral infection in vivo. pX stimulates the activity of several transcription factors including nuclear factor-kappaB (NF-kappaB), but the mechanism of activation is poorly understood. The IkappaB kinase complex (IKK) mediates activation of NF-kappaB in response to various extracellular stimuli, including inflammatory cytokines like tumor necrosis factor and interleukin 1, human T cell lymphoma virus 1 Tax protein, and tumor promoters like phorbol esters. It is not known whether IKK also mediates activation of NF-kappaB by pX. Here we report that IKK was not essential for activation of NF-kappaB by pX. Expression of pX resulted in the degradation of IkappaBalpha in the absence of its phosphorylation at Ser(32) and Ser(36) residues. Although pX stimulated the activity of cotransfected IKK-beta when it was overexpressed, it failed to activate endogenous IKK. Furthermore, expression of pX stimulated NF-kappaB nuclear translocation and transcriptional activity in IKK-gamma-null fibroblast 5R cells. Our data indicate that pX stimulates NF-kappaB activity through a mechanism that is dependent on IkappaBalpha degradation but not on IKK activation.
Collapse
Affiliation(s)
- N H Purcell
- Ben May Institute for Cancer Research, Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Diao J, Khine AA, Sarangi F, Hsu E, Iorio C, Tibbles LA, Woodgett JR, Penninger J, Richardson CD. X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 2001; 276:8328-40. [PMID: 11099494 DOI: 10.1074/jbc.m006026200] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The X protein from a chronic strain of hepatitis B virus (HBx) was determined to inhibit Fas-mediated apoptosis and promote cell survival. Fas-mediated apoptosis is the major cause of hepatocyte damage during liver disease. Experiments demonstrated that cell death caused by anti-Fas antibodies was blocked by the expression of HBx in human primary hepatocytes and mouse embryo fibroblasts. This effect was also observed in mouse erythroleukemia cells that lacked p53, indicating that protection against Fas-mediated apoptosis was independent of p53. Components of the signal transduction pathways involved in this protection were studied. The SAPK/JNK pathway has previously been suggested to be a survival pathway for some cells undergoing Fas-mediated apoptosis, and kinase assays showed that SAPK activity was highly up-regulated in cells expressing the HBx protein. Normal mouse fibroblasts expressing HBx were protected from death, whereas identical fibroblasts lacking the SEK1 component from the SAPK pathway succumbed to Fas-mediated apoptosis, whether HBx was present or not. Assays showed that caspase 3 and 8 activities and the release of cytochrome c from mitochondria were inhibited, in the presence of HBx, following stimulation with anti-Fas antibodies. Coprecipitation and confocal immunofluorescence microscopy experiments demonstrated that HBx localizes with a cytoplasmic complex containing MEKK1, SEK1, SAPK, and 14-3-3 proteins. Finally, mutational analysis of HBx demonstrated that a potential binding region for 14-3-3 proteins was essential for induction of SAPK/JNK activity and protection from Fas-mediated apoptosis.
Collapse
Affiliation(s)
- J Diao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Ji C, Kozak KR, Marnett LJ. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 2001; 276:18223-8. [PMID: 11359792 DOI: 10.1074/jbc.m101266200] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In unstimulated cells, transcription factor NF-kappaB is retained in the cytoplasm by interaction with the inhibitory protein, IkappaBalpha. Appropriate cellular stimuli inactivate IkappaBalpha by phosphorylation, ubiquination, and proteolytic degradation, which allows NF-kappaB to translocate to the nucleus and modulate gene expression. 4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation product, inhibits activation of NF-kappaB in the human colorectal carcinoma cell line (RKO) and human lung carcinoma cell line (H1299). Pretreatment of cells with HNE dose-dependently suppresses tetradecanoylphorbol acetate (TPA)/ionomycin (IM)-induced NF-kappaB DNA binding activity and transactivation of luciferase-based reporter constructs. HNE pretreatment has no affect on TPA/IM-induced AP-1 DNA binding activity. HNE inhibits TPA/IM-induced degradation of IkappaBalpha in both H1299 and Jurkat T cells. The accumulation of IkappaBalpha parallels the inhibition of its phosphorylation. At doses that inhibit IkappaBalpha degradation, HNE inhibits IkappaB kinase (IKK) activity by direct reaction with IKK. Covalent adducts of HNE to IKK are detected on Western blots using antibodies against IKK or HNE-protein conjugates. Addition of dithiothreitol prevents HNE modification of IKK. Thus, HNE is an endogenous inhibitor of NF-kappaB activation that acts by preventing IKK activation and subsequent IkappaBalpha degradation.
Collapse
Affiliation(s)
- C Ji
- Vanderbilt-Ingram Cancer Center and Center in Molecular Toxicology, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 73232-0146, USA
| | | | | |
Collapse
|
128
|
Abstract
Virus infections induce a proinflammatory response including expression of cytokines and chemokines. The subsequent leukocyte recruitment and antiviral effector functions contribute to the first line of defense against viruses. The molecular virus-cell interactions initiating these events have been studied intensively, and it appears that viral surface glycoproteins, double-stranded RNA, and intracellular viral proteins all have the capacity to activate signal transduction pathways leading to the expression of cytokines and chemokines. The signaling pathways activated by viral infections include the major proinflammatory pathways, with the transcription factor NF-kappaB having received special attention. These transcription factors in turn promote the expression of specific inducible host proteins and participate in the expression of some viral genes. Here we review the current knowledge of virus-induced signal transduction by seven human pathogenic viruses and the most widely used experimental models for viral infections. The molecular mechanisms of virus-induced expression of cytokines and chemokines is also analyzed.
Collapse
Affiliation(s)
- T H Mogensen
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
129
|
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12:73-90. [PMID: 11312120 DOI: 10.1016/s1359-6101(00)00018-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclins are a family of proteins that are centrally involved in cell cycle regulation and which are structurally identified by conserved "cyclin box" regions. They are regulatory subunits of holoenzyme cyclin-dependent kinase (CDK) complexes controlling progression through cell cycle checkpoints by phosphorylating and inactivating target substrates. CDK activity is controlled by cyclin abundance and subcellular location and by the activity of two families of inhibitors, the cyclin-dependent kinase inhibitors (CKI). Many hormones and growth factors influence cell growth through signal transduction pathways that modify the activity of the cyclins. Dysregulated cyclin activity in transformed cells contributes to accelerated cell cycle progression and may arise because of dysregulated activity in pathways that control the abundance of a cyclin or because of loss-of-function mutations in inhibitory proteins.Analysis of transformed cells and cells undergoing mitogen-stimulated growth implicate proteins of the NF-kappaB family in cell cycle regulation, through actions on the CDK/CKI system. The mammalian members of this family are Rel-A (p65), NF-kappaB(1) (p50; p105), NF-kappaB(2) (p52; p100), c-Rel and Rel-B. These proteins are structurally identified by an amino-terminal region of about 300 amino acids, known as the Rel-homology domain. They exist in cytoplasmic complexes with inhibitory proteins of the IkappaB family, and translocate to the nucleus to act as transcription factors when activated. NF-kappaB pathway activation occurs during transformation induced by a number of classical oncogenes, including Bcr/Abl, Ras and Rac, and is necessary for full transforming potential. The avian viral oncogene, v-Rel is an NF-kappaB protein. The best explored link between NF-kappaB activation and cell cycle progression involves cyclin D(1), a cyclin which is expressed relatively early in the cell cycle and which is crucial to commitment to DNA synthesis. This review examines the interactions between NF-kappaB signaling and the CDK/CKI system in cell cycle progression in normal and transformed cells. The growth-promoting actions of NF-kappaB factors are accompanied, in some instances, by inhibition of cellular differentiation and by inhibition of programmed cell death, which involve related response pathways and which contribute to the overall increase in mass of undifferentiated tissue.
Collapse
Affiliation(s)
- D Joyce
- Department of Pharmacology, The University of Western Australia, Nedlands, WA 6907, Australia
| | | | | | | | | | | |
Collapse
|
130
|
Li XH, Fang X, Gaynor RB. Role of IKKgamma/nemo in assembly of the Ikappa B kinase complex. J Biol Chem 2001; 276:4494-500. [PMID: 11080499 DOI: 10.1074/jbc.m008353200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
IKKgamma/NEMO is a protein that is critical for the assembly of the high molecular weight IkappaB kinase (IKK) complex. To investigate the role of IKKgamma/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKgamma/NEMO and the IKKs were examined. When expressed alone following transfection, IKKalpha and IKKbeta were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKgamma/NEMO, both IKKalpha and IKKbeta migrated at approximately 600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-alpha. When either IKKalpha or IKKbeta was expressed alone with IKKgamma/NEMO, IKKbeta but not IKKalpha migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKbeta were both incorporated into the high molecular weight IKK complex in the presence of IKKgamma/NEMO. The amino-terminal region of IKKgamma/NEMO, which interacts directly with IKKbeta, was required for formation of the high molecular weight IKK complex and for stimulation of IKKbeta kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKgamma/NEMO is a crucial step involved in IKK function.
Collapse
Affiliation(s)
- X H Li
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8594
| | | | | |
Collapse
|
131
|
Poyet JL, Srinivasula SM, Alnemri ES. vCLAP, a caspase-recruitment domain-containing protein of equine Herpesvirus-2, persistently activates the Ikappa B kinases through oligomerization of IKKgamma. J Biol Chem 2001; 276:3183-7. [PMID: 11113112 DOI: 10.1074/jbc.c000792200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
vCLAP, the E10 gene product of equine herpesvirus-2, is a caspase-recruitment domain (CARD)-containing protein that has been shown to induce both apoptosis and NF-kappaB activation in mammalian cells. vCLAP has a cellular counterpart, Bcl10/cCLAP, which is also an activator of apoptosis and NF-kappaB. Recent studies demonstrated that vCLAP activates NF-kappaB through an IkappaB kinase (IKK)-dependent pathway, but the underlying mechanism remains unknown. In this report, we demonstrate that vCLAP associates stably with the IKK complex through direct binding to the C-terminal region of IKKgamma. Consistent with this finding, IKKgamma was found to be essential for vCLAP-induced NF-kappaB activation, and the association between vCLAP and the IKK complex induced persistent activation of the IKKs. Moreover, enforced oligomerization of the isolated C-terminal region of vCLAP, which interacts with IKKgamma, can trigger NF-kappaB activation. Finally, substitution of the C-terminal region of IKKgamma, which interacts with vCLAP, with the CARD of vCLAP or Bcl10 produced a molecule that was able to activate NF-kappaB when ectopically expressed in IKKgamma-deficient cells. These data suggest that vCLAP-induced oligomerization of IKKgamma, which is mediated by the CARD of vCLAP, could be the mechanism by which vCLAP induces activation of NF-kappaB.
Collapse
Affiliation(s)
- J L Poyet
- Center for Apoptosis Research and the Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
132
|
Helenius M, Kyrylenko S, Vehviläinen P, Salminen A. Characterization of aging-associated up-regulation of constitutive nuclear factor-kappa B binding activity. Antioxid Redox Signal 2001; 3:147-56. [PMID: 11291593 DOI: 10.1089/152308601750100669] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes occur in gene expression during aging in vivo and in replicative senescence in vitro, suggesting that aging can affect gene regulation. We have recently observed age-related changes in ubiquitously expressed, oxidative stress-responsive nuclear factor-kappa B (NF-kappa B) pathway during aging. Here we report a significant age-related increase in nuclear NF-kappa B binding activity together with increased protein levels of p52 and p65 components in rat liver. An additional, higher molecular weight protein band seen in their western blots suggests that their post-translational modification (but not phosphorylation) occurs in liver, which might affect their nuclear localization and binding activity during aging. However, aging did not affect the protein levels of the main I kappa B inhibitors (I kappa B alpha and I kappa B beta) or I kappa B kinase (IKK)-complex subunits (IKK alpha, -beta, and -gamma) involved in NF-kappa B activation. In addition, the level of Ser32-phosphorylated I kappa B alpha was unaffected by age, suggesting that neither the IKK complex nor altered level of the main inhibitors is involved in the observed up-regulation of NF-kappa B binding activity. Furthermore, the expression of NF-kappa B mRNAs (p50, p52, p65, and c-rel) and the mRNAs of their inhibitors (I kappa B alpha and I kappa B beta) did not show any statistically significant age-related changes. These results indicate that the expression level of NF-kappa B genes is not significantly affected by aging. The up-regulation of constitutive nuclear NF-kappa B binding activity and increased levels of nuclear p52 and p65 proteins might affect the expression of some NF-kappa B target genes in the aging liver.
Collapse
Affiliation(s)
- M Helenius
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | |
Collapse
|
133
|
Mehl AM, Floettmann JE, Jones M, Brennan P, Rowe M. Characterization of intercellular adhesion molecule-1 regulation by Epstein-Barr virus-encoded latent membrane protein-1 identifies pathways that cooperate with nuclear factor kappa B to activate transcription. J Biol Chem 2001; 276:984-92. [PMID: 11034993 DOI: 10.1074/jbc.m003758200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The latent membrane protein-1 (LMP1) of Epstein-Barr virus induces gene transcription, phenotypic changes, and oncogenic transformation. One cellular gene induced by LMP1 is that for intercellular adhesion molecule-1 (ICAM-1), which participates in a wide range of inflammatory and immune responses. ICAM-1 may enhance the immune recognition of cells transformed by Epstein-Barr virus, and thus combat development of malignancy. Despite growing understanding of the various signaling functions of LMP1, the molecular mechanisms by which LMP1 induces ICAM-1 are not understood. Here, we demonstrate that transcriptional activation by LMP1 is absolutely dependent upon a variant NF-kappaB motif within the tumor necrosis factor alpha (TNFalpha) response element of the ICAM-1 promoter. Although the TNFalpha response element is sufficient for TNFalpha induction of the ICAM-1 promoter, LMP1 also required the cooperation of additional upstream sequences for optimal induction. Inhibitor studies of known LMP1-induced signaling pathways ruled out the involvement of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, and the Janus-activating tyrosine kinase 3 (JAK3), and confirmed NF-kappaB as a critical factor for induction of ICAM-1. However, although constitutive activation of NF-kappaB efficiently induced promoter activity, it was not sufficient to induce either ICAM-1 mRNA or ICAM-1 protein. Using signaling defective LMP1 mutants and deacetylation inhibitors, we showed that the C-terminal activator region 1 of LMP1 delivers a new cooperating signal to induce ICAM-1 mRNA.
Collapse
Affiliation(s)
- A M Mehl
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Cardiff CF14 4XX, United Kingdom
| | | | | | | | | |
Collapse
|
134
|
Iwai K, Mori N, Oie M, Yamamoto N, Fujii M. Human T-cell leukemia virus type 1 tax protein activates transcription through AP-1 site by inducing DNA binding activity in T cells. Virology 2001; 279:38-46. [PMID: 11145887 DOI: 10.1006/viro.2000.0669] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax protein induces the expression of various family members of the transcription factor AP-1, such as c-Jun, JunD, c-Fos, and Fra-1, at the level of RNA expression in T cells. We examined the activity of Tax in transcription through AP-1-binding sites (AP-1 site) in T cells. Transient transfection studies showed that Tax activated the expression of a luciferase gene regulated by two copies of an AP-1 site in the human Jurkat T-cell line. Tax activates the expression of viral and cellular genes through two different enhancers: a cAMP-responsive (CRE)-like element and a kappaB element. Two Tax mutants differentially activated expression of these two elements. Tax703 preferentially activated the kappaB element but not the CRE-like one, whereas TaxM22 showed the reverse. In addition, Tax703 and Tax, but not TaxM22, converted cell growth of a mouse T-cell line from being interleukin (IL)-2-dependent to being IL-2-independent. Unlike the wild-type Tax, Tax703 and TaxM22 only weakly activated the AP-1 site in the T-cell line. Thus, Tax seems to activate the AP-1 site via mechanisms distinct from those of kappaB or CRE-like elements, and the activation of the AP-1 site is dispensable for IL-2-independent growth of CTLL-2. Electrophoretic mobility shift assays showed that Tax induced strong binding activity to an AP-1 site in CTLL-2, whereas Tax703 did not, indicating that the induction of binding activity to the AP-1 site is essential for the transcriptional activation by Tax. The binding complex induced by Tax in CTLL-2 contained JunD and Fra-2. Other AP-1 proteins were undetectable. Activation of transcription through the AP-1 site in Jurkat cells by JunD and/or Fra-2 was weak. c-Jun, JunB, and c-Fos activation was greater, although the level was still less than that with Tax. Thus, the induction of AP-1 mRNA by Tax may not be sufficient for a complete activation of AP-1 site by Tax. Our results suggest that Tax activates the transcription of cellular genes with AP-1 sites by inducing the DNA-binding activity of AP-1 proteins in T cells, a mechanism distinct from those of CRE-like and kappaB elements.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Western
- Cell Line, Transformed
- Cell Transformation, Viral
- DNA/metabolism
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Genes, fos/genetics
- Genes, fos/physiology
- Genes, jun/genetics
- Genes, jun/physiology
- Human T-lymphotropic virus 1/metabolism
- Humans
- Jurkat Cells
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- RNA, Messenger/metabolism
- T-Lymphocytes/metabolism
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- K Iwai
- Department of Virology, Niigata University School of Medicine, 1-757 Asahimachi-Dori, Niigata, 951-8510, Japan
| | | | | | | | | |
Collapse
|
135
|
Khorana AA, Rosenblatt JD, Young FM. Immunopathogenesis of HIV and HTLV-1 infection: mechanisms for lymphomagenesis. Cancer Treat Res 2001; 104:19-74. [PMID: 11191127 DOI: 10.1007/978-1-4615-1601-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Affiliation(s)
- A A Khorana
- Cancer Center and Hematology-Oncology Unit, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
136
|
Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M. Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 2000; 275:36062-6. [PMID: 10967126 DOI: 10.1074/jbc.m007204200] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arsenite is a potent environmental toxin that causes various pathologies including cancers and skin disorders. Arsenite is believed to exert its biological effects through reaction with exposed sulfhydryl groups, especially pairs of adjacent thiols. Here, we describe the mechanism by which arsenite affects the NF-kappaB signaling pathway. Activation of transcription factor NF-kappaB depends on the integrity of the IkappaB kinase (IKK) complex. We found that arsenite potently inhibits NF-kappaB and IKK activation by binding to Cys-179 in the activation loop of the IKK catalytic subunits, IKKalpha/beta. The affinity of IKKbeta for trivalent arsenic was verified in vitro by the ability of IKKbeta to enhance the fluorescence of an arsenic-substituted fluorescein dye. The addition of 1,2-dithiol antidotes or replacement of Cys-179 with an alanine residue abolished dye binding to and arsenite inhibition of IKKbeta. Overexpression of IKKbeta (C179A) protects NF-kappaB from inhibition by arsenite, indicating that despite the involvement of a large number of distinct gene products in this activation pathway, the critical target for inhibition by arsenite is on the IKK catalytic subunits.
Collapse
Affiliation(s)
- P Kapahi
- Laboratory of Gene Regulation and Signal Transduction, the Department of Pharmacology 0636, and the Howard Hughes Medical Institute 0647, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Xiao G, Harhaj EW, Sun SC. Domain-specific interaction with the I kappa B kinase (IKK)regulatory subunit IKK gamma is an essential step in tax-mediated activation of IKK. J Biol Chem 2000; 275:34060-7. [PMID: 10906125 DOI: 10.1074/jbc.m002970200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human T-cell leukemia virus type 1 Tax oncoprotein deregulates the NF-kappa B signaling pathway by persistently stimulating a key signal transducer, the I kappa B kinase (IKK). Tax physically associates with the IKK regulatory subunit, IKK gamma, although the underlying biochemical mechanism and functional significance remain unclear. We show that the Tax-IKK gamma interaction requires two homologous leucine zipper domains located within IKK gamma. These leucine zipper domains are unique for the presence of a conserved upstream region that is essential for Tax binding. Site-directed mutagenesis analysis revealed that a leucine-repeat region of Tax is important for IKK gamma binding. Interestingly, all the Tax mutants defective in IKK gamma binding failed to engage the IKK complex or stimulate IKK activity, and these functional defects can be rescued by fusing the Tax mutants to IKK gamma. These results provide mechanistic insights into how Tax specifically targets and functionally activates the cellular kinase IKK.
Collapse
Affiliation(s)
- G Xiao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
138
|
Sun SC, Harhaj EW, Xiao G, Good L. Activation of I-kappaB kinase by the HTLV type 1 Tax protein: mechanistic insights into the adaptor function of IKKgamma. AIDS Res Hum Retroviruses 2000; 16:1591-6. [PMID: 11080796 DOI: 10.1089/08892220050193001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Tax protein encoded by human T cell leukemia virus type 1 (HTLV-1) induces constitutive nuclear expression of the transcription factor NF-kappaB, causing aberrant expression of a large array of cellular genes. Tax activates NF-kappaB by stimulating the activity of the I-kappaB kinase (IKK), which in turn leads to phosphorylation and degradation of the NF-kappaB inhibitor I-kappaBalpha. In normal T cells, IKK activation occurs transiently on cellular stimulation through the T cell receptor (TCR) and the CD28 costimulatory molecule. However, this inducible kinase is constitutively activated in Tax-expressing and HTLV-1-infected T cells, which contributes to the deregulated nuclear expression of NF-kappaB. As a genetic approach to dissect the pathways mediating IKK activation by Tax and T cell activation signals, somatic cell mutagenesis was performed to isolate signaling-defective mutant Jurkat T cell lines. One of the mutant cell lines was shown to have a defect in NF-kappaB activation by both T cell mitogens and Tax. Interestingly, this mutant cell line lacks expression of the IKK regulatory protein, IKKgamma. Expression of exogenous IKKgamma in the mutant cells restored NF-kappaB activation, thus confirming the essential role of this regulatory factor in IKK activation by the cellular and viral stimuli. Mechanistic studies have shown that Tax physically interacts with IKKgamma via specific domains, including two homologous leucine zipper motifs present in IKKgamma. The Tax/IKKgamma interaction serves to recruit Tax to the IKK catalytic subunits, IKKalpha and IKKbeta, and this recruitment appears to be an essential mechanism by which Tax stimulates the activity of IKK.
Collapse
Affiliation(s)
- S C Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
139
|
Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL. Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5097-104. [PMID: 11046040 DOI: 10.4049/jimmunol.165.9.5097] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) transforms cytokine-dependent T lymphocytes and causes adult T cell leukemia. Janus tyrosine kinase (Jak)3 and transcription factors Stat5a and Stat5b are essential for the proliferation of normal T cells and are constitutively hyperactivated in both HTLV-1-transformed human T cell lines and lymphocytes isolated from HTLV-1-infected patients; therefore, a critical role for the Jak3-Stat5 pathway in the progression of this disease has been postulated. We recently reported that tyrphostin AG-490 selectively blocked IL-2 activation of Jak3/Stat5 and growth of murine T cell lines. Here we demonstrate that disruption of Jak3/Stat5a/b signaling with AG-490 (50 microM) blocked the proliferation of primary human T lymphocytes, but paradoxically failed to inhibit the proliferation of HTLV-1-transformed human T cell lines, HuT-102 and MT-2. Structural homologues of AG-490 also inhibited the proliferation of primary human T cells, but not HTLV-1-infected cells. Disruption of constitutive Jak3/Stat5 activation by AG-490 was demonstrated by inhibition of 1) tyrosine phosphorylation of Jak3, Stat5a (Tyr(694)), and Stat5b (Tyr(699)); 2) serine phosphorylation of Stat5a (Ser(726)) as determined by a novel phosphospecific Ab; and 3) Stat5a/b DNA binding to the Stat5-responsive beta-casein promoter. In contrast, AG-490 had no effect on DNA binding by p50/p65 components of NF-kappaB, a transcription factor activated by the HTLV-1-encoded phosphoprotein, Tax. Collectively, these data suggest that the Jak3-Stat5 pathway in HTLV-1-transformed T cells has become functionally redundant for proliferation. Reversal of this functional uncoupling may be required before Jak3/Stat5 inhibitors will be useful in the treatment of this malignancy.
Collapse
Affiliation(s)
- R A Kirken
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Li XH, Gaynor RB. Mechanisms of NF-kappaB activation by the HTLV type 1 tax protein. AIDS Res Hum Retroviruses 2000; 16:1583-90. [PMID: 11080795 DOI: 10.1089/08892220050192994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Tax protein encoded by the human T cell leukemia virus type I virus (HTLV-1) activates the expression of both viral genes and cellular genes involved in T lymphocyte growth and proliferation. One of the critical cellular pathways activated by Tax is NF-kappaB. NF-kappaB is normally sequestered in the cytoplasm, bound to a family of inhibitory proteins known as I-kappaB. In contrast to the transient activation of the NF-kappaB pathway seen in response to cytokines, Tax results in constitutive nuclear levels of NF-kappaB. Tax activation of the NF-kappaB pathway is mediated by its ability to enhance the phosphorylation and subsequent degradation of I-kappaB. The persistent activation of the NF-kappaB pathway by Tax is believed to be one of the major events involved in HTLV-1-mediated cellular transformation of T lymphocytes. This review summarizes data exploring the role of Tax in activating the NF-kappaB pathway and discusses our studies to determine the mechanism by which Tax activates the NF-kappaB pathway.
Collapse
Affiliation(s)
- X H Li
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
141
|
Kuo YL, Tang Y, Harrod R, Cai P, Giam CZ. Kinase-inducible domain-like region of HTLV type 1 tax is important for NF-kappaB activation. AIDS Res Hum Retroviruses 2000; 16:1607-12. [PMID: 11080799 DOI: 10.1089/08892220050193038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Partial proteolysis of HTLV-1 Tax protein has revealed the region surrounding amino acid residues (88)KVL(90) to be highly exposed. The protein sequence surrounding this region ((81)QRTSKTLKVLTPPIT(95)) bears resemblance to the kinase-inducible domain (KID, (129)SRRPSYRKILNE(140)) of CREB and is involved in recruiting transcriptional coactivators, p300 and CBP, for trans-activating the viral long terminal repeat (LTR). Data have also revealed the KID-like region to be important for Tax binding to DNA. Here we report that single (K88A, V89A, L90A) and double alanine substitutions (V89A-L90A) in the (88)KVL(90) motif attenuate the ability of Tax to activate NF-kappaB. Deletions near or spanning this motif also had the same effect. The alanine substitutions affect HTLV-1 LTR activation and NF-kappaB activation differently, with K88A and V89A mutants showing much reduced activities for HTLV LTR activation while retaining attenuated but significant NF-kappaB-activating function. In contrast, although the L90A mutant is similarly attenuated for NF-kappaB activation, it showed significant activity in LTR trans-activation. Incorporation of both V89A and L90A substitutions in a V89A-L90A double mutant further reduced NF-kappaB activation and completely abrogated LTR trans-activation. In aggregate, these results demonstrate the importance of the KID-like domain of Tax and implicate its interaction with cellular factors other than p300/CBP in NF-kappaB activation.
Collapse
Affiliation(s)
- Y L Kuo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
Human T-cell leukemia virus type I (HTLV-I) Tax protein persistently stimulates the activity of IkappaB kinase (IKK), resulting in constitutive activation of the transcription factor NF-kappaB. Tax activation of IKK requires physical interaction of this viral protein with the IKK regulatory subunit, IKKgamma. The Tax/IKKgamma interaction allows Tax to engage the IKK catalytic subunits, IKKalpha and IKKbeta, although it remains unclear whether this linker function of IKKgamma is sufficient for supporting the Tax-specific IKK activation. To address this question, we have examined the sequences of IKKgamma required for modulating the Tax/IKK signaling. We demonstrate that when fused to Tax, a small N-terminal fragment of IKKgamma, containing its minimal IKKalpha/beta-binding domain, is sufficient for bringing Tax to and activating the IKK catalytic subunits. Disruption of the IKKalpha/beta-binding activity of this domain abolishes its function in modulating the Tax/IKK signaling. We further demonstrate that direct fusion of Tax to IKKalpha and IKKbeta leads to activation of these kinases. These findings suggest that the IKKgamma-directed Tax/IKK association serves as a molecular trigger for IKK activation.
Collapse
Affiliation(s)
- G Xiao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania, PA 17033, USA
| | | |
Collapse
|
143
|
Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 2000; 60:1075-83. [PMID: 11007944 DOI: 10.1016/s0006-2952(00)00371-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While intracellular redox balance is tightly controlled in many cell types, its modification leads to important cellular changes derived, in part, from a modification of the pattern of gene expression. This modification relies on many transcription factors whose activities are either increased or reduced by a disbalance of the redox environment. Among these transcription factors, nuclear factor-kappa B (NF-kappa B) plays a pivotal role in inducing genes involved in the control of the immune system as well as in the response to injury and infection. Because NF-kappa B can be induced in many cells by a diverse set of stimulating agents, it has been proposed that agents activating it do so by increasing oxidative stress within the cell. However, this model was not found to be universal, since the dependence between NF-kappa B activation and intracellular reactive oxygen species (ROS) generation was only detected in certain cell lines. The origin of this dependency is still unknown, but could very well be situated in a particular kinase or in adaptator molecules of the signaling cascade, leading to inhibitor kappa B alpha (I kappa B alpha phosphorylation. On the other hand, NF-kappa B can be activated by oxidants in many cell types, but this activation is well characterized only in lymphocytes. This activation is distinct from that of classical activators such as proinflammatory cytokines and phorbol esters, because the activation mechanisms appear to converge on a particular tyrosine residue of I kappa B-alpha instead of the two classical N-terminal serines. The nature of the protein kinases or protein phosphatases involved in this process is still undetermined. It will be a challenge in the future to identify the kinases/phosphatases activated by oxidants and to discover why ROS are required in some cells to turn on the transduction pathway leading to NF-kappa B activation by physiological stimuli.
Collapse
Affiliation(s)
- S Schoonbroodt
- Laboratory of Virology & Immunology, Institute of Pathology B23, University of Liege, B-4000 Liege, Belgium
| | | |
Collapse
|
144
|
López-Rovira T, Chalaux E, Rosa JL, Bartrons R, Ventura F. Interaction and functional cooperation of NF-kappa B with Smads. Transcriptional regulation of the junB promoter. J Biol Chem 2000; 275:28937-46. [PMID: 10874048 DOI: 10.1074/jbc.m909923199] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transforming growth factor-beta (TGF-beta) family of cytokines regulates diverse cellular processes through control of the expression of target genes. Smad proteins are a recently identified family of signal transducers for members of the TGF-beta family. Smads act as transcriptional regulators through binding to DNA and interacting with a variety of transcription factors. Here, we identified a kappaB site as a TGF-beta-responsive region in the 3'-downstream junB promoter region. We also demonstrate that kappaB sites alone are sufficient to mediate immediate transcriptional activation by TGF-beta. Transactivation of kappaB sites by TGF-beta requires an intact NF-kappaB pathway, cooperates with known activators of this pathway, and is mediated by Smad family members. Furthermore, we show that Smad3 interacts with p52 in vivo. These data expand the model in which Smad proteins undergo multiple interactions with several transcription factors that could induce either activation or repression of gene expression.
Collapse
Affiliation(s)
- T López-Rovira
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
145
|
Carter AB, Hunninghake GW. A constitutive active MEK --> ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation. J Biol Chem 2000; 275:27858-64. [PMID: 10878013 DOI: 10.1074/jbc.m003599200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endotoxin-induced cytokine gene expression is regulated, in part, by NF-kappaB. We have shown that both the ERK and p38 mitogen-activated protein (MAP) kinases are necessary for cytokine gene transcription and that the p38 MAP kinase is required for NF-kappaB-driven transcription, so we hypothesized that the MEK --> ERK pathway regulated NF-kappaB-driven transcription as well. We found that a constitutive active MEK --> ERK pathway inhibited NF-kappaB-driven transcription. In addition, both PD 98059 and a dominant negative ERK2 augmented NF-kappaB-driven transcription; however, neither PD 98059 nor MEK1 altered NF-kappaB activation at any level. The constitutive active MEK --> ERK pathway inhibited the phosphorylation of TBP, which is necessary for both interaction with RelA and binding to the TATA box. Due to the fact that we have shown that the p38 MAP kinase modulates TBP activation, we evaluated the effect of the constitutive active MEK --> ERK pathway on p38 MAP kinase activity. We found that the MEK --> ERK pathway negatively regulates NF-kappaB-driven transcription, in part, by inhibiting p38 MAP kinase activity. Thus, the ERK and p38 MAP kinases have differential effects on NF-kappaB-driven transcription.
Collapse
Affiliation(s)
- A B Carter
- University of Iowa College of Medicine and the Iowa City Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
146
|
Kato N, Yoshida H, Ono-Nita SK, Kato J, Goto T, Otsuka M, Lan K, Matsushima K, Shiratori Y, Omata M. Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 2000; 32:405-412. [PMID: 10915750 DOI: 10.1053/jhep.2000.9198] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To clarify the effects of hepatitis C virus (HCV) infection on hepatocytes, we analyzed and compared the induction of intracellular signals by HCV and hepatitis B virus (HBV) proteins. We examined the influence of 7 HCV (core, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) and 4 HBV (precore, core, polymerase, and X) proteins on 5 well-defined intracellular signaling pathways associated with cell proliferation, differentiation, and apoptosis by use of a reporter assay. Viral protein-expression vectors were cotransfected into mammalian cells with reporter vectors having a luciferase gene driven by the following inducible cis-enhancer elements: the cyclic adenosine monophosphate response element, the serum response element (SRE), and the binding sites for nuclear factor kappaB (NF-kappaB), activator protein 1 (AP-1), and serum response factor (SRF). In addition, the activation of signals by HCV proteins was examined in a reporter plasmid having a natural interleukin-8 (IL-8) promoter upstream of a luciferase gene. Of 11 HCV and HBV proteins, HCV core had the strongest influence on intracellular signals, especially NF-kappaB-, AP-1-, and SRE-associated pathways. HCV core's activation level exceeded that of HBV X protein, a well-characterized transactivator of these signals. Moreover, HCV core activated the IL-8 promoter through NF-kappaB and AP-1. For the other proteins, HCV NS4B showed signal activation, but signals were activated at a lesser extent. The luciferase reporter assay, a recently introduced technique, helped in the elucidation of molecular events underlying the inflammatory and proliferation process in the liver induced by HCV.
Collapse
Affiliation(s)
- N Kato
- Department of Gastroenterology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Biswas DK, Cruz AP, Gansberger E, Pardee AB. Epidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci U S A 2000; 97:8542-7. [PMID: 10900013 PMCID: PMC26984 DOI: 10.1073/pnas.97.15.8542] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2000] [Indexed: 11/18/2022] Open
Abstract
The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (-) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER- and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER- and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER- cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER- human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF-EGFR interaction is mediated via activation of nuclear factor kappaB (NF-kappaB). The basal level of active NF-kappaB in ER- cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-kappaB activation factor. NF-kappaB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER- cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294-002, blocked this event, suggesting a role of the former in the activation of NF-kappaB by EGF. Go6976, a well-characterized NF-kappaB inhibitor, blocked EGF-induced NF-kappaB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER- cells. Thus Go6976 and similar NF-kappaB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER- breast cancer patients.
Collapse
Affiliation(s)
- D K Biswas
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
148
|
Pankow R, Dürkop H, Latza U, Krause H, Kunzendorf U, Pohl T, Bulfone-Paus S. The HTLV-I tax protein transcriptionally modulates OX40 antigen expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:263-70. [PMID: 10861060 DOI: 10.4049/jimmunol.165.1.263] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OX40 is a member of the TNF receptor family, expressed on activated T cells. It is the only costimulatory T cell molecule known to be specifically up-regulated in human T cell leukemia virus type-I (HTLV-I)-producing cells. In a T cell line, OX40 surface expression was shown to be induced by HTLV-I Tax alone. To understand molecular mechanisms of OX40 gene regulation and modulation by HTLV-I Tax, we have cloned the human OX40 gene and analyzed its 5'-flanking region. By reporter gene analysis with progressive 5' deletions from nucleotides -1259 to -64, we have defined a 157-bp DNA fragment as a minimal promoter for constitutive expression. In addition, we show that in the OX40+ cell line, Co, Tax is able to further increase OX40 surface expression. Up-regulation of OX40 promoter activity by Tax requires two upstream NF-kappaB sites, which are not active in the constitutive OX40 expression. Their deletion abrogates Tax responsiveness in reporter gene analysis. The site-directed mutagenesis of each NF-kappaB site demonstrates that cooperative NF-kappaB binding is a prerequisite for Tax-directed activity as neither site alone is sufficient for a full Tax responsiveness of the OX40 promoter. Upon Tax expression, both sites bind p65 and c-Rel. These data provide new insight into the direct regulation of OX40 by Tax and add to our understanding of the possible role of the OX40/OX40 ligand system in the proliferation of HTLV-I+ T cells.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Base Sequence
- Cloning, Molecular
- Gene Products, tax/physiology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Humans
- Molecular Sequence Data
- NF-kappa B/metabolism
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor
- Transcription, Genetic/immunology
- Transcriptional Activation/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- R Pankow
- Departments of Pathology and Urology, University Hospital Benjamin Franklin, Free University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 2000; 275:19693-9. [PMID: 10779525 DOI: 10.1074/jbc.m909860199] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The p21-activated kinase (PAK1) is a serine-threonine protein kinase that is activated by binding to the Rho family small G proteins Rac and Cdc42hs. Both Rac and Cdc42hs have been shown to regulate the activity of the transcription factor NFkappaB. Here we show that expression of active Ras, Raf-1, or Rac1 in fibroblasts stimulates NFkappaB in a PAK1-dependent manner and that expression of active PAK1 can stimulate NFkappaB on its own. Similarly, in macrophages activation of NFkappaB as well as transcription from the tumor necrosis factor alpha promoter depends on PAK1. In these cells lipopolysaccharide is a potent activator of PAK1 kinase activity. We also demonstrate that expression of active PAK1 stimulates the nuclear translocation of the p65 subunit of NFkappaB but does not activate the inhibitor of kappaB kinases alpha or beta. These data demonstrate that PAK1 is a crucial signaling molecule involved in NFkappaB activation by multiple stimuli.
Collapse
Affiliation(s)
- J A Frost
- Departments of Pharmacology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Christerson LB, Vanderbilt CA, Cobb MH. MEKK1 interacts with alpha-actinin and localizes to stress fibers and focal adhesions. CELL MOTILITY AND THE CYTOSKELETON 2000; 43:186-98. [PMID: 10401575 DOI: 10.1002/(sici)1097-0169(1999)43:3<186::aid-cm2>3.0.co;2-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitogen-activated protein (MAP) kinases orchestrate the effects of many extracellular stimuli on cells. The serine/threonine protein kinase MEKK1 is an upstream activator of the MAP kinases c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), extracellular signal-regulated kinase (ERK), and p38 as well as NF-kappa B. In a yeast two-hybrid interaction screen to identify proteins that bind to an N-terminal fragment of MEKK1 (amino acids 1-719), the actin-crosslinking protein alpha-actinin was identified as a MEKK1-binding protein. Over-expressed MEKK1 co-immunoprecipitated with alpha-actinin in cell lysates. Both endogenous and over-expressed MEKK1 colocalized with alpha-actinin along actin stress fibers and at focal adhesions. Residues 221-559 of MEKK1 bound to purified alpha-actinin in vitro, indicating that the interaction is direct, and this fragment localized to actin filaments in cells. MEKK1 kinase activity was not required for association with actin filaments, because a catalytically inactive mutant of MEKK1 (MEKK1 D1369A) localized to stress fibers. These results provide strong evidence for the interaction between MEKK1 and alpha-actinin. Thus, restriction of the kinase to the actin cytoskeleton may serve to regulate its specificity towards downstream targets.
Collapse
Affiliation(s)
- L B Christerson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|