101
|
Abstract
DNA replication occurs at discrete sites in the cell. To gain insight into the spatial and temporal organization of the Bacillus subtilis replication cycle, we simultaneously visualized replication origins and the replication machinery (replisomes) inside live cells. We found that the origin of replication is positioned near midcell prior to replication. After initiation, the replisome colocalizes with the origin, confirming that replication initiates near midcell. The replisome remains near midcell after duplicated origins separate. Artificially mispositioning the origin region leads to mislocalization of the replisome indicating that the location of the origin at the time of initiation establishes the position of the replisome. Time-lapse microscopy revealed that a single replisome focus reversibly splits into two closely spaced foci every few seconds in many cells, including cells that recently initiated replication. Thus, sister replication forks are likely not intimately associated with each other throughout the replication cycle. Fork dynamics persisted when replication elongation was halted, and is thus independent of the relative movement of DNA through the replisome. Our results provide new insights into how the replisome is positioned in the cell and refine our current understanding of the spatial and temporal events of the B. subtilis replication cycle.
Collapse
Affiliation(s)
- Melanie B Berkmen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
102
|
Saint-Dic D, Frushour BP, Kehrl JH, Kahng LS. A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae. J Bacteriol 2006; 188:5626-31. [PMID: 16855253 PMCID: PMC1540020 DOI: 10.1128/jb.00250-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Vibrio cholerae deletion mutant lacking VS2773, a parA partitioning gene homolog located in a parAB operon on the large chromosome, displays altered positioning of the large chromosome origin. Deletion of a second parA homolog on the large chromosome (VC2061) does not affect its origin positioning. The origin position of the small chromosome is unchanged by either or both of these deletions, suggesting that VC2773 function is specific to the replicon on which it is carried. VC2773 and VC2772 form a parABS system with inverted repeats found near the large chromosome origin.
Collapse
Affiliation(s)
- Djenann Saint-Dic
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 S. Wood Street (MC 716), Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
103
|
Lee PS, Grossman AD. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol 2006; 60:853-69. [PMID: 16677298 DOI: 10.1111/j.1365-2958.2006.05140.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Soj (ParA) and Spo0J (ParB) of Bacillus subtilis belong to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. Unlike most Par systems, for which intact copies of both parA and parB are required for the Par system to function, inactivating soj does not cause a detectable chromosome partitioning phenotype whereas inactivating spo0J leads to a 100-fold increase in the production of anucleate cells. This suggested either that Soj does not function like other ParA homologues, or that a cellular factor might compensate for the absence of soj. We found that inactivating smc, the gene encoding the structural maintenance of chromosomes (SMC) protein, unmasked a role for Soj in chromosome partitioning. A soj null mutation dramatically enhanced production of anucleate cells in an smc null mutant. To look for effects of a soj null on other phenotypes perturbed in a spo0J null mutant, we analysed replication initiation and origin positioning in (soj-spo0J)+, Deltasoj, Deltaspo0J and Delta(soj-spo0J) cells. All of the mutations caused increased initiation of replication and, to varying extents, affected origin positioning. Using a new assay to measure separation of the chromosomal origins, we found that inactivating soj, spo0J or both led to a significant defect in separating replicated sister origins, such that the origins remain too close to be spatially resolved. Separation of a region outside the origin was not affected. These results indicate that there are probably factors helping to pair sister origin regions for part of the replication cycle, and that Soj and Spo0J may antagonize this pairing to contribute to timely separation of replicated origins. The effects of Deltasoj, Deltaspo0J and Delta(soj-spo0J) mutations on origin positioning, chromosome partitioning and replication initiation may be a secondary consequence of a defect in separating replicated origins.
Collapse
Affiliation(s)
- Philina S Lee
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
104
|
Jun S, Mulder B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci U S A 2006; 103:12388-93. [PMID: 16885211 PMCID: PMC1525299 DOI: 10.1073/pnas.0605305103] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent progress in visualization experiments, the mechanism underlying chromosome segregation in bacteria still remains elusive. Here we address a basic physical issue associated with bacterial chromosome segregation, namely the spatial organization of highly confined, self-avoiding polymers (of nontrivial topology) in a rod-shaped cell-like geometry. Through computer simulations, we present evidence that, under strong confinement conditions, topologically distinct domains of a polymer complex effectively repel each other to maximize their conformational entropy, suggesting that duplicated circular chromosomes could partition spontaneously. This mechanism not only is able to account for the spatial separation per se but also captures the major features of the spatiotemporal organization of the duplicating chromosomes observed in Escherichia coli and Caulobacter crescentus.
Collapse
Affiliation(s)
- Suckjoon Jun
- Stichting voor Fundamenteel Onderzoek der Materie (FOM) Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands.
| | | |
Collapse
|
105
|
Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 2006; 4:e185. [PMID: 16719561 PMCID: PMC1470461 DOI: 10.1371/journal.pbio.0040185] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022] Open
Abstract
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.
Collapse
Affiliation(s)
- Deborah M Tobiason
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
106
|
Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berlatzky I, Rouvinski A, Meyerovich M, Ben-Yehuda S. A Checkpoint Protein That Scans the Chromosome for Damage at the Start of Sporulation in Bacillus subtilis. Cell 2006; 125:679-90. [PMID: 16713562 DOI: 10.1016/j.cell.2006.03.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/13/2006] [Accepted: 03/11/2006] [Indexed: 12/14/2022]
Abstract
In response to DNA damage, cells activate checkpoint signaling cascades to control cell-cycle progression and elicit DNA repair in order to maintain genomic integrity. The sensing and repair of lesions is critical for Bacillus subtilis cells entering the developmental process of sporulation as damaged DNA may prevent the cells from completing spore morphogenesis. We report the identification of the protein DisA (DNA integrity scanning protein, annotated YacK), which is required to delay the initiation of sporulation in response to chromosomal damage. DisA is a nonspecific DNA binding protein that forms a single focus, which moves rapidly within the bacterial cell, pausing at sites of DNA damage. We propose that the DisA focus scans along the chromosomes searching for lesions. Upon encountering a lesion, DisA delays entry into sporulation until the damage is repaired.
Collapse
Affiliation(s)
- Michal Bejerano-Sagie
- Department of Molecular Biology, Faculty of Medicine, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
107
|
Srivastava P, Fekete RA, Chattoraj DK. Segregation of the replication terminus of the two Vibrio cholerae chromosomes. J Bacteriol 2006; 188:1060-70. [PMID: 16428410 PMCID: PMC1347332 DOI: 10.1128/jb.188.3.1060-1070.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells.
Collapse
|
108
|
Jensen RB. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus. J Bacteriol 2006; 188:2244-53. [PMID: 16513754 PMCID: PMC1428140 DOI: 10.1128/jb.188.6.2244-2253.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.
Collapse
Affiliation(s)
- Rasmus B Jensen
- Department of Life Sciences and Chemistry, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
109
|
Kruse T, Blagoev B, Løbner-Olesen A, Wachi M, Sasaki K, Iwai N, Mann M, Gerdes K. Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 2006; 20:113-24. [PMID: 16391237 PMCID: PMC1356105 DOI: 10.1101/gad.366606] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The actin-like MreB cytoskeletal protein and RNA polymerase (RNAP) have both been suggested to provide the force for chromosome segregation. Here, we identify MreB and RNAP as in vivo interaction partners. The interaction was confirmed using in vitro purified components. We also present convincing evidence that MreB and RNAP are both required for chromosome segregation in Escherichia coli. MreB is required for origin and bulk DNA segregation, whereas RNAP is required for bulk DNA, terminus, and possibly also for origin segregation. Furthermore, flow cytometric analyses show that MreB depletion and inactivation of RNAP confer virtually identical and highly unusual chromosome segregation defects. Thus, our results raise the possibility that the MreB-RNAP interaction is functionally important for chromosome segregation.
Collapse
Affiliation(s)
- Thomas Kruse
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Jakimowicz D, Mouz S, Zakrzewska-Czerwinska J, Chater KF. Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 2006; 188:1710-20. [PMID: 16484182 PMCID: PMC1426544 DOI: 10.1128/jb.188.5.1710-1720.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022] Open
Abstract
The Streptomyces coelicolor partitioning protein ParB binds to numerous parS sites in the oriC-proximal part of the linear chromosome. ParB binding results in the formation of large complexes, which behave differentially during the complex life cycle (D. Jakimowicz, B. Gust, J. Zakrzewska-Czerwinska, and K. F. Chater, J. Bacteriol. 187:3572-3580, 2005). Here we have analyzed the transcriptional regulation that underpins this developmentally specific behavior. Analysis of promoter mutations showed that the irregularly spaced complexes present in vegetative hyphae are dependent on the constitutive parABp(1) promoter, while sporulation-specific induction of the promoter parABp(2) is required for the assembly of arrays of ParB complexes in aerial hyphae and thus is necessary for efficient chromosome segregation. Expression from parABp(2) depended absolutely on two sporulation regulatory genes, whiA and whiB, and partially on two others, whiH and whiI, all four of which are needed for sporulation septation. Because of this pattern of dependence, we investigated the transcription of these four whi genes in whiA and whiB mutants, revealing significant regulatory interplay between whiA and whiB. A strain in which sporulation septation (but not vegetative septation) was blocked by mutation of a sporulation-specific promoter of ftsZ showed close to wild-type induction of parABp(2) and formed fairly regular ParB-enhanced green fluorescent protein foci in aerial hyphae, ruling out strong morphological coupling or checkpoint regulation between septation and DNA partitioning during sporulation. A model for developmental regulation of parABp(2) expression is presented.
Collapse
Affiliation(s)
- Dagmara Jakimowicz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland.
| | | | | | | |
Collapse
|
111
|
Noirot-Gros MF, Velten M, Yoshimura M, McGovern S, Morimoto T, Ehrlich SD, Ogasawara N, Polard P, Noirot P. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2006; 103:2368-73. [PMID: 16461910 PMCID: PMC1413692 DOI: 10.1073/pnas.0506914103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of initiation of DNA replication is crucial to ensure that the genome is replicated only once per cell cycle. In the Gram-positive bacterium Bacillus subtilis, the function of the YabA protein in initiation control was assigned based on its interaction with the DnaA initiator and the DnaN sliding clamp in the yeast two-hybrid and on the overinitiation phenotype observed in a yabA null strain. However, YabA is unrelated to known regulators of initiation and interacts with several additional proteins that could also be involved directly or not in initiation control. Here, we investigated the specific role of YabA interactions with DnaA and DnaN in initiation control by identifying single amino acid changes in YabA that disrupted solely the interaction with DnaA or DnaN. These disruptive mutations delineated specific interacting surfaces involving a Zn2+-cluster structure in YabA. In B. subtilis, these YabA interaction mutations abolished both initiation control and the formation of YabA foci at the replication factory. Upon coexpression of deficient YabA mutants, mixed oligomers formed foci at the replisome and restored initiation control, indicating that YabA acts within a heterocomplex with DnaA and DnaN. In agreement, purified YabA oligomerized and formed complexes with DnaA and DnaN. These findings underscore the functional association of YabA with the replication machinery, indicating that YabA regulates initiation through coupling with the elongation of replication.
Collapse
Affiliation(s)
- Marie-Françoise Noirot-Gros
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
- To whom correspondence should be addressed. E-mail:
| | - M. Velten
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - M. Yoshimura
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - S. McGovern
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - T. Morimoto
- To whom correspondence should be addressed. E-mail:
| | - S. D. Ehrlich
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - N. Ogasawara
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - P. Polard
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - Philippe Noirot
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| |
Collapse
|
112
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
113
|
Hayes F, Barillà D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 2006; 4:133-43. [PMID: 16415929 DOI: 10.1038/nrmicro1342] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, PO BOX 88, Sackville Street, Manchester M60 1QD, UK.
| | | |
Collapse
|
114
|
Affiliation(s)
- Mike O'Donnell
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
115
|
Elmore S, Müller M, Vischer N, Odijk T, Woldringh CL. Single-particle tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia coli. J Struct Biol 2005; 151:275-87. [PMID: 16084110 DOI: 10.1016/j.jsb.2005.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/19/2005] [Accepted: 06/01/2005] [Indexed: 11/19/2022]
Abstract
DNA regions close to the origin of replication were visualized by the green fluorescent protein (GFP)-Lac repressor/lac operator system. The number of oriC-GFP fluorescent spots per cell and per nucleoid in batch-cultured cells corresponded to the theoretical DNA replication pattern. A similar pattern was observed in cells growing on microscope slides used for time-lapse experiments. The trajectories of 124 oriC-GFP spots were monitored by time-lapse microscopy of 31 cells at time intervals of 1, 2, and 3 min. Spot positions were determined along the short and long axis of cells. The lengthwise movement of spots was corrected for cell elongation. The step sizes of the spots showed a Gaussian distribution with a standard deviation of approximately 110 nm. Plots of the mean square displacement versus time indicated a free diffusion regime for spot movement along the long axis of the cell, with a diffusion coefficient of 4.3+/-2.6x10(-5) microm2/s. Spot movement along the short axis showed confinement in a region of the diameter of the nucleoid ( approximately 800 nm) with an effective diffusion coefficient of 2.9+/-1.7x10(-5) microm2/s. Confidence levels for the mean square displacement analysis were obtained from numerical simulations. We conclude from the analysis that within the experimental accuracy--the limits of which are indicated and discussed--there is no evidence that spot segregation requires any other mechanism than that of cell (length) growth.
Collapse
Affiliation(s)
- Steven Elmore
- Section Molecular Cytology, Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
116
|
Abstract
The study of prokaryotic chromosome segregation has focused primarily on bacteria with single circular chromosomes. Little is known about segregation in bacteria with multipartite genomes. The human diarrhoeal pathogen Vibrio cholerae has two circular chromosomes of unequal sizes. Using static and time-lapse fluorescence microscopy, we visualized the localization and segregation of the origins of replication of the V. cholerae chromosomes. In all stages of the cell cycle, the two origins localized to distinct subcellular locations. In newborn cells, the origin of chromosome I (oriCIvc) was located near the cell pole while the origin of chromosome II (oriCIIvc) was at the cell centre. Segregation of oriCIvc occurred asymmetrically from a polar position, with one duplicated origin traversing the length of the cell towards the opposite pole and the other remaining relatively fixed. In contrast, oriCIIvc segregated later in the cell cycle than oriCIvc and the two duplicated oriCIIvc regions repositioned to the new cell centres. DAPI staining of the nucleoid demonstrated that both origin regions were localized to the edge of the visible nucleoid and that oriCIvc foci were often associated with specific nucleoid substructures. The differences in localization and timing of segregation of oriCIvc and oriCIIvc suggest that distinct mechanisms govern the segregation of the two V. cholerae chromosomes.
Collapse
Affiliation(s)
- Michael A Fogel
- Program in Genetics, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
117
|
Kidane D, Graumann PL. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. Cell 2005; 122:73-84. [PMID: 16009134 DOI: 10.1016/j.cell.2005.04.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 04/15/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
We have found that two DNA repair/recombination proteins localize differentially to the cell poles in competent Bacillus subtilis cells. RecA protein colocalized with competence protein ComGA, and its polar localization largely depended on ComGA and ComK activity, while RecN oscillated between the poles in a minute time frame, independent of any competence factor. Oscillation of RecN arrested upon addition of external DNA, suggesting that an interaction with incoming single-stranded (ss) DNA favors the localization of RecN at the pole containing the competence machinery. In agreement with this model, purified RecN protein showed ATP-dependent binding to ssDNA. Addition of DNA resulted in the formation of RecA threads emanating from the competence machinery. Our data show that in competent bacteria there exists a specifically positioned and dynamic ssDNA binding apparatus that accepts ssDNA taken up through the polar competence machinery and processes ssDNA for recombination with chromosomal DNA via extended RecA filaments.
Collapse
Affiliation(s)
- Dawit Kidane
- Institut für Mikrobiologie, Fachbereich Biologie II, Universität Freiburg, Verfügungsgebäude, Stefan-Meier-Str. 19, 79104 Freiburg, Germany
| | | |
Collapse
|
118
|
Prozorov AA. The Bacterial Cell Cycle: DNA Replication, Nucleoid Segregation, and Cell Division. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0077-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
119
|
Errington J, Murray H, Wu LJ. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 2005; 360:497-505. [PMID: 15897175 PMCID: PMC1569464 DOI: 10.1098/rstb.2004.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
120
|
Leonard TA, Møller-Jensen J, Löwe J. Towards understanding the molecular basis of bacterial DNA segregation. Philos Trans R Soc Lond B Biol Sci 2005; 360:523-35. [PMID: 15897178 PMCID: PMC1569471 DOI: 10.1098/rstb.2004.1608] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins.
Collapse
Affiliation(s)
- Thomas A Leonard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
121
|
Shibata T, Hishida T, Kubota Y, Han YW, Iwasaki H, Shinagawa H. Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes Cells 2005; 10:181-91. [PMID: 15743409 DOI: 10.1111/j.1365-2443.2005.00831.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Escherichia coli RecA protein plays a role in DNA homologous recombination, recombination repair, and the rescue of stalled or collapsed replication forks. The mgsA (rarA) gene encodes a highly conserved DNA-dependent ATPase, whose yeast orthologue, MGS1, plays a role in maintaining genomic stability. In this study, we show a functional relationship between mgsA and recA during DNA replication. The mgsA recA double mutant grows more slowly and has lower viability than a recA single mutant, but they are equally sensitive to UV-induced DNA damage. Mutations in mgsA and recA cause lethality in DNA polymerase I deficient cells, and suppress the temperature-dependent growth defect of dnaE486 (Pol III alpha-catalytic subunit). Moreover, recAS25P, a novel recA allele identified in this work, does not complement the slow growth of DeltamgsA DeltarecA cells or the lethality of polA12 DeltarecA, but is proficient in DNA repair, homologous recombination, SOS mutagenesis and SOS induction. These results suggest that RecA and MgsA are functionally redundant in rescuing stalled replication forks, and that the DNA repair and homologous recombination functions of RecA are separated from its function to maintain progression of replication fork.
Collapse
Affiliation(s)
- Tatsuya Shibata
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Stein RA, Deng S, Higgins NP. Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol Microbiol 2005; 56:1049-61. [PMID: 15853889 PMCID: PMC1373788 DOI: 10.1111/j.1365-2958.2005.04588.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The bacterial chromosome is organized into multiple independent domains, each capable of constraining the plectonemic negative supercoil energy introduced by DNA gyrase. Different experimental approaches have estimated the number of domains to be between 40 and 150. The site-specific resolution systems of closely related transposons Tn3 and gammadelta are valuable tools for measuring supercoil diffusion and analysing bacterial chromosome dynamics in vivo. Once made, the wild-type resolvase persists in cells for time periods greater than the cell doubling time. To examine chromosome dynamics over shorter time frames that are more closely tuned to processes like inducible transcription, we constructed a set of resolvases with cellular half-lives ranging from less than 5 min to 30 min. Analysing chromosomes on different time scales shows domain structure to be dynamic. Rather than the 150 domains detected with the Tn3 resolvase, wild-type cells measured over a 10 min time span have more than 400 domains per genome equivalent, and some gyrase mutants exceed 1000.
Collapse
Affiliation(s)
- Richard A. Stein
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuang Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
123
|
Boccard F, Esnault E, Valens M. Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol Microbiol 2005; 57:9-16. [PMID: 15948945 DOI: 10.1111/j.1365-2958.2005.04651.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in fluorescence microscopy have shown that bacterial chromosomes have a defined spatial arrangement that preserves the linear order of genes on the genetic map. These approaches also revealed that large portions of the chromosome in Escherichia coli or Bacillus subtilis are concentrated in the same cellular space, suggesting an organization as large regions defined as macrodomains. In E. coli, two macrodomains of 1 Mb containing the replication origin (Ori) and the replication terminus (Ter) have been shown to relocalize at specific steps of the cell cycle. A genetic analysis of the collision probability between distant DNA sites in E. coli has confirmed the presence of macrodomains by revealing the existence of large regions that do not collide with each other. Two macrodomains defined by the genetic approach coincide with the Ori and Ter macrodomains, and two new macrodomains flanking the Ter macrodomain have been identified. Altogether, these results indicate that the E. coli chromosome has a ring organization with four structured and two less-structured regions. Implications for chromosome dynamics during the cell cycle and future prospects for the characterization and understanding of macrodomain organization are discussed.
Collapse
Affiliation(s)
- Frédéric Boccard
- Centre de Génétique Moléculaire du CNRS, Bât. 26, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
124
|
Thanbichler M, Viollier PH, Shapiro L. The structure and function of the bacterial chromosome. Curr Opin Genet Dev 2005; 15:153-62. [PMID: 15797198 DOI: 10.1016/j.gde.2005.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Advances in microscopic and cell biological techniques have considerably improved our understanding of bacterial chromosome organization and dynamics. The nucleoid was formerly perceived to be an amorphous entity divided into ill-defined domains of supercoiling that are randomly deposited in the cell. Recent work, however, has demonstrated a remarkable degree of spatial organization. A highly ordered chromosome structure, established while DNA replication and partitioning are in progress, is maintained and propagated during growth. Duplication of the chromosome and partitioning of the newly generated daughter strands are interwoven processes driven by the dynamic interplay between the synthesis, segregation and condensation of DNA. These events are intimately coupled with the bacterial cell cycle and exhibit a previously unanticipated complexity reminiscent of eukaryotic systems.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
125
|
Ben-Yehuda S, Fujita M, Liu XS, Gorbatyuk B, Skoko D, Yan J, Marko JF, Liu JS, Eichenberger P, Rudner DZ, Losick R. Defining a Centromere-like Element in Bacillus subtilis by Identifying the Binding Sites for the Chromosome-Anchoring Protein RacA. Mol Cell 2005; 17:773-82. [PMID: 15780934 DOI: 10.1016/j.molcel.2005.02.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 01/16/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Chromosome segregation during sporulation in Bacillus subtilis involves the anchoring of sister chromosomes to opposite ends of the cell. Anchoring is mediated by RacA, which acts as a bridge between a centromere-like element in the vicinity of the origin of replication and the cell pole. To define this element we mapped RacA binding sites by performing chromatin immunoprecipitation in conjunction with gene microarray analysis. RacA preferentially bound to 25 regions spread over 612 kb across the origin portion of the chromosome. Computational and biochemical analysis identified a GC-rich, inverted 14 bp repeat as the recognition sequence. Experiments with single molecules of DNA demonstrated that RacA can condense nonspecific DNA dramatically against appreciable forces to form a highly stable protein-DNA complex. We propose that interactions between DNA bound RacA molecules cause the centromere-like element to fold up into a higher order complex that fastens the chromosome to the cell pole.
Collapse
Affiliation(s)
- Sigal Ben-Yehuda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome. Cell 2005; 120:329-41. [PMID: 15707892 DOI: 10.1016/j.cell.2005.01.007] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/22/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Faithful chromosome segregation is an essential component of cell division in all organisms. The eukaryotic mitotic machinery uses the cytoskeleton to move specific chromosomal regions. To investigate the potential role of the actin-like MreB protein in bacterial chromosome segregation, we first demonstrate that MreB is the direct target of the small molecule A22. We then demonstrate that A22 completely blocks the movement of newly replicated loci near the origin of replication but has no qualitative or quantitative effect on the segregation of other loci if added after origin segregation. MreB selectively interacts, directly or indirectly, with origin-proximal regions of the chromosome, arguing that the origin-proximal region segregates via an MreB-dependent mechanism not used by the rest of the chromosome.
Collapse
Affiliation(s)
- Zemer Gitai
- Department of Developmental Biology, Beckman Center, School of Medicine, Stanford University, California 94305, USA.
| | | | | | | | | |
Collapse
|
127
|
Thanbichler M, Wang SC, Shapiro L. The bacterial nucleoid: A highly organized and dynamic structure. J Cell Biochem 2005; 96:506-21. [PMID: 15988757 DOI: 10.1002/jcb.20519] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | |
Collapse
|
128
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
129
|
The Cytology of Bacterial Conjugation. EcoSal Plus 2004; 1. [PMID: 26443357 DOI: 10.1128/ecosalplus.2.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the membrane-associated structures present at cell-cell contact sites during bacterial conjugation. These transfer proteins/structures have roles in the formation and stabilization of mating contacts and ultimately the passage of substrate across the cell envelope between two bacterial cells. The review presents evidence for the dynamic interaction between donor and recipient cells, including the assembly of a transmembrane protein complex, and concludes with a refined model for the mechanism of bacterial conjugation. Bacterial conjugation, in addition to being a mechanism for genome evolution, can be considered as a mechanism for macromolecular secretion. In particular, plasmid-conjugative transfer is classified as a type IV secretion (T4S) system and represents the only known bacterial system for secretion of DNA. In all known conjugative transfer systems, a multitude of proteins are required for both plasmid transfer and pilus production. The plasmids discussed in the review include the F factor; the P group of plasmids, including RP4 and R751 (rigid); and the H plasmid group, including R27 (also thick flexible). With the LacI-GFP/lacO system, the F, P, and H plasmids were observed to reside at well-defined positions located at the mid and quarter-cell positions of Escherichia coli throughout the vegetative cycle. In this review, recent observations based on bacterial cell biology techniques, including visualization of plasmid DNA and proteins at the subcellular level, have been combined with electron and light microscopy studies of mating cells to create an integrated overview of gram-negative bacterial conjugation, a concept referred to as the conjugative cycle.
Collapse
|
130
|
Wang JD, Rokop ME, Barker MM, Hanson NR, Grossman AD. Multicopy plasmids affect replisome positioning in Bacillus subtilis. J Bacteriol 2004; 186:7084-90. [PMID: 15489419 PMCID: PMC523195 DOI: 10.1128/jb.186.21.7084-7090.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 08/09/2004] [Indexed: 11/20/2022] Open
Abstract
The DNA replication machinery, various regions of the chromosome, and some plasmids occupy characteristic subcellular positions in bacterial cells. We visualized the location of a multicopy plasmid, pHP13, in living cells of Bacillus subtilis using an array of lac operators and LacI-green fluorescent protein (GFP). In the majority of cells, plasmids appeared to be highly mobile and randomly distributed. In a small fraction of cells, there appeared to be clusters of plasmids located predominantly at or near a cell pole. We also monitored the effects of the presence of multicopy plasmids on the position of DNA polymerase using a fusion of a subunit of DNA polymerase to GFP. Many of the plasmid-containing cells had extra foci of the replisome, and these were often found at uncharacteristic locations in the cell. Some of the replisome foci were dynamic and highly mobile, similar to what was observed for the plasmid. In contrast, replisome foci in plasmid-free cells were relatively stationary. Our results indicate that in B. subtilis, plasmid-associated replisomes are recruited to the subcellular position of the plasmid. Extending this notion to the chromosome, we postulated that the subcellular position of the chromosomally associated replisome is established by the subcellular location of oriC at the time of initiation of replication.
Collapse
Affiliation(s)
- Jue D Wang
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
131
|
Bartosik AA, Lasocki K, Mierzejewska J, Thomas CM, Jagura-Burdzy G. ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 2004; 186:6983-98. [PMID: 15466051 PMCID: PMC522188 DOI: 10.1128/jb.186.20.6983-6998.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/07/2004] [Indexed: 11/20/2022] Open
Abstract
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This "silencing" was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.
Collapse
Affiliation(s)
- Aneta A Bartosik
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | | | | | | | | |
Collapse
|
132
|
O'Sullivan JM, Tan-Wong SM, Morillon A, Lee B, Coles J, Mellor J, Proudfoot NJ. Gene loops juxtapose promoters and terminators in yeast. Nat Genet 2004; 36:1014-8. [PMID: 15314641 DOI: 10.1038/ng1411] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 07/14/2004] [Indexed: 11/08/2022]
Abstract
Mechanistic analysis of transcriptional initiation and termination by RNA polymerase II (PolII) indicates that some factors are common to both processes. Here we show that two long genes of Saccharomyces cerevisiae, FMP27 and SEN1, exist in a looped conformation, effectively bringing together their promoter and terminator regions. We also show that PolII is located at both ends of FMP27 when this gene is transcribed from a GAL1 promoter under induced and noninduced conditions. Under these conditions, the C-terminal domain of the large subunit of PolII is phosphorylated at Ser5. Notably, inactivation of Kin28p causes a loss of both Ser5 phosphorylation and the loop conformation. These data suggest that gene loops are involved in the early stages of transcriptional activation. They also predict a previously unknown structural dimension to gene regulation, in which both ends of the transcription unit are defined before and during the transcription cycle.
Collapse
Affiliation(s)
- Justin M O'Sullivan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
133
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
134
|
Middleton R, Hofmeister A. New shuttle vectors for ectopic insertion of genes into Bacillus subtilis. Plasmid 2004; 51:238-45. [PMID: 15109830 DOI: 10.1016/j.plasmid.2004.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/03/2004] [Indexed: 11/26/2022]
Abstract
We have constructed shuttle vectors for integration of genes via double homologous recombination into three ectopic sites on the chromosome of Bacillus subtilis. The sites of integration are the pyrD, gltA, and sacA genes located at 139 degrees, 172 degrees, and 333 degrees, respectively, on the chromosome. Integration of the vectors into the target genes leads to antibiotic resistance as well as different metabolic phenotypes. B. subtilis strains with integrations of the empty vectors were able to sporulate at rates comparable to wild type cells. Similar levels of expression were obtained from constitutive lacZ fusions integrated at the different sites.
Collapse
Affiliation(s)
- Rebecca Middleton
- Department of Plant and Microbial Biology, University of California, Berkeley, USA.
| | | |
Collapse
|
135
|
Breier AM, Cozzarelli NR. Linear ordering and dynamic segregation of the bacterial chromosome. Proc Natl Acad Sci U S A 2004; 101:9175-6. [PMID: 15199189 PMCID: PMC438947 DOI: 10.1073/pnas.0403722101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics, University of California, Berkeley, 94720-3204, USA
| | | |
Collapse
|
136
|
Leonard TA, Butler PJG, Löwe J. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 2004; 53:419-32. [PMID: 15228524 DOI: 10.1111/j.1365-2958.2004.04133.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The plasmid partitioning loci encode two proteins, ParA and ParB, and a cis-acting centromere-like site denoted parS. The chromosomally encoded homologues of ParA and ParB, Soj and Spo0J, play an active role in chromosome segregation during bacterial cell division and sporulation. Spo0J is a DNA-binding protein that binds to parS sites in vivo. We have solved the X-ray crystal structure of a C-terminally truncated Spo0J (amino acids 1-222) from Thermus thermophilus to 2.3 A resolution by multiwavelength anomalous dispersion. It is a DNA-binding protein with structural similarity to the helix-turn-helix (HTH) motif of the lambda repressor DNA-binding domain. The crystal structure is an antiparallel dimer with the recognition alpha-helices of the HTH motifs of each monomer separated by a distance of 34 A corresponding to the length of the helical repeat of B-DNA. Sedimentation velocity and equilibrium ultracentrifugation studies show that full-length Spo0J exists in a monomer-dimer equilibrium in solution and that Spo0J1-222 is exclusively monomeric. Sedimentation of the C-terminal domain of Spo0J shows it to be exclusively dimeric, confirming that the C-terminus is the primary dimerization domain. We hypothesize that the C-terminus mediates dimerization of Spo0J, thereby effectively increasing the local concentration of the N-termini, which most probably dimerize, as shown by our structure, upon binding to a cognate parS site.
Collapse
Affiliation(s)
- Thomas A Leonard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
137
|
Wang SC, Shapiro L. The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins. Proc Natl Acad Sci U S A 2004; 101:9251-6. [PMID: 15178756 PMCID: PMC438962 DOI: 10.1073/pnas.0402567101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of bacterial DNA replication generates chromosomal topological constraints that are further confounded by simultaneous transcription. Topoisomerases play a key role in ensuring orderly replication and partition of DNA in the face of a continuously changing DNA tertiary structure. In addition to topological constraints, the cellular position of the replication origin is strictly controlled during the cell cycle. In Caulobacter crescentus, the origin of DNA replication is located at the cell pole. Upon initiation of DNA replication, one copy of the duplicated origin sequence rapidly appears at the opposite cell pole. To determine whether the maintenance of DNA topology contributes to the dynamic positioning of a specific DNA region within the cell, we examined origin localization in cells that express temperature-sensitive forms of either the ParC or ParE subunit of topoisomerase (Topo) IV. We found that in the absence of active Topo IV, replication initiation can occur but a significant percent of replication origins are either no longer moved to or maintained at the cell poles. During the replication process, the ParC subunit colocalizes with the replisome, whereas the ParE subunit is dispersed throughout the cell. However, an active ParE subunit is required for ParC localization to the replisome as it moves from the cell pole to the division plane during chromosome replication. We propose that the maintenance of DNA topology throughout the cell cycle contributes to the dynamic positioning of the origin sequence within the cell.
Collapse
Affiliation(s)
- Sherry C Wang
- Department of Developmental Biology, and Cancer Biology Program, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
138
|
Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 2004; 101:9257-62. [PMID: 15178755 PMCID: PMC438963 DOI: 10.1073/pnas.0402606101] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal origin and terminus of replication are precisely localized in bacterial cells. We examined the cellular position of 112 individual loci that are dispersed over the circular Caulobacter crescentus chromosome and found that in living cells each locus has a specific subcellular address and that these loci are arrayed in linear order along the long axis of the cell. Time-lapse microscopy of the location of the chromosomal origin and 10 selected loci in the origin-proximal half of the chromosome showed that during DNA replication, as the replisome sequentially copies each locus, the newly replicated DNA segments are moved in chronological order to their final subcellular destination in the nascent half of the predivisional cell. Thus, the remarkable organization of the chromosome is being established while DNA replication is still in progress. The fact that the movement of these 10 loci is, like that of the origin, directed and rapid, and occurs at a similar rate, suggests that the same molecular machinery serves to partition and place many, if not most, chromosomal loci at defined subcellular sites.
Collapse
Affiliation(s)
- Patrick H Viollier
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
It is now clear that bacterial chromosomes rapidly separate in a manner independent of cell elongation, suggesting the existence of a mitotic apparatus in bacteria. Recent studies of bacterial cells reveal filamentous structures similar to the eukaryotic cytoskeleton, proteins that mediate polar chromosome anchoring during Bacillus subtilis sporulation, and SMC interacting proteins that are involved in chromosome condensation. A picture is thereby developing of how bacterial chromosomes are organized within the cell, how they are separated following duplication, and how these processes are coordinated with the cell cycle.
Collapse
Affiliation(s)
- Kit Pogliano
- Division of Biological Sciences, 9500 Gilman Drive, University of California-San Diego, La Jolla, CA 92093-0349, USA.
| | | | | |
Collapse
|
140
|
Abstract
Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the ParM protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
141
|
Kaufmann G, Nethanel T. Did an early version of the eukaryal replisome enable the emergence of chromatin? PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:173-209. [PMID: 15196893 DOI: 10.1016/s0079-6603(04)77005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriel Kaufmann
- Biochemistry Department, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
142
|
Abstract
With the rapid development of sequencing technologies in the past decade, many eukaryotic genomes have been resolved at the primary sequence level. However, organization of the genome within nuclei and the principles that govern such properties remain largely unclear. Optimization of fluorescence probe-based hybridization technologies combined with new advances in the instrumentation for microscopy has steadily yielded more structural information on chromosome organization in eukaryote model systems. These studies provide static snapshots of the detailed organization of chromatin. More recently, the successful application of a chromatin tagging strategy utilizing auto fluorescent fusion proteins opened a new era of chromatin studies in which the dynamic organization of the genome can be tracked in near real time. This review focuses on these new approaches to studying chromatin organization and dynamics in plants, and on future prospects in unraveling the basic principle of chromosome organization.
Collapse
Affiliation(s)
- Eric Lam
- Biotech Center for Agriculture and the Environment, Department of Plant Science, Rutgers the State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
143
|
Fraefel C, Bittermann AG, Büeler H, Heid I, Bächi T, Ackermann M. Spatial and temporal organization of adeno-associated virus DNA replication in live cells. J Virol 2004; 78:389-98. [PMID: 14671120 PMCID: PMC303420 DOI: 10.1128/jvi.78.1.389-398.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 09/16/2003] [Indexed: 11/20/2022] Open
Abstract
Upon cell entry, the genomes of herpes simplex virus type 1 (HSV-1) and adenovirus (Ad) associate with distinct nuclear structures termed ND10 or promyelocytic leukemia (PML) nuclear bodies (NBs). PML NB morphology is altered or disrupted by specific viral proteins as replication proceeds. We examined whether adeno-associated virus (AAV) replication compartments also associate with PML NBs, and whether modification or disruption of these by HSV-1 or Ad, both of which are helper viruses for AAV, is necessary at all. Furthermore, to add a fourth dimension to our present view of AAV replication, we established an assay that allows visualization of AAV replication in live cells. A recombinant AAV containing 40 lac repressor binding sites between the AAV inverted terminal repeats was constructed. AAV Rep protein and helper virus-mediated replication of this recombinant AAV genome was visualized by binding of enhanced yellow fluorescent protein-lac repressor fusion protein to double-stranded AAV replication intermediates. We demonstrate in live cells that AAV DNA replication occurs in compartments which colocalize with AAV Rep. Early after infection, the replication compartments were small and varied in numbers from 2 to more than 40 per cell nucleus. Within 4 to 8 h, individual small replication compartments expanded and fused to larger structures which filled out much of the cell nucleus. We also show that AAV replication compartments can associate with modified PML NBs in Ad-infected cells. In wild-type HSV-1-infected cells, AAV replication compartments and PML NBs did not coexist, presumably because PML was completely disrupted by the HSV-1 ICP0 protein. However, alteration or disruption of PML appears not to be a prerequisite for AAV replication, as the formation of replication compartments was normal when the ICP0 mutants HSV-1 dl1403 and HSV-1 FXE, which do not affect PML NBs, were used as the helper viruses; under these conditions, AAV replication compartments did not associate with PML NBs.
Collapse
Affiliation(s)
- Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
144
|
Yamaichi Y, Niki H. migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. EMBO J 2003; 23:221-33. [PMID: 14685268 PMCID: PMC1271666 DOI: 10.1038/sj.emboj.7600028] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022] Open
Abstract
During replication of the Escherichia coli chromosome, the replicated Ori domains migrate towards opposite cell poles, suggesting that a cis-acting site for bipolar migration is located in this region. To identify this cis-acting site, a series of mutants was constructed by splitting subchromosomes from the original chromosome. One mutant, containing a 720 kb subchromosome, was found to be defective in the bipolar positioning of oriC. The creation of deletion mutants allowed the identification of migS, a 25 bp sequence, as the cis-acting site for the bipolar positioning of oriC. When migS was located at the replication terminus, the chromosomal segment showed bipolar positioning. migS was able to rescue bipolar migration of plasmid DNA containing a mutation in the SopABC partitioning system. Interestingly, multiple copies of the migS sequence on a plasmid in trans inhibited the bipolar positioning of oriC. Taken together, these findings indicate that migS plays a crucial role in the bipolar positioning of oriC. In addition, real-time analysis of the dynamic morphological changes of nucleoids in wild-type and migS mutants suggests that bipolar positioning of the replicated oriC contributes to nucleoid organization.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Radioisotope Center, National Institute of Genetics, Yata 1111, Mishima 411-8540 Japan
- Graduate School of Medicine, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan
| | - Hironori Niki
- Radioisotope Center, National Institute of Genetics, Yata 1111, Mishima 411-8540 Japan
- National Institute of Genetics, Radioisotope Center, Yata 1111, Mishima 411-8540, Japan. Tel.: +81 55 981 6870; Fax: +81 55 981 6880/6871; E-mail:
| |
Collapse
|
145
|
Ben-Yehuda S, Rudner DZ, Losick R. Assembly of the SpoIIIE DNA Translocase Depends on Chromosome Trapping in Bacillus subtilis. Curr Biol 2003. [DOI: 10.1016/j.cub.2003.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
146
|
Ogura Y, Ogasawara N, Harry EJ, Moriya S. Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis. J Bacteriol 2003; 185:6316-24. [PMID: 14563866 PMCID: PMC219394 DOI: 10.1128/jb.185.21.6316-6324.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ParA and ParB protein families are well conserved in bacteria. However, their functions are still unclear. In Bacillus subtilis, Soj and Spo0J are members of these two protein families, respectively. A previous report revealed that replication initiated early and asynchronously in spo0J null mutant cells, as determined by flow cytometry. In this study, we examined the cause of this promotion of replication initiation. Deletion of both the soj and spo0J genes restored the frequency of replication initiation to almost the wild-type level, suggesting that production of Soj in the absence of Spo0J leads to early and asynchronous initiation of replication. Consistent with this suggestion, overproduction of Soj in wild-type cells had the same effect on replication initiation as in the spo0J null mutant, and overproduction of both Soj and Spo0J did not. These results indicate that when the ratio of Soj to Spo0J increases, Soj interferes with tight control of replication initiation and causes early and asynchronous initiation. Whereas replication initiation also occurred significantly earlier in the two spo0J mutants, spo0J14 and spo0J17, it occurred only slightly early in the sojK16Q mutant and was delayed in the sojG12V mutant. Although Soj localized to nucleoids in the spo0J mutants, the two Soj mutant proteins were distributed throughout the cell or localized to cell poles. Thus, interestingly, the promotion of replication initiation seems to correlate with localization of Soj to nucleoids. This may suggest that Soj inhibits transcription of some cell cycle genes and leads to early and asynchronous initiation of replication. In wild-type cells Spo0J counteracts this Soj function.
Collapse
Affiliation(s)
- Yoshitoshi Ogura
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
147
|
Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 2003; 22:5283-92. [PMID: 14517265 PMCID: PMC204487 DOI: 10.1093/emboj/cdg504] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell division, caused abnormal MreB filament morphology and induced severe localization defects of the nucleoid and of the oriC and terC chromosomal regions. The chromosomal terminus regions appeared cohered in both MreB-depleted cells and in cells overexpressing mutant forms of MreB. Our observations indicate that MreB filaments participate in directional chromosome movement and segregation.
Collapse
Affiliation(s)
- Thomas Kruse
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
148
|
Soufo HJD, Graumann PL. Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins. Curr Biol 2003; 13:1916-20. [PMID: 14588250 DOI: 10.1016/j.cub.2003.10.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin-like proteins MreB and Mbl are required for proper cell shape and for viability in B. subtilis and form dynamic helical filaments underneath the cell membrane. We have found that depletion of MreB and Mbl proteins leads to a rapid defect in chromosome segregation before a defect in cell shape becomes detectable. Under these conditions, the SMC chromosome segregation complex that is essential for proper chromosome arrangement and segregation loses its specific subcellular localization, and replication origins fail to localize in a regular bipolar manner as in wild type cells. Time-lapse microscopy showed that during depletion of MreB, origin regions can move towards the same cell pole, showing that bipolar orientation of origin separation is lost. Contrarily, depletion of three other cell shape determinants, MreC, MreD, or MreBH (the third B. subtilis actin homolog) had no effect on chromosome segregation but varying effects on cell morphology. Depletion of MreC and MreD resulted in formation of round cells, while depletion of MreBH led to formation of vibrio-shaped cells. The data show that actin proteins Mbl and MreB are required for proper chromosome segregation and that Mre proteins affect different aspects in cell shape.
Collapse
|
149
|
Wu LJ, Errington J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 2003; 49:1463-75. [PMID: 12950914 DOI: 10.1046/j.1365-2958.2003.03643.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulating cells of Bacillus subtilis undergo a highly polarized cell division and possess a specialized mechanism to move the oriC region of the chromosome close to the cell pole before septation. DivIVA protein, which localizes to the cell pole, and the Soj and Spo0J proteins, which associate with the chromosome, are part of the mechanism that delivers the chromosome to the cell pole. A sporulation-specific protein, RacA, encodes a third DNA-binding protein, which acts in conjunction with Soj and Spo0J to effect efficient polar chromosome segregation. divIVA mutants and soj racA double mutants have an unexpected phenotype in which specific markers to the left and right of oriC can be captured in the prespore compartment but the central oriC region is efficiently excluded. This 'residual' trapping requires Spo0J protein. We suggest that the Soj RacA DivIVA system is required to extract the oriC region from its position determined by the vegetative chromosome segregation machinery and anchor it to the cell pole.
Collapse
Affiliation(s)
- Ling Juan Wu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
150
|
Webb CD, Resnekov O. Use of green fluorescent protein for visualization for cell-specific gene expression and subcellular protein localization in Bacillus subtilis. Methods Enzymol 2003; 302:136-53. [PMID: 12876768 DOI: 10.1016/s0076-6879(99)02015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- C D Webb
- Information Technology Office, Defense Advanced Research Projects Agency, Arlington, Virginia 22203-1714, USA
| | | |
Collapse
|