101
|
Lukas RV. Commentary: Long-Term Outcomes of Intra-Arterial Chemotherapy for Progressive or Unresectable Pilocytic Astrocytomas: Case Studies. Neurosurgery 2021; 88:E343-E344. [PMID: 33548920 DOI: 10.1093/neuros/nyab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois, USA.,Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
102
|
Yekula A, Taylor A, Beecroft A, Kang KM, Small JL, Muralidharan K, Rosh Z, Carter BS, Balaj L. The role of extracellular vesicles in acquisition of resistance to therapy in glioblastomas. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1-16. [PMID: 35582008 PMCID: PMC9019190 DOI: 10.20517/cdr.2020.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with a median survival of 15 months despite standard care therapy consisting of maximal surgical debulking, followed by radiation therapy with concurrent and adjuvant temozolomide treatment. The natural history of GBM is characterized by inevitable recurrence with patients dying from increasingly resistant tumor regrowth after therapy. Several mechanisms including inter- and intratumoral heterogeneity, the evolution of therapy-resistant clonal subpopulations, reacquisition of stemness in glioblastoma stem cells, multiple drug efflux mechanisms, the tumor-promoting microenvironment, metabolic adaptations, and enhanced repair of drug-induced DNA damage have been implicated in therapy failure. Extracellular vesicles (EVs) have emerged as crucial mediators in the maintenance and establishment of GBM. Multiple seminal studies have uncovered the multi-dynamic role of EVs in the acquisition of drug resistance. Mechanisms include EV-mediated cargo transfer and EVs functioning as drug efflux channels and decoys for antibody-based therapies. In this review, we discuss the various mechanisms of therapy resistance in GBM, highlighting the emerging role of EV-orchestrated drug resistance. Understanding the landscape of GBM resistance is critical in devising novel therapeutic approaches to fight this deadly disease.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zachary Rosh
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
103
|
Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, Pottoo FH. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22:429-442. [PMID: 32718288 DOI: 10.2174/1389450121666200727115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhorts tumors of star-shaped glial cells in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorders like neurofibromatosis and schwannomatosis, which develop the tumor in the nervous system. The management of GBM with chemo-radiotherapy leads to resistance, and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind the failure of drugs are due to DNA alkylation in the cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bioactive compounds from plants referred as phytochemicals, serve as vital sources for anti-cancer drugs. Some prototypical examples include taxol analogs, vinca alkaloids (vincristine, vinblastine), podophyllotoxin analogs, camptothecin, curcumin, aloe-emodin, quercetin, berberine etc. These phytochemicals often regulate diverse molecular pathways, which are implicated in the growth and progression of cancers. However, the challenges posed by the presence of BBB/BBTB to restrict the passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review, we integrated nanotech as a novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.
Collapse
Affiliation(s)
- Sayed M Mumtaz
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Shikha Goswami
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Ramesh K Goyal
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
104
|
Qin X, Xu Y, Zhou X, Gong T, Zhang ZR, Fu Y. An injectable micelle-hydrogel hybrid for localized and prolonged drug delivery in the management of renal fibrosis. Acta Pharm Sin B 2021; 11:835-847. [PMID: 33777685 PMCID: PMC7982499 DOI: 10.1016/j.apsb.2020.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Localized delivery, comparing to systemic drug administration, offers a unique alternative to enhance efficacy, lower dosage, and minimize systemic tissue toxicity by releasing therapeutics locally and specifically to the site of interests. Herein, a localized drug delivery platform ("plum‒pudding" structure) with controlled release and long-acting features is developed through an injectable hydrogel ("pudding") crosslinked via self-assembled triblock polymeric micelles ("plum") to help reduce renal interstitial fibrosis. This strategy achieves controlled and prolonged release of model therapeutics in the kidney for up to three weeks in mice. Following a single injection, local treatments containing either anti-inflammatory small molecule celastrol or anti-TGFβ antibody effectively minimize inflammation while alleviating fibrosis via inhibiting NF-κB signaling pathway or neutralizing TGF-β1 locally. Importantly, the micelle-hydrogel hybrid based localized therapy shows enhanced efficacy without local or systemic toxicity, which may represent a clinically relevant delivery platform in the management of renal interstitial fibrosis.
Collapse
Key Words
- Anti-TGFβ antibody
- BSA, bovine serum albumin
- CLT, celastrol
- Celastrol
- Controlled release
- Cy5.5-NHS, cyanine 5.5-N-hydroxysuccinimide
- DAPI, 4′,6-diamidino-2-phenylindole
- DEX, dexamethasone
- DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanineperchlorate
- ECM, extracellular matrix
- EDCI, carbodiimide hydrochloride
- ESR, equilibrium swelling ratio
- FITC, fluorescein isothiocyanate
- G", the loss modulus
- G', storage modulus
- HA, hyaluronic acid
- HASH, thiolated hyaluronic acid
- Hydrogel
- IL-1β, interleukin 1β
- IL-6, interleukin 6
- Inflammation
- Localized therapy
- MOD, mean optical density
- NHS, N-hydroxysuccinimide
- PDI, polydispersity index
- RIF, renal interstitial fibrosis
- RSR, real-time swelling ratio
- Renal fibrosis
- SD, standard deviation
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- TGF-β1, transforming growth factor β1
- TNF-α, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- UUO, unilateral ureteral obstruction
- bis-F127-MA, bis-F127-methacrylate
- iNOS, nitric oxide synthase
- α-SMA, α-smooth muscle actin
- “Plum‒pudding” structure
Collapse
|
105
|
Chan HY, Choi J, Jackson C, Lim M. Combination immunotherapy strategies for glioblastoma. J Neurooncol 2021; 151:375-391. [PMID: 33611705 DOI: 10.1007/s11060-020-03481-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite recent advances in treatment for a number of cancers with immune checkpoint blockade (ICB), immunotherapy has had limited efficacy in glioblastoma (GBM). The recent multi-centered CheckMate 143 trial in first time recurrent GBM and the Checkmate 498 trial in newly diagnosed unmethylated GBM showed that antibodies against programmed cell death protein 1 (PD-1) failed to improve overall survival in patients with GBM. Recent preclinical and clinical studies have explored combining ICB with several other therapies including additional ICB against alternative checkpoint molecules, activation of costimulatory checkpoint molecules such as 4-1BB, radiation-induced tumor cell lysis and immunogenic recruitment, local chemotherapy, neoadjuvant ICB therapy, and myeloid cell reactivation. METHODS We have reviewed the literature on ICB seminal to the progression of several preclinical studies and clinical trials in order to provide a compendium of the current state of combination immunotherapy for GBM. For ongoing clinical trials without associated publications, we searched clinicaltrials.gov for ongoing studies using the keywords, "GBM" and "glioblastoma", as well as names of checkpoint molecules. RESULTS Recent trends from clinical trials demonstrate that despite a variety of different combination strategies involving ICB, GBM remains largely elusive to current immunotherapies. There is a discordance of survival outcomes between GBM pre-clinical models and clinical trials, likely due to the heterogeneity of GBM in patients as well as other adaptive immune mechanisms not otherwise represented in murine models. However, in clinical studies, neoadjuvant ICB in GBM was found to diversify the T cell receptor (TCR) repertoire and increase chemokine mRNA transcripts when comparing pre- and post- surgical time points. Moreover, an increase in peripheral and tumor-infiltrating lymphocyte (TIL) clonotypes were also observed when comparing adjuvant and neoadjuvant cohorts. DISCUSSION Despite the lack of clinical survival benefit, immune modulation was observed in multiple different combination strategies for GBM in both preclinical and clinical studies, indicating that ICB combination therapy results in a significant immunological impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Hok Yee Chan
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - Christina Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, 21231, USA.
| |
Collapse
|
106
|
Neurosurgical involvement in clinical trials for CNS tumors. J Neurooncol 2021; 151:367-373. [PMID: 33611704 DOI: 10.1007/s11060-020-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Most clinical trials in neurooncology are led by investigators primarily trained in neurology or medical oncology. While neurosurgeons are trained to be problem-solvers and innovators, research training has historically been focused on laboratory-based discovery approaches and formalized training in prospective clinical trials research is not part of routine graduate training. METHODS We reviewed literature that demonstrates that innovation and problem-solving are integral to the practice of neurosurgery cite multiple examples of advances in technique and technology that may have had an empirical origin but that led to prospective clinical trials resulting in change in practice. RESULTS Neurosurgeons have developed and led both traditional (clinical outcome-oriented) and translational prospective clinical trials that have evaluated the best use of currently available therapeutics or tested the ability of novel therapeutics to alter the biology and/or course of disease. CONCLUSIONS In this review, we focus on a number of the recently developed technologies and therapeutics that were evaluated in clinical trials led or co-led by neurosurgeons. We also highlight some of the barriers that need to be addressed in order to foster neurosurgical participation and leadership in the prospective development of novel therapeutics.
Collapse
|
107
|
McCutcheon IE, Preul MC. Historical Perspective on Surgery and Survival with Glioblastoma: How Far Have We Come? World Neurosurg 2021; 149:148-168. [PMID: 33610867 DOI: 10.1016/j.wneu.2021.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glioblastoma multiforme remains a therapeutic challenge. We offer a historical review of the outcomes of patients with glioblastoma from the earliest report of surgery for this lesion through the introduction of modern chemotherapeutics and aggressive approaches to tumor resection. METHODS We reviewed all major surgical series of patients with glioblastoma from the introduction of craniotomy for glioma (1884) to 2020. RESULTS The earliest reported craniotomy for glioblastoma resulted in the patient's death less than a month after surgery. Improved intracranial pressure management resulted in improved outcomes, reducing early postoperative mortality from 50% to 6% in Harvey Cushing's series. In the first major surgical series (1912), the mean survival was 10.1 months. This figure did not improve until the introduction of radiotherapy in the 1950s, which doubled survival relative to those who had surgery alone. The most recent significant advance, chemotherapy with the alkylating agent temozolomide, extended survival by 2.5 months compared with surgery and radiotherapy alone (14.6 and 12.1 months, respectively). This protocol remains the standard regimen for newly diagnosed glioblastoma. The innovative treatments being investigated have yet to show a survival benefit. CONCLUSIONS With advancements in localization, imaging, anesthesia, surgical technique, control of cerebral edema, and adjuvant therapies, outcomes in glioblastoma improved incrementally from Cushing's time until the introduction of magnetic resonance imaging enabled better degrees of resection in the 1990s. Modest improvements came with the advent of biomarker-driven targeted chemotherapy in the first decade of the current century.
Collapse
Affiliation(s)
- Ian E McCutcheon
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
108
|
Ghiaseddin A, Hoang Minh LB, Janiszewska M, Shin D, Wick W, Mitchell DA, Wen PY, Grossman SA. Adult precision medicine: learning from the past to enhance the future. Neurooncol Adv 2021; 3:vdaa145. [PMID: 33543142 PMCID: PMC7846182 DOI: 10.1093/noajnl/vdaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite therapeutic advances for other malignancies, gliomas remain challenging solid tumors to treat. Complete surgical resection is nearly impossible due to gliomas’ diffuse infiltrative nature, and treatment is hampered by restricted access to the tumors due to limited transport across the blood–brain barrier. Recent advances in genomic studies and next-generation sequencing techniques have led to a better understanding of gliomas and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in the management of gliomas, with encouraging results in preclinical studies and early clinical trials. However, molecular characterization of gliomas revealed significant heterogeneity, which poses a challenge for targeted therapeutic approaches. In this context, leading neuro-oncology researchers and clinicians, industry innovators, and patient advocates convened at the inaugural annual Remission Summit held in Orlando, FL in February 2019 to discuss the latest advances in immunotherapy and precision medicine approaches for the treatment of adult and pediatric brain tumors and outline the unanswered questions, challenges, and opportunities that lay ahead for advancing the duration and quality of life for patients with brain tumors. Here, we provide historical context for precision medicine in other cancers, present emerging approaches for gliomas, discuss their limitations, and outline the steps necessary for future success. We focus on the advances in small molecule targeted therapy, as the use of immunotherapy as an emerging precision medicine modality for glioma treatment has recently been reviewed by our colleagues.
Collapse
Affiliation(s)
- Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Lan B Hoang Minh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - David Shin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Heidelberg, Germany
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Patrick Y Wen
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
109
|
Neville IS, Dos Santos AG, Almeida CC, Abaurre LB, Wayhs SY, Feher O, Teixeira MJ, Lepski G. Reoperation for recurrent glioblastomas: What to expect? Surg Neurol Int 2021; 12:42. [PMID: 33598358 PMCID: PMC7881499 DOI: 10.25259/sni_538_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The current standard treatment for glioblastoma (GBM) is maximal safe surgical resection followed by radiation and chemotherapy. Unfortunately, the disease will invariably recur even with the best treatment. Although the literature suggests some advantages in reoperating patients harboring GBM, controversy remains. Here, we asked whether reoperation is an efficacious treatment strategy for GBM, and under which circumstances, it confers a better prognosis. Methods: We retrospectively reviewed 286 consecutive cases of newly diagnosed GBM in a single university hospital from 2008 to 2015. We evaluated clinical and epidemiological parameters possibly influencing overall survival (OS) by multivariate Cox regression analysis. OS was calculated using the Kaplan–Meier method in patients submitted to one or two surgical procedures. Finally, the survival curves were fitted with the Weibull model, and survival rates at 6, 12, and 24 months were estimated. Results: The reoperated group survived significantly longer (n = 63, OS = 20.0 ± 2.3 vs. 11.4 ± 1.0 months, P < 0.0001). Second, the multivariate analysis revealed an association between survival and number of surgeries, initial Karnofsky Performance Status, and age (all P < 0.001). Survival estimates according to the Weibull regression model revealed higher survival probabilities for reoperation compared with one operation at 6 months (83.74 ± 3.42 vs. 63.56 ± 3.59, respectively), 12 months (64.00 ± 4.85 vs. 37.53 ± 3.52), and 24 months (32.53 ± 4.78 vs. 12.02 ± 2.36). Conclusion: Our data support the indication of reoperation for GBM, especially for younger patients with good functional status. Under these circumstances, survival can be doubled at 12 and 24 months.
Collapse
Affiliation(s)
| | | | | | | | - Samia Yasin Wayhs
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Olavo Feher
- Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas
| | | | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
110
|
Affiliation(s)
- Naveed Wagle
- Pacific Neuroscience Institute and John Wayne Cancer Institute at Providence St John’s Health Center, Santa Monica, California
| | - Santosh Kesari
- Pacific Neuroscience Institute and John Wayne Cancer Institute at Providence St John’s Health Center, Santa Monica, California
| |
Collapse
|
111
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
112
|
Schmitt C, Rasch F, Cossais F, Held-Feindt J, Lucius R, Vázquez AR, Nia AS, Lohe MR, Feng X, Mishra YK, Adelung R, Schütt F, Hattermann K. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomed Mater 2020; 16:015008. [DOI: 10.1088/1748-605x/aba796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
113
|
Goonoo N, Boodhun A, Ziman M, Gray E, Bhaw-Luximon A. Repurposing nano-enabled polymeric scaffolds for tumor-wound management and 3D tumor engineering. Regen Med 2020; 15:2229-2247. [PMID: 33284640 DOI: 10.2217/rme-2020-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main challenges of cancer drugs are toxicity, effect on wound healing/patient outcome and in vivo instability. Polymeric scaffolds have been used separately for tissue regeneration in wound healing and as anticancer drug releasing devices. Bringing these two together in bifunctional scaffolds can provide a tool for postoperative local tumor management by promoting healthy tissue regrowth and to deliver anticancer drugs. Another addition to the versatility of polymeric scaffold is its recently discovered ability to act as 3D cell culture models for in vitro isolation and amplification of cancer cells for personalized drug screening and to recapitulate the tumor microenvironment. This review focuses on the repurposing of 3D polymeric scaffolds for local tumor-wound management and development of in vitro cell culture models.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Ajmal Boodhun
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Melanie Ziman
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Elin Gray
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Archana Bhaw-Luximon
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| |
Collapse
|
114
|
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 2020; 18:170-186. [PMID: 33293629 PMCID: PMC7904519 DOI: 10.1038/s41571-020-00447-z] [Citation(s) in RCA: 1046] [Impact Index Per Article: 209.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
In response to major changes in diagnostic algorithms and the publication of mature results from various large clinical trials, the European Association of Neuro-Oncology (EANO) recognized the need to provide updated guidelines for the diagnosis and management of adult patients with diffuse gliomas. Through these evidence-based guidelines, a task force of EANO provides recommendations for the diagnosis, treatment and follow-up of adult patients with diffuse gliomas. The diagnostic component is based on the 2016 update of the WHO Classification of Tumors of the Central Nervous System and the subsequent recommendations of the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy — Not Officially WHO (cIMPACT-NOW). With regard to therapy, we formulated recommendations based on the results from the latest practice-changing clinical trials and also provide guidance for neuropathological and neuroradiological assessment. In these guidelines, we define the role of the major treatment modalities of surgery, radiotherapy and systemic pharmacotherapy, covering current advances and cognizant that unnecessary interventions and expenses should be avoided. This document is intended to be a source of reference for professionals involved in the management of adult patients with diffuse gliomas, for patients and caregivers, and for health-care providers. Herein, the European Association of Neuro-Oncology (EANO) provides recommendations for the diagnosis, treatment and follow-up of adult patients with diffuse gliomas. These evidence-based guidelines incorporate major changes in diagnostic algorithms based on the 2016 update of the WHO Classification of Tumors of the Central Nervous System as well as on evidence from recent large clinical trials.
Collapse
|
115
|
Abstract
Reoperation for glioma is increasingly common but there is neither firm agreement on the indications nor unequivocally proven benefit from clinical trials. Patient and tumor factors should be considered when offering reoperation and a clear surgical goal set. Reoperation is challenging because of placement of previous incisions, wound devascularization by preceding radiotherapy and/or chemotherapy, chronic steroid use, the need for further adjuvant therapy, and adherent and defective dura. This article reviews indications, challenges, and recommendations for repeat surgery in the patient with glioma.
Collapse
Affiliation(s)
- Rasheed Zakaria
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 442, Houston, TX 77030, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 442, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Abstract
The clinical presentation of glioblastomas is varied, and definitive diagnosis requires pathologic examination and study of the tissue. Management of glioblastomas includes surgery and adjuvant chemotherapy and radiotherapy, with surgery playing an important role in the prognosis of these patients. Awake craniotomy plays a crucial role in tumors in or adjacent to eloquent areas, allowing surgeons to maximize resection, while minimizing iatrogenic deficits. However, the prognosis remains dismal. This article presents the perioperative management of patients with glioblastoma including tools and surgical adjuncts to maximize extent of resection and minimize poor outcomes.
Collapse
|
117
|
Abstract
Although surgical resection of the solid tumor component of glioblastoma has been shown to provide a survival advantage, it will never be a curative procedure. Yet, systemically applied adjuvants (radiation therapy and chemotherapy) also are not curative and their options are limited by the inability of most agents to cross the blood-brain barrier. Direct delivery of adjuvant therapies during a surgical procedure potentially provides an approach to bypass the blood-brain barrier and effectively treat residual tumor cells. This article summarizes the approaches and therapeutics that have been evaluated to date, and challenges that remain to be overcome.
Collapse
|
118
|
Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW, Fabiano AJ, Forsyth P, Hattangadi-Gluth J, Holdhoff M, Horbinski C, Junck L, Kaley T, Kumthekar P, Loeffler JS, Mrugala MM, Nagpal S, Pandey M, Parney I, Peters K, Puduvalli VK, Robins I, Rockhill J, Rusthoven C, Shonka N, Shrieve DC, Swinnen LJ, Weiss S, Wen PY, Willmarth NE, Bergman MA, Darlow SD. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1537-1570. [PMID: 33152694 DOI: 10.6004/jnccn.2020.0052] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.
Collapse
Affiliation(s)
| | | | - Manmeet Ahluwalia
- 3Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Henry Brem
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Steven Brem
- 6Abramson Cancer Center at the University of Pennsylvania
| | | | - Jian L Campian
- 8Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | | | - Craig Horbinski
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Larry Junck
- 14University of Michigan Rogel Cancer Center
| | | | - Priya Kumthekar
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Manjari Pandey
- 19St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | - Vinay K Puduvalli
- 21The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Ian Robins
- 22University of Wisconsin Carbone Cancer Center
| | - Jason Rockhill
- 23Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | | | - Lode J Swinnen
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | |
Collapse
|
119
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
120
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
121
|
Karmur BS, Philteos J, Abbasian A, Zacharia BE, Lipsman N, Levin V, Grossman S, Mansouri A. Blood-Brain Barrier Disruption in Neuro-Oncology: Strategies, Failures, and Challenges to Overcome. Front Oncol 2020; 10:563840. [PMID: 33072591 PMCID: PMC7531249 DOI: 10.3389/fonc.2020.563840] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in the development of effective therapeutics in neuro-oncology. This has fueled several decades of efforts to develop strategies for disrupting the BBB, but progress has not been satisfactory. As such, numerous drug- and device-based methods are currently being investigated in humans. Through a focused assessment of completed, active, and pending clinical trials, our first aim in this review is to outline the scientific foundation, successes, and limitations of the BBBD strategies developed to date. Among 35 registered trials relevant to BBBD in neuro-oncology in the ClinicalTrials.gov database, mannitol was the most common drug-based method, followed by RMP-7 and regadenoson. MR-guided focused ultrasound was the most common device-based method, followed by MR-guided laser ablation, ultrasound, and transcranial magnetic stimulation. While most early-phase studies focusing on safety and tolerability have met stated objectives, advanced-phase studies focusing on survival differences and objective tumor response have been limited by heterogeneous populations and tumors, along with a lack of control arms. Based on shared challenges among all methods, our second objective is to discuss strategies for confirmation of BBBD, choice of systemic agent and drug design, alignment of BBBD method with real-world clinical workflow, and consideration of inadvertent toxicity associated with disrupting an evolutionarily-refined barrier. Finally, we conclude with a strategic proposal to approach future studies assessing BBBD.
Collapse
Affiliation(s)
- Brij S Karmur
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Aram Abbasian
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brad E Zacharia
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| | - Nir Lipsman
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Victor Levin
- Department of Neurosurgery, Medical School, University of California, San Francisco, San Francisco, CA, United States
| | - Stuart Grossman
- Department of Oncology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alireza Mansouri
- Penn State Health Neurosurgery, College of Medicine, Penn State University, Hershey, PA, United States
| |
Collapse
|
122
|
Xiao ZZ, Wang ZF, Lan T, Huang WH, Zhao YH, Ma C, Li ZQ. Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:1036. [PMID: 33041980 PMCID: PMC7527463 DOI: 10.3389/fneur.2020.01036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most aggressive type of primary malignant brain tumor. Carmustine is used by intravenous injection or local implantation in the resection cavity for gliomas, including GBMs. However, the therapeutic potential of carmustine is not well-recognized. This analysis aimed to evaluate the survival benefits of carmustine in glioma patients, especially those with GBM. Methods: Randomized controlled trials (RCTs) and cohort studies regarding carmustine for glioma treatment were searched in PubMed, the Cochrane Library, and Embase from January 1979 to March 2020. Quality assessment was conducted with Jadad and Newcastle-Ottawa scales (NOS). Statistical analysis was conducted by the Revman 5.3 software. Results: Twenty-two eligible RCTs and cohort studies involving 5,821 glioma patients were included. Overall, glioma patients receiving carmustine as an adjuvant therapy had better progression-free survival [PFS; hazard ratio (HR) = 0.85, 95% CI = 0.77-0.94, P = 0.002] and overall survival (OS; HR = 0.85, 95% CI = 0.79-0.92, P < 0.0001) than those without carmustine treatment. Subgroup analysis showed that the OS benefit was observed in GBM (HR = 0.84, 95% CI = 0.78-0.91, P < 0.00001) but not in anaplastic glioma patients (HR = 1.20, 95% CI = 0.70-2.07, P = 0.50). Additionally, both newly diagnosed and recurrent GBM patients who received carmustine treatment showed better OS (HR = 0.86, 95% CI = 0.79-0.95, P = 0.002; HR = 0.77, 95% CI = 0.67-0.89, P = 0.0002, respectively). Both carmustine implantation in resection cavity and intravenous administration significantly prolonged OS (HR = 0.84, 95% CI = 0.78-0.92, P < 0.0001; HR = 0.86, 95% CI = 0.75-0.99, P = 0.04, respectively). Moreover, GBM patients receiving a combined carmustine and temozolomide (TMZ) therapy had longer OS than those receiving TMZ alone (HR = 0.78, 95% CI = 0.63-0.97, P = 0.03). Conclusion: Carmustine implantation in resection cavity provides survival benefit for GBM patients, and it may be a promising supplement to standard therapeutic protocol by offering a bridge between surgical resection and onset of TMZ therapy.
Collapse
Affiliation(s)
- Zhi-Ze Xiao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Hong Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hang Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Neuro-Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
123
|
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22:1073-1113. [PMID: 32328653 PMCID: PMC7594557 DOI: 10.1093/neuonc/noaa106] [Citation(s) in RCA: 706] [Impact Index Per Article: 141.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are the most common form of malignant primary brain tumor and an important cause of morbidity and mortality. In recent years there have been important advances in understanding the molecular pathogenesis and biology of these tumors, but this has not translated into significantly improved outcomes for patients. In this consensus review from the Society for Neuro-Oncology (SNO) and the European Association of Neuro-Oncology (EANO), the current management of isocitrate dehydrogenase wildtype (IDHwt) glioblastomas will be discussed. In addition, novel therapies such as targeted molecular therapies, agents targeting DNA damage response and metabolism, immunotherapies, and viral therapies will be reviewed, as well as the current challenges and future directions for research.
Collapse
Affiliation(s)
- Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eudocia Quant Lee
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Chang
- University of California San Francisco, San Francisco, California, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy F Cloughesy
- David Geffen School of Medicine, Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - John F DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Monika E Hegi
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Emilie Le Rhun
- University of Lille, Inserm, Neuro-oncology, General and Stereotaxic Neurosurgery service, University Hospital of Lille, Lille, France; Breast Cancer Department, Oscar Lambret Center, Lille, France and Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Schiff
- University of Virginia School of Medicine, Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague and Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Jonathan Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Andreas von Deimling
- Neuropathology and Clinical Cooperation Unit Neuropathology, University Heidelberg and German Cancer Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neuro-oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - David A Reardon
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
124
|
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomater Sci Eng 2020; 6:4916-4928. [DOI: 10.1021/acsbiomaterials.0c00743] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tyler D. Brown
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Nahal Habibi
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Debra Wu
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
125
|
Luly KM, Choi J, Rui Y, Green JJ, Jackson EM. Safety considerations for nanoparticle gene delivery in pediatric brain tumors. Nanomedicine (Lond) 2020; 15:1805-1815. [PMID: 32698671 PMCID: PMC7441302 DOI: 10.2217/nnm-2020-0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Current standard of care for many CNS tumors involves surgical resection followed by chemotherapy and/or radiation. Some pediatric brain tumor types are infiltrative and diffuse in nature, which reduces the role for surgery. Furthermore, children are extremely vulnerable to neurological sequelae from surgery and radiation therapy, thus alternative approaches are in critical need. As molecular targets underlying various cancers become more clearly defined, there is an increasing push for targeted gene therapies. Viral vectors and nonviral nanoparticles have been thoroughly investigated for gene delivery and show promise as vectors for gene therapy for pediatric brain cancer. Here, we review inorganic and organic materials in development for nanoparticle gene delivery to the brain with a particular focus on safety.
Collapse
Affiliation(s)
- Kathryn M Luly
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Materials Science & Engineering & Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
126
|
Tejada Solís S, Plans Ahicart G, Iglesias Lozano I, de Quintana Schmidt C, Fernández Coello A, Hostalot Panisello C, Ley Urzaiz L, García Romero JC, Díez Valle R, González Sánchez J, Duque S. Glioblastoma treatment guidelines: Consensus by the Spanish Society of Neurosurgery Tumor Section. Neurocirugia (Astur) 2020; 31:289-298. [PMID: 32690400 DOI: 10.1016/j.neucir.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) treatment starts in most patients with surgery, either resection surgery or biopsy, to reach a histology diagnose. Multidisciplinar team, including specialists in brain tumors diagnose and treatment, must make an individualize assessment to get the maximum benefit of the available treatments. MATERIAL AND METHODS Experts in each GBM treatment field have briefly described it based in their experience and the reviewed of the literature. RESULTS Each area has been summarized and the consensus of the brain tumor group has been included at the end. CONCLUSIONS GBM are aggressive tumors with a dismal prognosis, however accurate treatments can improve overall survival and quality of life. Neurosurgeons must know treatment options, indications and risks to participate actively in the decision making and to offer the best surgical treatment in every case.
Collapse
Affiliation(s)
- Sonia Tejada Solís
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, España.
| | - Gerard Plans Ahicart
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat (Barcelona), España
| | - Irene Iglesias Lozano
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Barcelona, España
| | | | - Alejandro Fernández Coello
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat (Barcelona), España
| | | | - Luis Ley Urzaiz
- Departamento de Neurocirugía, Hospital Universitario Ramón y Cajal, Madrid, España
| | | | - Ricardo Díez Valle
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, España
| | - Josep González Sánchez
- Departamento de Neurocirugía, Hospital Clínic y Provincial de Barcelona, Barcelona, España
| | - Sara Duque
- Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Majadahonda (Madrid), España
| |
Collapse
|
127
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 1183] [Impact Index Per Article: 236.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
128
|
Zhang X, Zhang W, Mao XG, Cao WD, Zhen HN, Hu SJ. Malignant Intracranial High Grade Glioma and Current Treatment Strategy. Curr Cancer Drug Targets 2020; 19:101-108. [PMID: 29848277 DOI: 10.2174/1568009618666180530090922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Malignant high-grade glioma (HGG) is the most common and extremely fatal type of primary intracranial tumor. These tumors recurred within 2 to 3 cm of the primary region of tumor resection in the majority of cases. Furthermore, the blood-brain barrier significantly limited the access of many systemically administered chemotherapeutics to the tumor, pointing towards a stringent need for new therapeutic patterns. Therefore, targeting therapy using local drug delivery for HGG becomes a priority for the development of novel therapeutic strategies. The main objectives to the effective use of chemotherapy for HGG include the drug delivery to the tumor region and the infusion of chemotherapeutic agents into the vascular supply of a tumor directly, which could improve the pharmacokinetic profile by enhancing drug delivery to the neoplasm tissue. Herein, we reviewed clinical and molecular features, different methods of chemotherapy application in HGGs, especially the existing and promising targeting therapies using local drug delivery for HGG which could effectively inhibit tumor invasion, proliferation and recurrence of HGG to combat the deadly disease. Undoubtedly, novel chemical medicines targeting these HGG may represent one of the most important directions in the Neuro-oncology.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Dong Cao
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing, 100048, China
| | - Hai-Ning Zhen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Jie Hu
- Department of Neuro-oncology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
129
|
Gawley M, Almond L, Daniel S, Lastakchi S, Kaur S, Detta A, Cruickshank G, Miller R, Hingtgen S, Sheets K, McConville C. Development and in vivo evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the localised treatment of recurrent glioblastoma multiforme. J Control Release 2020; 324:1-16. [PMID: 32407745 DOI: 10.1016/j.jconrel.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is impossible to fully remove surgically and almost always recurs at the borders of the resection cavity, while systemic delivery of therapeutic drug levels to the brain tumour is limited by the blood-brain barrier. This research describes the development of a novel formulation of Irinotecan-loaded Drug Eluting Seeds (iDES) for insertion into the margin of the GBM resection cavity to provide a sustained high local dose with reduced systemic toxicities. We used primary GBM cells from both the tumour core and Brain Around the Tumour tissue from recurrent GBM patients to demonstrate that irinotecan is more effective than temozolomide. Irinotecan had a 75% response rate, while only 50% responded to temozolomide. With temozolomide the cell viability was never below 80% whereas irinotecan achieved cell viabilities of less than 44%. The iDES were manufactured using a hot melt extrusion process with accurate irinotecan drug loadings and the same cytotoxicity as unformulated irinotecan. The iDES released irinotecan in a sustained fashion for up to 7 days. However, only the 30, 40 and 50% w/w loaded iDES formulations released the 300 to 1000 μg of irinotecan needed to be effective in vivo. The 30 and 40% w/w iDES formulations containing 10% plasticizer and either 60 or 50% PLGA prolonged survival from 27 to 70 days in a GBM xenograft mouse resection model with no sign of tumour recurrence. The 30% w/w iDES formulations showed equivalent toxicity to a placebo in non-tumour bearing mice. This innovative drug delivery approach could transform the treatment of recurrent GBM patients by improving survival and reducing toxicity.
Collapse
Affiliation(s)
- Matthew Gawley
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Lorna Almond
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Senam Daniel
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sarah Lastakchi
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sharnjit Kaur
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Allah Detta
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Garth Cruickshank
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Departments of Neurology and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shawn Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Sheets
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
130
|
Aparicio-Blanco J, Sanz-Arriazu L, Lorenzoni R, Blanco-Prieto MJ. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy. Int J Pharm 2020; 581:119283. [DOI: 10.1016/j.ijpharm.2020.119283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
|
131
|
Graham-Gurysh EG, Moore KM, Schorzman AN, Lee T, Zamboni WC, Hingtgen SD, Bachelder EM, Ainslie KM. Tumor Responsive and Tunable Polymeric Platform for Optimized Delivery of Paclitaxel to Treat Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19345-19356. [PMID: 32252517 PMCID: PMC10424501 DOI: 10.1021/acsami.0c04102] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current interstitial therapies for glioblastoma can overcome the blood-brain barrier but fail to optimally release therapy at a rate that stalls cancer reoccurrence. To address this lapse, acetalated dextran (Ace-DEX) nanofibrous scaffolds were used for their unique degradation rates that translate to a broad range of drug release kinetics. A distinctive range of drug release rates was illustrated via electrospun Ace-DEX or poly(lactic acid) (PLA) scaffolds. Scaffolds composed of fast, medium, and slow degrading Ace-DEX resulted in 14.1%, 2.9%, and 1.3% paclitaxel released per day. To better understand the impact of paclitaxel release rate on interstitial therapy, two clinically relevant orthotopic glioblastoma mouse models were explored: (1) a surgical model of resection and recurrence (resection model) and (2) a distant metastasis model. The effect of unique drug release was illustrated in the resection model when a 78% long-term survival was observed with combined fast and slow release scaffolds, in comparison to a survival of 20% when the same dose is delivered at a medium release rate. In contrast, only the fast release rate scaffold displayed treatment efficacy in the distant metastasis model. Additionally, the acid-sensitive Ace-DEX scaffolds were shown to respond to the lower pH conditions associated with GBM tumors, releasing more paclitaxel in vivo when a tumor was present in contrast to nonacid sensitive PLA scaffolds. The unique range of tunable degradation and stimuli-responsive nature makes Ace-DEX a promising drug delivery platform to improve interstitial therapy for glioblastoma.
Collapse
Affiliation(s)
- Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kathryn M Moore
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allison N Schorzman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Taek Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
132
|
Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, Ainslie KM. Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. J Control Release 2020; 323:282-292. [PMID: 32335153 DOI: 10.1016/j.jconrel.2020.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.
Collapse
Affiliation(s)
- Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
133
|
Challenges to Successful Implementation of the Immune Checkpoint Inhibitors for Treatment of Glioblastoma. Int J Mol Sci 2020; 21:ijms21082759. [PMID: 32316096 PMCID: PMC7215941 DOI: 10.3390/ijms21082759] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant glioma, treatment of which has not improved significantly in many years. This is due to the unique challenges that GBM tumors present when designing and implementing therapies. Recently, immunotherapy in the form of immune checkpoint inhibition (ICI) has revolutionized the treatment of various malignancies. The application of immune checkpoint inhibition in GBM treatment has shown promising preclinical results. Unfortunately, this has met with little to no success in the clinic thus far. In this review, we will discuss the challenges presented by GBM tumors that likely limit the effect of ICI and discuss the approaches being tested to overcome these challenges.
Collapse
|
134
|
A phase I trial of surgical resection with Gliadel Wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma. J Clin Neurosci 2020; 74:187-193. [DOI: 10.1016/j.jocn.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/18/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022]
|
135
|
Kadota T, Saito R, Kumabe T, Mizusawa J, Katayama H, Sumi M, Igaki H, Kinoshita M, Komori T, Ichimura K, Narita Y, Nishikawa R. A multicenter randomized phase III study for newly diagnosed maximally resected glioblastoma comparing carmustine wafer implantation followed by chemoradiotherapy with temozolomide with chemoradiotherapy alone; Japan Clinical Oncology Group Study JCOG1703 (MACS study). Jpn J Clin Oncol 2020; 49:1172-1175. [PMID: 31804699 DOI: 10.1093/jjco/hyz169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 10/19/2019] [Indexed: 11/13/2022] Open
Abstract
A randomized phase III trial in Japan commenced in June 2019. The present standard treatment for newly diagnosed glioblastoma is maximal resection followed by chemoradiotherapy with temozolomide. The purpose of this study is to confirm the superiority of maximal resection with carmustine wafer implantation followed by chemoradiotherapy with temozolomide over the standard maximal resection followed by chemoradiotherapy with temozolomide in terms of overall survival for newly diagnosed glioblastoma. A total of 250 patients will be accrued from 35 Japanese institutions in 5.5 years. Patients with >90% surgical resection will be registered and randomly assigned to each group with 1:1 allocation. The primary endpoint is overall survival and the secondary endpoints are progression-free survival, loco-regional progression-free survival and incidence of adverse events. This trial has been registered in the Japan Registry of Clinical Trial, as jRCT1031190035 [https://jrct.niph.go.jp/en-latest-detail/jRCT1031190035].
Collapse
Affiliation(s)
- Tomohiro Kadota
- JCOG Data Center/Operations Office, National Cancer Center Hospital, Tokyo
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University School of Medicine, Miyagi
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Tokyo
| | - Junki Mizusawa
- JCOG Data Center/Operations Office, National Cancer Center Hospital, Tokyo
| | - Hiroshi Katayama
- JCOG Data Center/Operations Office, National Cancer Center Hospital, Tokyo
| | - Minako Sumi
- Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
136
|
Enhancing sustained-release local therapy: Single versus dual chemotherapy for the treatment of neuroblastoma. Surgery 2020; 167:969-977. [PMID: 32122657 DOI: 10.1016/j.surg.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuroblastoma is the most common pediatric extracranial solid malignancy with limited effective treatment. We have shown that sustained-release, single drugs delivered locally through a silk-based biomaterial are effective in decreasing orthotopic neuroblastoma xenograft growth. We further optimized this approach and hypothesized that increasing doses of local chemotherapy or delivering 2 chemotherapeutic agents simultaneously inhibit additional tumor growth. METHODS MYCN-amplified and non-MYCN-amplified neuroblastoma cells were treated with combinations of cisplatin, vincristine, doxorubicin, and etoposide to determine cytotoxicity and synergy. Drug-loaded silk material was created, and the amounts of drug released from the material over time were recorded. Murine orthotopic neuroblastoma xenografts were generated; tumors were implanted with single- or dual-agent chemotherapy-loaded silk. Ultrasound was used to monitor tumor growth, and tumor histology was evaluated. RESULTS In vitro, vincristine/cisplatin combination was synergistic and significantly decreased cell viability relative to other combinations. Both drugs loaded into silk could be released effectively for over 2 weeks. Locally implanted vincristine/cisplatin silk induced increased tumor growth suppression compared with either agent alone in MYCN-amplified tumors (P < .05). The dose-dependent effect seen in MYCN-amplified tumors treated with combination therapy diminished at higher doses in non-MYCN-amplified tumors, with little benefit with doses >50 μg to 500 μg for vincristine-cisplatin, respectively. Tumor histology demonstrated tumor cell necrosis adjacent to drug-loaded silk material and presence of large cell neuroblastoma. CONCLUSION Local delivery of sustained release chemotherapy can suppress tumor growth especially at high doses or with 2 synergistic drugs. Locally delivered dual therapy is a promising approach for future clinical testing.
Collapse
|
137
|
Wen A, Mei X, Feng C, Shen C, Wang B, Zhang X. Electrosprayed nanoparticles of poly(p-dioxanone-co-melphalan) macromolecular prodrugs for treatment of xenograft ovarian carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110759. [PMID: 32279799 DOI: 10.1016/j.msec.2020.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Ovarian cancer is considered to be the most fatal reproductive cancers. Melphalan is used to treat ovarian cancer as an intraperitoneal chemotherapy agent. However, elucidating its pharmacokinetic behavior and preparing it for administration are challenging since it undergoes spontaneous hydrolysis. In this study, melphalan is transformed into a macromolecular prodrug by copolymerizing with p-dioxanone. The hydrophobicity of copolymer chains protects melphalan from hydrolysis. Poly(p-dioxanone-co-melphalan; PDCM) is electrosprayed and converted into nanoparticles (PDCM NPs) with diameters of ~300-350 nm to facilitate its intracellular delivery. UPLC-MS and HPLC are applied to verify and monitor the release of melphalan from PDCM NPs. PDCM NPs could suppress the proliferation of SKOV-3 cells. The IC50 of 4.3% melphalan-containing PDCM-3 NP was 70 mg/L, 72 h post administration. These suppression characteristics not only affected by the degradation and then the extracellular release of melphalan from PDCM NPs, but also the uptake via phagocytosis phenomenon in SKOV-3 cells. As revealed by flow cytometry, phagocytosis is a first-order process. Once phagocytosed, PDCM NPs are digested by lysosomes, causing a rapid release of melphalan into the cytoplasm, which ultimately causes suppression of SKOV-3 cell proliferation. Finally, the in vivo antitumor effects of PDCM NPs are verified in xenograft ovarian carcinoma. After a 20-day treatment, the tumor growth rate of the PDCM-3 NP group was (266 ± 178%) which was lower than those in the free melphalan group (367 ± 150%) and control group (648 ± 149%). Besides, significant tissue necrosis and growth suppression were observed in animals administered injections of PDCM NPs. Furthermore, the in vivo tracing results of Nile red-labeled PDCM NPs demonstrated that PDCM-3 NPs might be phagocytosed by macrophages and then taken to adjacent lymph nodes, which is a way of prevention or early treatment of lymphatic metastasis of tumors.
Collapse
Affiliation(s)
- Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Mei
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
138
|
El Demerdash N, Kedda J, Ram N, Brem H, Tyler B. Novel therapeutics for brain tumors: current practice and future prospects. Expert Opin Drug Deliv 2020; 17:9-21. [DOI: 10.1080/17425247.2019.1676227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nagat El Demerdash
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Jayanidhi Kedda
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Nivi Ram
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
- Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
139
|
Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020; 8:8507-8518. [DOI: 10.1039/d0tb00987c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphical representation of local and systemic drug delivery systems.
Collapse
Affiliation(s)
- Md Aquib
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ajkia Zaman Juthi
- Department of Biochemistry and Molecular Biology
- School of life Science
- University of Science and Technology of China
- Hefei City
- People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Manasik Gumah Ali
- Antibody Engineering Laboratory
- School of Life Science & Technology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | | | - Sneha Bavi
- Axiom Market Research and ConsultingTM
- Pune 411007
- India
| | - Parikshit Banerjee
- School of Pharmacy, Faculty of Medicine
- The Chinese University of Hong Kong
- New Territories
- People's Republic of China
| | - Raghunath Bhosale
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
| | - Rohit Bavi
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
- State Key Laboratory of Natural Medicines
| | - Bo Wang
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
140
|
Lu L, Kang S, Sun C, Sun C, Guo Z, Li J, Zhang T, Luo X, Liu B. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers. Curr Top Med Chem 2020; 20:2427-2441. [PMID: 32842941 DOI: 10.2174/1568026620666200825170030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Nanotechnology has revolutionized cancer treatment in both diagnosis and therapy. Since the initial application of nanoparticles (NPs) in cancer treatment, the main objective of nanotechnology was developing effective nanosystems with high selectivity and specificity for cancer treatment and diagnosis. To achieve this, different encapsulation and conjugation strategies along with surface functionalization techniques have been developed to synthesize anticancer drugs loaded NPs with effective targeting to specific tumor cells. The unique physicochemical attributes of NPs make them promising candidates for targeted drug delivery, localized therapies, sensing, and targeting at cellular levels. However, a nanosystem for localized and targeted cancer managements should overcome several biological barriers and biomedical challenges such as endothelial barriers, blood brain barrier, reticuloendothelial system, selective targeting, biocompatibility, acute/chronic toxicity, tumor-targeting efficacy. The NPs for in vivo applications encounter barriers at system, organ, and the cellular level. To overcome these barriers, different strategies during the synthesis and functionalization of NPs should be adapted. Pharmacokinetics and cellular uptake of NPs are largely associated with physicochemical attributes of NPs, morphology, hydrodynamic size, charge, and other surface properties. These properties can be adjusted during different phases of synthesis and functionalization of the NPs. This study reviews the advances in targeted cancer treatment and the parameters influencing the efficacies of NPs as therapeutics. Different strategies for overcoming the biological barriers at cellular, organ and system levels and biomedical challenges are discussed. Moreover, the applications of NPs in preclinical and clinical practice are reviewed.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730124, China
| | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730124, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730124, China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou 730000, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730124, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xingping Luo
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730124, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
141
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
142
|
Multi-layered core-sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci Rep 2019; 9:17936. [PMID: 31784666 PMCID: PMC6884550 DOI: 10.1038/s41598-019-54283-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Interstitial chemotherapy plays a pivotal role in the treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer, by enhancing drug biodistribution to the tumor and avoiding systemic toxicities. The use of new polymer structures that extend the release of cytotoxic agents may therefore increase survival and prevent recurrence. A novel core-sheath fiber loaded with the drug carmustine (BCNU) was evaluated in an in vivo brain tumor model. Three-dimensional discs were formed from coaxially electrospun fiber membranes and in vitro BCNU release kinetics were measured. In vivo survival was assessed following implantation of discs made of compressed core-sheath fibers (NanoMesh) either concurrently with or five days after intracranial implantation of 9L gliosarcoma. Co-implantation of NanoMesh and 9L gliosarcoma resulted in statistically significant long-term survival (>150 days). Empty control NanoMesh confirmed the safety of these novel implants. Similarly, Day 5 studies showed significant median, overall, and long-term survival rates, suggesting optimal control of tumor growth, confirmed with histological and immunohistochemical analyses. Local chemotherapy by means of biodegradable NanoMesh implants is a new treatment paradigm for the treatment for brain tumors. Drug delivery with coaxial core-sheath structures benefits from high drug loading, controlled long-term release kinetics, and slow polymer degradation. This represents a promising evolution for the current treatment of GBM.
Collapse
|
143
|
Ultrasound-Induced Blood-Brain-Barrier Opening Enhances Anticancer Efficacy in the Treatment of Glioblastoma: Current Status and Future Prospects. JOURNAL OF ONCOLOGY 2019; 2019:2345203. [PMID: 31781213 PMCID: PMC6875288 DOI: 10.1155/2019/2345203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
Glioblastoma multiforme (GBM) diffusely infiltrates normal brain tissue. The presence of the blood-brain barrier (BBB) poses difficulties for targeted delivery of currently available antitumor drugs. Novel brain drug delivery strategies are far from satisfactory for glioma treatment. Recently, focused ultrasound (FUS) combined with microbubbles presents a transient, reversible, and noninvasive approach for local induction of BBB opening. This strategy demonstrated its potential to increase local concentrations of both diagnostic and therapeutic agents in glioma therapy. Current status and related physic mechanisms of this drug delivery technique are discussed in this review. Delivery efficiency enhancement in many preclinical glioma models was obtained by FUS-BBB opening combined with various nanoparticles. And, the clinical translational status of FUS-BBB will be discussed.
Collapse
|
144
|
Parikh SD, Dave S, Huang L, Wang W, Mukhopadhyay SM, Mayes DA. Multi-walled carbon nanotube carpets as scaffolds for U87MG glioblastoma multiforme cell growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110345. [PMID: 31924041 DOI: 10.1016/j.msec.2019.110345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Carbon Nanotubes (CNTs) are known for effective adhesion, growth, and differentiation of bone, muscle, and cardiac cells. CNTs can provide excellent mechanical and electrical properties for cell scaffolding; however, loose CNTs can cause in-vivo toxicity. To suppress this risk, our team has developed biomimetic scaffolds with multiscale hierarchy where carpet-like CNT arrays are covalently bonded to larger biocompatible substrates. In this study, we investigated the interaction between glioblastoma multiforme (GBM) cells (U87MG) and our unique hierarchical CNT-coated scaffolds upon brain tumor cell proliferation. U87MG cells grown on un-modified carbon scaffolds grew in a bi-phasic fashion. Initially, the scaffolds prevented GBM cell growth; however, prolonged growth on such scaffolds significantly increased GBM cell proliferation. We further defined the importance of the hydrophobicity/hydrophilicity of the CNT-coated scaffolds in this cellular response by utilizing sodium-hypochlorite based bleach treatment prior to cellular exposure. This surface modification increased the hydrophilicity of the CNT-coated scaffolds and ameliorated the biphasic response of U87MG cells allowing for a normal growth curve. Findings highlight the importance of surface modification and wettability of the CNT-coated scaffolds for cell growth applications. The focus for this study was to determine whether scaffold surface features could modulate tumor-scaffold interactions, and thus to improve our understanding of and optimize successful development of future scaffold-based chemotherapy applications. Overall, it appears that the wettability of carbon scaffolds coated with CNTs is an important regulator of U87MG cellular growth. These findings will be important to consider when developing a potential chemotherapy-attached implant to be used post-surgical resection for GBM patient treatment.
Collapse
Affiliation(s)
- Soham D Parikh
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA; Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Soham Dave
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Luping Huang
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Wenhu Wang
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Sharmila M Mukhopadhyay
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA.
| | - Debra A Mayes
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA.
| |
Collapse
|
145
|
Chen W, Lei C, Liu P, Liu Y, Guo X, Kong Z, Wang Y, Dai C, Wang Y, Ma W, Wang Y. Progress and Prospects of Recurrent Glioma: A Recent Scientometric Analysis of the Web of Science in 2019. World Neurosurg 2019; 134:e387-e399. [PMID: 31639500 DOI: 10.1016/j.wneu.2019.10.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Most patients with glioma experience recurrence and have a poor prognosis. Scientometric analysis is effective and widely used to summarize the most influential studies within a certain field. We present the first scientometric analysis of recurrent glioma. METHODS We conducted a generalized search for articles on recurrent glioma in the Web of Science database and evaluated the top 100 most cited articles among 4651 articles. RESULTS The number of citations from the top 100 cited articles on recurrent glioma ranged from 149 to 1471; most of these articles were published in oncology-specific journals (66) and were submitted by institutions in the United States (n = 67). The top-cited articles consisted of 98 articles and 2 literature reviews. Articles were classified into 4 major categories based on subject matter: 82 pertained to treatment, 6 pertained to genetic mechanisms, 7 pertained to diagnosis, and 5 pertained to prognosis. Treatment-related articles were subdivided into the following 7 categories: targeted therapy (n = 21), chemotherapy (n = 20), immunotherapy (n = 12), combination therapy (n = 12), radiotherapy (n = 9), surgical resection (n = 6), a new therapy (physiotherapy) (n = 1), and treatment summary (n = 1). CONCLUSIONS The results of the analysis indicated that the core problem is the treatment of recurrent glioma. Although the number of citations on targeted therapy and combination therapy has increased in recent years, the proportion of randomized controlled trials, basic medical research, literature reviews, and meta-analyses is relatively low; thus, there is an urgent need to conduct these types of studies on recurrent glioma.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
146
|
Yoon SJ, Park J, Jang DS, Kim HJ, Lee JH, Jo E, Choi RJ, Shim JK, Moon JH, Kim EH, Chang JH, Lee JH, Kang SG. Glioblastoma Cellular Origin and the Firework Pattern of Cancer Genesis from the Subventricular Zone. J Korean Neurosurg Soc 2019; 63:26-33. [PMID: 31592000 PMCID: PMC6952738 DOI: 10.3340/jkns.2019.0129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen samples, and experimental methods are enabling discoveries at single-cell resolution. The present article reviews the cell-of-origin of isocitrate dehydrogenase (IDH)-wildtype GBM, beginning with the historical background for focusing on cellular origin and introducing the cancer genesis patterned on firework. The authors also review mutations associated with the senescence process in cells of the subventricular zone (SVZ), and biological validation of somatic mutations in a mouse SVZ model. Understanding GBM would facilitate research on the origin of other cancers and may catalyze the development of new management approaches or treatments against IDH-wildtype GBM.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Su Jang
- Medical Research Support Services, Yonsei University College of Medicine, Seoul, Korea.,Department of Sculpture, Hongik University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Jo
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
147
|
Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019; 219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
|
148
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
149
|
Abstract
Impaired neurocognitive function is an increasingly recognized morbidity in patients who have cancer. Cancer treatments, psychosocial stressors, and the malignancy itself can alter brain function. The mechanisms by which this occurs are under active investigation. Although there is a growing appreciation of its prevalence and causes, there remain limited therapeutic options for the treatment of neurocognitive dysfunction in this population. A persistent scientific and clinical effort to understand its mechanisms and impact is critical to the care of oncology patients.
Collapse
Affiliation(s)
- Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 0431, Houston, TX 77030, USA.
| | - Jeffrey S Wefel
- Section of Neuropsychology, Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 0431, Houston, TX 77030, USA
| |
Collapse
|
150
|
Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, Naik A, Rudnick J, Hu JL, Kumthekar P, Yamini B, Buck JY, Demars N, Barrett JA, Gelb AB, Zhou J, Lebel F, Cooper LJN. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl Med 2019; 11:eaaw5680. [PMID: 31413142 PMCID: PMC7286430 DOI: 10.1126/scitranslmed.aaw5680] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Human interleukin-12 (hIL-12) is a cytokine with anticancer activity, but its systemic application is limited by toxic inflammatory responses. We assessed the safety and biological effects of an hIL-12 gene, transcriptionally regulated by an oral activator. A multicenter phase 1 dose-escalation trial (NCT02026271) treated 31 patients undergoing resection of recurrent high-grade glioma. Resection cavity walls were injected (day 0) with a fixed dose of the hIL-12 vector (Ad-RTS-hIL-12). The oral activator for hIL-12, veledimex (VDX), was administered preoperatively (assaying blood-brain barrier penetration) and postoperatively (measuring hIL-12 transcriptional regulation). Cohorts received 10 to 40 mg of VDX before and after Ad-RTS-hIL-12. Dose-related increases in VDX, IL-12, and interferon-γ (IFN-γ) were observed in peripheral blood, with about 40% VDX tumor penetration. Frequency and severity of adverse events, including cytokine release syndrome, correlated with VDX dose, reversing promptly upon discontinuation. VDX (20 mg) had superior drug compliance and 12.7 months median overall survival (mOS) at mean follow-up of 13.1 months. Concurrent corticosteroids negatively affected survival: In patients cumulatively receiving >20 mg versus ≤20 mg of dexamethasone (days 0 to 14), mOS was 6.4 and 16.7 months, respectively, in all patients and 6.4 and 17.8 months, respectively, in the 20-mg VDX cohort. Re-resection in five of five patients with suspected recurrence after Ad-RTS-hIL-12 revealed mostly pseudoprogression with increased tumor-infiltrating lymphocytes producing IFN-γ and programmed cell death protein 1 (PD-1). These inflammatory infiltrates support an immunological antitumor effect of hIL-12. This phase 1 trial showed acceptable tolerability of regulated hIL-12 with encouraging preliminary results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rimas V Lukas
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- University of Chicago, Chicago, IL 60637, USA
| | - Isaac H Solomon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith L Ligon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A Triggs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Brittany M Stopa
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ajay Naik
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Rudnick
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jethro L Hu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Priya Kumthekar
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Jill Y Buck
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Nathan Demars
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John A Barrett
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Arnold B Gelb
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John Zhou
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Francois Lebel
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Laurence J N Cooper
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| |
Collapse
|