101
|
Changes in routine laboratory tests and survival in amyotrophic lateral sclerosis. Neurol Sci 2017; 38:2177-2182. [DOI: 10.1007/s10072-017-3138-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022]
|
102
|
Hu R, Qu F, Tang J, Zhao Q, Yan J, Zhou Z, Zhou Y, Liu Z. Cloning, expression, and nutritional regulation of the glutamine synthetase gene in Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2017. [DOI: 10.1016/j.cbpb.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
103
|
Vohra R, Gurubaran IS, Henriksen U, Bergersen LH, Rasmussen LJ, Desler C, Skytt DM, Kolko M. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1. Mitochondrion 2017; 36:52-59. [DOI: 10.1016/j.mito.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
|
104
|
Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 2017; 144:155-165. [PMID: 28733208 DOI: 10.1016/j.nlm.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023]
Abstract
Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event.
Collapse
|
105
|
Raphael I, Webb J, Gomez-Rivera F, Chase Huizar CA, Gupta R, Arulanandam BP, Wang Y, Haskins WE, Forsthuber TG. Serum Neuroinflammatory Disease-Induced Central Nervous System Proteins Predict Clinical Onset of Experimental Autoimmune Encephalomyelitis. Front Immunol 2017; 8:812. [PMID: 28769926 PMCID: PMC5512177 DOI: 10.3389/fimmu.2017.00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
There is an urgent need in multiple sclerosis (MS) patients to develop biomarkers and laboratory tests to improve early diagnosis, predict clinical relapses, and optimize treatment responses. In healthy individuals, the transport of proteins across the blood–brain barrier (BBB) is tightly regulated, whereas, in MS, central nervous system (CNS) inflammation results in damage to neuronal tissues, disruption of BBB integrity, and potential release of neuroinflammatory disease-induced CNS proteins (NDICPs) into CSF and serum. Therefore, changes in serum NDICP abundance could serve as biomarkers of MS. Here, we sought to determine if changes in serum NDICPs are detectable prior to clinical onset of experimental autoimmune encephalomyelitis (EAE) and, therefore, enable prediction of disease onset. Importantly, we show in longitudinal serum specimens from individual mice with EAE that pre-onset expression waves of synapsin-2, glutamine synthetase, enolase-2, and synaptotagmin-1 enable the prediction of clinical disease with high sensitivity and specificity. Moreover, we observed differences in serum NDICPs between active and passive immunization in EAE, suggesting hitherto not appreciated differences for disease induction mechanisms. Our studies provide the first evidence for enabling the prediction of clinical disease using serum NDICPs. The results provide proof-of-concept for the development of high-confidence serum NDICP expression waves and protein biomarker candidates for MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Johanna Webb
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Carol A Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Rishein Gupta
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Bernard P Arulanandam
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - William E Haskins
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
106
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
107
|
Galland F, Negri E, Da Ré C, Fróes F, Strapazzon L, Guerra MC, Tortorelli LS, Gonçalves CA, Leite MC. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. Neurotoxicology 2017; 62:46-55. [PMID: 28506823 DOI: 10.1016/j.neuro.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Elisa Negri
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Fernanda Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Liliane Strapazzon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Maria Cristina Guerra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas Silva Tortorelli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
108
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
109
|
Chan KC, Zhou IY, Liu SS, van der Merwe Y, Fan SJ, Hung VK, Chung SK, Wu WT, So KF, Wu EX. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI. Sci Rep 2017; 7:43124. [PMID: 28230106 PMCID: PMC5322351 DOI: 10.1038/srep43124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes.
Collapse
Affiliation(s)
- Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, United States.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Iris Y Zhou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Stanley S Liu
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Victor K Hung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wu-Tian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Fai So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
110
|
Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun 2017; 8:14487. [PMID: 28211470 PMCID: PMC5321746 DOI: 10.1038/ncomms14487] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hidden hearing loss (HHL) is a recently described auditory neuropathy believed to contribute to speech discrimination and intelligibility deficits in people with normal audiological tests. Animals and humans with HHL have normal auditory thresholds but defective cochlear neurotransmission, that is, reduced suprathreshold amplitude of the sound-evoked auditory nerve compound action potential. Currently, the only cellular mechanism known for HHL is loss of inner hair cell synapses (synaptopathy). Here we report that transient loss of cochlear Schwann cells results in permanent auditory deficits characteristic of HHL. This auditory neuropathy is not associated with synaptic loss, but rather with disruption of the first heminodes at the auditory nerve peripheral terminal. Thus, this study identifies a new mechanism for HHL, highlights the long-term consequences of transient Schwann cell loss on hearing and might provide insights into the causes of the auditory deficits reported in patients that recover from acute demyelinating diseases such as Guillain–Barré syndrome. Hidden hearing loss (HHL) is an auditory neuropathy that impairs one's ability to hear, particularly in a noisy environment. Here the authors show that in mice, transient loss of cochlear Schwann cells results in permanent disruption of the cochlear heminodal structure, leading to auditory deficits characteristic of HHL.
Collapse
Affiliation(s)
- Guoqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA.,MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, China
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
111
|
Escobar-Peso A, Chioua M, Frezza V, Martínez-Alonso E, Marco-Contelles J, Alcázar A. Nitrones, Old Fellows for New Therapies in Ischemic Stroke. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
112
|
Kalsbeek MJT, Mulder L, Yi CX. Microglia energy metabolism in metabolic disorder. Mol Cell Endocrinol 2016; 438:27-35. [PMID: 27687525 DOI: 10.1016/j.mce.2016.09.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Laurie Mulder
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
113
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
114
|
Liang X, Martyniuk CJ, Zha J, Wang Z. Brain quantitative proteomic responses reveal new insight of benzotriazole neurotoxicity in female Chinese rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:67-75. [PMID: 27816759 DOI: 10.1016/j.aquatox.2016.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Benzotriazole (BT) is a high-production volume chemical which has been ubiquitously detected in aquatic environments. Although adverse effects from acute and chronic exposure to BT have been reported, the neurotoxic effect of BT and the mechanisms of toxicity are not well documented. In this study, adult female Chinese rare minnow (Gobiocypris rarus) were exposed to 0.05, 0.5, and 5mg/L BT for 28days. The brain proteome showed that BT exposure mainly involved in metabolic process, signal transduction, stress response, cytoskeleton, and transport. Pathway analysis revealed that cellular processes affected by BT included cellular respiration, G-protein signal cascades, Ca2+-dependent signaling, cell cycle and apoptosis. Moreover, data on relative mRNA levels demonstrated that genes related to these toxic pathways were also significantly affected by BT. Furthermore, proteins affected by BT such as CKBB, GS, HPCA, VDAC1, and FLOT1A are associated with neurological disorders. Therefore, our finding suggested that BT induced molecular responses in the brain and could provide new insight into BT neurotoxicity in Chinese rare minnow.
Collapse
Affiliation(s)
- Xuefang Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
115
|
Ren Q, Li M, Yuan L, Song M, Xing X, Shi G, Meng F, Wang R. Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia. Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:9-14. [PMID: 27510860 DOI: 10.1016/j.cbpc.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
Abstract
The four experimental groups were carried out to test the response of crucian carp Carassius auratus to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected with taurine. Fish in group 2 had the highest ammonia and glutamine contents, and the lowest glutamate content in liver and brain. Serum superoxide dismutase (SOD), glutathione (GSH) activities, red cell count (RBC), white cell count (WBC), lysozyme (LYZ) activity, complement C3 content of fish in group 2 reflected the lowest, but malondialdehyde content was the highest. Importantly, serum SOD and GSH activites, RBC, WBC, and LYZ activity, C3, C4 and total immunoglobulin contents of fish in group 3 were significantly higher than those of fish in group 2. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing ROS generation, leading to malondialdehyde accumulation and immunosuppression of crucian carp. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder.
Collapse
Affiliation(s)
- Qianyan Ren
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Meize Song
- College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiaodan Xing
- College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
116
|
Kristiansen RG, Rose CF, Ytrebø LM. Glycine and hyperammonemia: potential target for the treatment of hepatic encephalopathy. Metab Brain Dis 2016; 31:1269-1273. [PMID: 27339764 DOI: 10.1007/s11011-016-9858-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/12/2016] [Indexed: 01/10/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder caused by hepatic dysfunction. Numerous studies dictate that ammonia plays an important role in the pathogenesis of HE, and hyperammonemia can lead to alterations in amino acid homeostasis. Glutamine and glycine are both ammoniagenic amino acids that are increased in liver failure. Modulating the levels of glutamine and glycine has shown to reduce ammonia concentration in hyperammonemia. Ornithine Phenylacetate (OP) has consistently been shown to reduce arterial ammonia levels in liver failure by modulating glutamine levels. In addition to this, OP has also been found to modulate glycine concentration providing an additional ammonia removing effect. Data support that glycine also serves an important role in N-methyl D-aspartate (NMDA) receptor mediated neurotransmission in HE. This potential important role for glycine in the pathogenesis of HE merits further investigations.
Collapse
Affiliation(s)
- Rune Gangsøy Kristiansen
- Department of Anesthesiology, Anesthesia and Critical Care Research Group, University Hospital of North Norway and UiT-The Arctic University of Norway, Tromsø, Norway.
- Department of Anesthesiology, Ålesund Hospital, Helse Møre og Romsdal, 6010, Ålesund, Norway.
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, QC, Canada
| | - Lars Marius Ytrebø
- Department of Anesthesiology, Anesthesia and Critical Care Research Group, University Hospital of North Norway and UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
117
|
Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem Int 2016; 102:1-12. [PMID: 27816478 DOI: 10.1016/j.neuint.2016.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022]
Abstract
Microglia in the axotomized adult rat facial nucleus (axoFN) have been shown to highly express a glutamate transporter (GLT-1). The microglia appear to serve as glutamate (Glu) scavengers in the axoFN. However, there is no evidence that the microglia actually have the ability to uptake Glu and convert it to Gln. In this study, we investigated whether axoFN-derived microglia (axoFN-microglia) can uptake Glu and metabolize it to Gln. Microglia obtained by explant culture of axoFN on poly(N-isopropylacrylamide)-grafted dishes were non-invasively sub-cultured onto dishes or wells. Immunoblotting and Glu-uptake experiments revealed that the axoFN-microglia uptake 14C-Glu mainly by GLT-1 activity. Immunoblotting and immunocytochemical methods clarified that axoFN-microglia express the Gln synthetase (GS) protein in the same manner as newborn rat brain-derived primary microglia (NRB-microglia). Biochemical analysis demonstrated that the specific activity of GS of axoFN-microglia is similar to that of NRB-microglia, suggesting that these microglia play equivalent roles in the metabolic conversion of Glu to Gln. Nuclear magnetic resonance analysis clarified that NRB-microglia metabolize [13C]Glu to [13C]Gln depending on the incubation time, inferring the similar potential of axoFN-microglia. Taken together, these results demonstrate that axoFN-microglia express functional GLT-1 and GS proteins, and are strongly suggested to serve as Glu scavengers in vivo.
Collapse
|
118
|
Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. BIOLOGY 2016; 5:biology5040040. [PMID: 27775558 PMCID: PMC5192420 DOI: 10.3390/biology5040040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.
Collapse
|
119
|
Wu YB, Zhang L, Li WT, Yang Y, Zhao JM. Artesunate restores spatial learning of rats with hepatic encephalopathy by inhibiting ammonia-induced oxidative damage in neurons and dysfunction of glutamate signaling in astroglial cells. Biomed Pharmacother 2016; 84:972-978. [PMID: 27764760 DOI: 10.1016/j.biopha.2016.09.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Artesunate (ART) is an antimalarial drug with potential anti-inflammatory effect. This study aimed to explore the potential protective role of ART in hepatic encephalopathy (HE), involving its function against ammonia toxicity. METHODS HE rats were induced by the administration of thioacetamide (TAA, 300mg/kg/day). Spatial learning ability was tested in both Morris water and eight-arm radial maze. Rat cerebellar granule neurons (CGNs) were prepared for ammonia treatment in vitro, in line with SH-SY5Y and C6 cells. ART was administrated at 50 or 100mg/kg/day in vivo or added at 50 or 100μM in vitro. Oxidative damages were evaluated by the changes of cell viability, reactive oxygen species (ROS) levels and glutathione (GSH) content, while glutamate uptake and release, and the activities of glutamine synthetase (GS) and Na+K+-ATPase were measured to indicate the dysfunction of glutamate signaling. RESULTS Decreased escape latency and increased numbers of working errors were observed in TAA-induced HE rats, which could be significantly restored by ART at a dosage-dependent manner. Decreased cell viability and GSH content and increased ROS accumulation were detected in ammonia-treated SH-SY5Y and CGNs, while ammonia-treated C6 cells showed reduced glutamate uptake, increased glutamate release, and decrease of GSH content, GS and Na+K+-ATPase activity. In contrast, ART, especially at 100μM, strongly reversed all changes induced by ammonia, showing a similar dosage-dependent manner in vitro. CONCLUSION This study revealed a new neuroprotective role of ART in the pathogenesis of HE, by protecting neurons and astroglial cells from ammonia-induced damages and dysfunctions.
Collapse
Affiliation(s)
- Yuan-Bo Wu
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Li Zhang
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Wen-Ting Li
- Department of Infectious Disease, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Yi Yang
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Jiang-Ming Zhao
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China.
| |
Collapse
|
120
|
Issoglio FM, Campolo N, Zeida A, Grune T, Radi R, Estrin DA, Bartesaghi S. Exploring the Catalytic Mechanism of Human Glutamine Synthetase by Computer Simulations. Biochemistry 2016; 55:5907-5916. [DOI: 10.1021/acs.biochem.6b00822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Federico M. Issoglio
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Ari Zeida
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | - Dario A. Estrin
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Bartesaghi
- Departamento
de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
121
|
Xing X, Li M, Yuan L, Song M, Ren Q, Shi G, Meng F, Wang R. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus. FISH & SHELLFISH IMMUNOLOGY 2016; 56:517-522. [PMID: 27514785 DOI: 10.1016/j.fsi.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/16/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
The four experimental groups were carried out to test the response of grass carp Ctenopharyngodon idella to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. Fish in group 2 had the highest ammonia content in the liver and brain, and alanine, arginine, glutamine, glutamate and glycine contents in liver. Brain alanine and glutamate of fish in group 2 were significantly higher than those of fish in group 1. Malondialdehyde content of fish in group 2 was the highest, but superoxide dismutase and glutathione activities were the lowest. Although fish in group 2 had the lowest red cell count and hemoglobin, the highest alkaline phosphatase, complement C3, C4 and total immunoglobulin contents appeared in this group. In addition, superoxide dismutase and glutathione activities, red cell count and hemoglobin of fish in group 3 were significantly higher than those of fish in group 2, but malondialdehyde content is the opposite. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and over-activation of immune response. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder.
Collapse
Affiliation(s)
- Xiaodan Xing
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Meize Song
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Qianyan Ren
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
122
|
Adlimoghaddam A, Sabbir MG, Albensi BC. Ammonia as a Potential Neurotoxic Factor in Alzheimer's Disease. Front Mol Neurosci 2016; 9:57. [PMID: 27551259 PMCID: PMC4976099 DOI: 10.3389/fnmol.2016.00057] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ammonia is known to be a potent neurotoxin that causes severe negative effects on the central nervous system. Excessive ammonia levels have been detected in the brain of patients with neurological disorders such as Alzheimer disease (AD). Therefore, ammonia could be a factor contributing to the progression of AD. In this review, we provide an introduction to the toxicity of ammonia and putative ammonia transport proteins. We also hypothesize how ammonia may be linked to AD. Additionally, we discuss the evidence that support the hypothesis that ammonia is a key factor contributing to AD progression. Lastly, we summarize the old and new experimental evidence that focuses on energy metabolism, mitochondrial function, inflammatory responses, excitatory glutamatergic, and GABAergic neurotransmission, and memory in support of our ammonia-related hypotheses of AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Mohammad G Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
123
|
Moreira C, Ramos MJ, Fernandes PA. Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets. Molecules 2016; 21:E1028. [PMID: 27509490 PMCID: PMC6274088 DOI: 10.3390/molecules21081028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glutamine synthetase (GS) is a crucial enzyme to the nitrogen cycle with great commercial and pharmaceutical value. Current inhibitors target the active site, affecting GS activity indiscriminately in all organisms. As the active site is located at the interface between two monomers, the protein-protein interface (PPI) of GSs gains a new role, by providing new targets for enzyme inhibition. Exploring GSs PPI could allow for the development of inhibitors selective for specific organisms. Here we map the PPI of three GSs-human (hsGS), maize (zmGS) and Mycobacterium tuberculosis (mtGS)-and unravel new drugable pockets. METHODS The PPI binding free energy coming from key residues on three GSs from different organisms were mapped by computational alanine scan mutagenesis, applying a multiple dielectric constant MM-PBSA methodology. The most relevant residues for binding are referred as hot-spots. Drugable pockets on GS were detected with the Fpocket software. RESULTS AND CONCLUSIONS A total of 23, 19 and 30 hot-spots were identified on hsGS, zmGS and mtGS PPI. Even possessing differences in the hot-spots, hsGS and zmGS PPI are overall very similar. On the other hand, mtGS PPI differs greatly from hsGS and zmGS PPI. A novel drugable pocket was detected on the mtGS PPI. It seems particularly promising for the development of selective anti-tuberculosis drugs given its location on a PPI region that is highly populated with hot-spots and is completely different from the hsGS and zmGS PPIs. Drugs targeting this pockets should be inactive on eukaryotic GS II enzymes.
Collapse
Affiliation(s)
- Cátia Moreira
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
124
|
Neurotoxicity of Ammonia. Neurochem Res 2016; 42:713-720. [PMID: 27465396 DOI: 10.1007/s11064-016-2014-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
Abstract
Abnormal liver function has dramatic effects on brain functions. Hyperammonemia interferes profoundly with brain metabolism, astrocyte volume regulation, and in particular mitochondrial functions. Gene expression in the brain and excitatory and inhibitory neurotransmission circuits are also affected. Experiments with a number of pertinent animal models have revealed several potential mechanisms which could underlie the pathological phenomena occurring in hepatic encephalopathy.
Collapse
|
125
|
Núñez-Acuña G, Boltaña S, Gallardo-Escárate C. Pesticides Drive Stochastic Changes in the Chemoreception and Neurotransmission System of Marine Ectoparasites. Int J Mol Sci 2016; 17:ijms17060700. [PMID: 27258252 PMCID: PMC4926324 DOI: 10.3390/ijms17060700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
Scientific efforts to elucidate the mechanisms of chemical communication between organisms in marine environments are increasing. This study applied novel molecular technology to outline the effects of two xenobiotic drugs, deltamethrin (DM) and azamethiphos (AZA), on the neurotransmission system of the copepod ectoparasite Caligus rogercresseyi. Transcriptome sequencing and bioinformatics analyses were conducted to evaluate treatment effects on the glutamatergic synaptic pathway of the parasite, which is closely related to chemoreception and neurotransmission. After drug treatment with DM or AZA, stochastic mRNA expression patterns of glutamatergic synapse pathway components were observed. Both DM and AZA promoted a down-regulation of the glutamate-ammonia ligase, and DM activated a metabotropic glutamate receptor that is a suggested inhibitor of neurotransmission. Furthermore, the delousing drugs drove complex rearrangements in the distribution of mapped reads for specific metabotropic glutamate receptor domains. This study introduces a novel methodological approach that produces high-quality results from transcriptomic data. Using this approach, DM and AZA were found to alter the expression of numerous mRNAs tightly linked to the glutamatergic signaling pathway. These data suggest possible new targets for xenobiotic drugs that play key roles in the delousing effects of antiparasitics in sea lice.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| | - Sebastián Boltaña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
126
|
Shariatgorji M, Strittmatter N, Nilsson A, Källback P, Alvarsson A, Zhang X, Vallianatou T, Svenningsson P, Goodwin RJA, Andren PE. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage 2016; 136:129-38. [PMID: 27155126 DOI: 10.1016/j.neuroimage.2016.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Patrik Källback
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Alexandra Alvarsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Theodosia Vallianatou
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | - Per E Andren
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden.
| |
Collapse
|
127
|
Li M, Gong S, Li Q, Yuan L, Meng F, Wang R. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol C Toxicol Pharmacol 2016; 183-184:1-6. [PMID: 26811908 DOI: 10.1016/j.cbpc.2016.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/01/2016] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
Abstract
A study was carried to test the response of yellow catfish for 28 days under two ammonia concentrations. Weight gain of fish exposure to high and low ammonia abruptly increased at day 3. There were no significant changes in fish physiological indexes and immune responses at different times during 28-day exposure to low ammonia. Fish physiological indexes and immune responses in the treatment of high ammonia were lower than those of fish in the treatment of low ammonia. When fish were exposed to high ammonia, the ammonia concentration in the brain increased by 19-fold on day 1. By comparison, liver ammonia concentration reached its highest level much earlier at hour 12. In spite of a significant increase in brain and liver glutamine concentration, there was no significant change in glutamate level throughout the 28-day period. The total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase (GR) activities in the brain gradually decreased from hour 0 to day 28. Liver SOD, GPX and GR activities reached the highest levels at hour 12, and then gradually decreased. Thiobarbituric acid reactive substance brain and liver content gradually increased throughout the 28-day period. Lysozyme, acid phosphatase and alkaline phosphatase activities in the liver reached exceptionally low levels after day 14. This study indicated that glutamine accumulation in the brain was not the major cause of ammonia poisoning, the toxic reactive oxygen species is not fully counter acted by the antioxidant enzymes and immunosuppression is a process of gradual accumulation of immunosuppressive factors.
Collapse
Affiliation(s)
- Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shiyan Gong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qing Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
128
|
He Q, Shi X, Zhang L, Yi C, Zhang X, Zhang X. De Novo Glutamine Synthesis: Importance for the Proliferation of Glioma Cells and Potentials for Its Detection With 13N-Ammonia. Mol Imaging 2016; 15:15/0/1536012116645440. [PMID: 27118759 PMCID: PMC5470141 DOI: 10.1177/1536012116645440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma cells and its detection with 13N-ammonia. Methods: Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS) inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts. Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6 cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Linqi Zhang
- Department of Nuclear Medicine, the Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuezhen Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
129
|
Nikmah UA, Prijanti AR, Jusman SW, Sadikin M. Expression and specific activities of carbamoyl phosphate synthetase 1 in chronic hypoxic rats. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i1.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: Urea biosynthesis is a very important process in the liver which needs ATP, CO2 and functional mitochondria or aerobic condition. Liver can adapt to hypoxic condition, generally and locally. This study aimed to analyze the effect of chronic hypoxia on liver urea biosynthesis as indicated by the level and specific activity of mRNA of carbamoyl phosphate synthetase 1 (CPS1), a key enzyme in urea biosynthesis in hypoxic rats.Methods: 20 male Sprague-Dawley rats were placed in hypoxic chamber supplied by a mixture of 10% O2 and 90% N2. Five rats were sacrificed at 1, 3, 5, and 7 days after exposure. Liver homogenates were analyzed for HIF-1 (hypoxia inducible factor-1) by ELISA, CPS1 mRNA by real time RT-PCR and CPS1 enzymatic specific activities by Pierson method. Data were analyzed by ANOVA test and Pearson correlation.Results: The HIF-1 in liver increased significantly, as well as CPS1 mRNA and CPS1 enzymatic activities (p<0.05). There was a strong correlation (r=0.618; p<0.01) between the level of CPS1 mRNA and CPS1 enzymatic activities, moderate correlation between HIF-1 and CPS1 mRNA (r=0.419; p<0.05) but no correlation between HIF-1 and CPS1 enzymatic activities. The study indicated that urea biosynthesis in liver was affected by hypoxia and partially under HIF-1 regulation. The study also found increase of urea and NH3 biosynthesis related to proteolysis as indicated by the decrease of total body weight and liver weight.Conclusion: There was an increase in the expression and specific activities of CPS1 in urea biosynthesis as a result of increasing proteolysis in chronic hypoxic condition.
Collapse
|
130
|
Becerra L, Veggeberg R, Prescot A, Jensen JE, Renshaw P, Scrivani S, Spierings ELH, Burstein R, Borsook D. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. NEUROIMAGE-CLINICAL 2016; 11:588-594. [PMID: 27158591 PMCID: PMC4846856 DOI: 10.1016/j.nicl.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a ‘complex’ of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite ‘complex’ may confer more subtle but biological processes that are ongoing. The data also support the current theory that the migraine brain is hyperexcitable even in the interictal state. 3 T MRI was used to acquire 2D J-resolved proton magnetic resonance spectroscopy. Metabolite alterations are reported in the anterior cingulate cortex of episodic migraineurs. The complex of metabolites may reflect multiple chemical changes in migraineurs. The observed chemical changes support the theory that the brain of migraineurs is hyperexcitable.
Collapse
Affiliation(s)
- L Becerra
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - R Veggeberg
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - A Prescot
- Department of Radiology, University of Utah, School of Medicine, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - J E Jensen
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - P Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - S Scrivani
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - E L H Spierings
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - R Burstein
- Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Borsook
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
131
|
Gallart-Palau X, Lee BST, Adav SS, Qian J, Serra A, Park JE, Lai MKP, Chen CP, Kalaria RN, Sze SK. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer's disease with cerebrovascular disease. Mol Brain 2016; 9:27. [PMID: 26983404 PMCID: PMC4794845 DOI: 10.1186/s13041-016-0205-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/22/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dementia risk in women is higher than in men, but the molecular neuropathology of this gender difference remains poorly defined. In this study, we used unbiased, discovery-driven quantitative proteomics to assess the molecular basis of gender influences on risk of Alzheimer's disease with cerebrovascular disease (AD + CVD). RESULTS We detected modulation of several redox proteins in the temporal lobe of AD + CVD subjects, and we observed sex-specific alterations in the white matter (WM) and mitochondria proteomes of female patients. Functional proteomic analysis of AD + CVD brain tissues revealed increased citrullination of arginine and deamidation of glutamine residues of myelin basic protein (MBP) in female which impaired degradation of degenerated MBP and resulted in accumulation of non-functional MBP in WM. Female patients also displayed down-regulation of ATP sub-units and cytochromes, suggesting increased severity of mitochondria impairment in women. CONCLUSIONS Our study demonstrates that gender-linked modulation of white matter and mitochondria proteomes influences neuropathology of the temporal lobe in AD + CVD.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Benjamin S. T. Lee
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Sunil S. Adav
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jingru Qian
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Aida Serra
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jung Eun Park
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Mitchell K. P. Lai
- />Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P. Chen
- />Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- />Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Raj N. Kalaria
- />Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Siu Kwan Sze
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
132
|
Royes LFF, Gabbi P, Ribeiro LR, Della-Pace ID, Rodrigues FS, de Oliveira Ferreira AP, da Silveira Junior MEP, da Silva LRH, Grisólia ABA, Braga DV, Dobrachinski F, da Silva AMHO, Soares FAA, Marchesan S, Furian AF, Oliveira MS, Fighera MR. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability. Amino Acids 2016; 48:1373-89. [DOI: 10.1007/s00726-015-2164-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
|
133
|
Montes S, Castro-Chávez A, Florian-Soto C, Heras-Romero Y, Ríos C, Rivera-Mancía S. Bumetanide increases manganese accumulation in the brain of rats with liver damage. Eur J Pharmacol 2016; 774:127-34. [DOI: 10.1016/j.ejphar.2016.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
|
134
|
Jayakumar AR, Norenberg MD. Glutamine Synthetase: Role in Neurological Disorders. ADVANCES IN NEUROBIOLOGY 2016; 13:327-350. [PMID: 27885636 DOI: 10.1007/978-3-319-45096-4_13] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.
Collapse
Affiliation(s)
| | - Michael D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- Departments of Pathology, University of Miami School of Medicine, 016960, Miami, FL, 33101, USA.
- Departments of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
135
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
136
|
Wang XS, Tian Z, Zhang N, Han J, Guo HL, Zhao MG, Liu SB. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death. Phytother Res 2015; 30:386-96. [PMID: 26643508 DOI: 10.1002/ptr.5538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS.
Collapse
Affiliation(s)
- Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-liang Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
137
|
RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PLoS One 2015; 10:e0143563. [PMID: 26636579 PMCID: PMC4670106 DOI: 10.1371/journal.pone.0143563] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/08/2015] [Indexed: 02/01/2023] Open
Abstract
Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.
Collapse
|
138
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
139
|
Nakajima T, Hata R, Kondo T, Takenaka S. Proteomic analysis of the hippocampus in naïve and ischemic-preconditioned rat. J Neurol Sci 2015; 358:158-71. [PMID: 26342941 DOI: 10.1016/j.jns.2015.08.1530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/06/2015] [Accepted: 08/22/2015] [Indexed: 02/06/2023]
Abstract
The hippocampus exhibits regional differences in vulnerability to ischemia, wherein pyramidal cells in the CA1 region are vulnerable to ischemia while pyramidal cells in the CA3 region and granule cells in the dentate gyrus (DG) region are relatively ischemia resistant. However, pyramidal cells in the CA1 region reportedly exhibit ischemic tolerance following exposure to a brief non-lethal period of ischemia known as ischemic preconditioning. In this study, we used proteomic analysis to examine the difference in protein expression between naïve rat CA1 and CA3/DG regions, as well as the altered protein expression in the CA1 region after 3min of ischemic preconditioning. Proteomic analysis identified ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), glutathione S-transferase μ5 (GSTμ5), glutamine synthetase (GS), and dynamin-1 as proteins with differential expression levels in naïve CA1 and CA3/DG regions. The difference in expression levels of GSTμ5 and GS between these two regions was further confirmed by western blot. Our analysis also identified aconitase2, α-tubulin, protein-l-isoaspartate O-methiltransferase (PIMT), and voltage-dependent anion channel 1 (VDCA1) as proteins with down-regulated expression levels in the CA1 region following 3min ischemic preconditioning. The decrease in the expression of aconitase2 was also confirmed by western blot and immunohistochemical staining. The present results suggest that GSTμ5 and GS may be associated with ischemia-resistance in the CA3/DG region and that aconitase2 may play a part in the ischemic tolerance in the CA1 region.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan.
| | - Ryusuke Hata
- Department of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Tomohiro Kondo
- Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ohraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
140
|
Mu W, Zhang T, Jiang B. An overview of biological production of L-theanine. Biotechnol Adv 2015; 33:335-42. [DOI: 10.1016/j.biotechadv.2015.04.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 03/10/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
141
|
Eggers Pedersen K, Basu N, Letcher R, Greaves AK, Sonne C, Dietz R, Styrishave B. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 138:22-31. [PMID: 25682255 DOI: 10.1016/j.envres.2015.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g. ∑PFCA; rp=-0.40, p=0.003, ∑PFSA; rp=-0.37, p=0.007; n=52). AChE activity and D2 density were negatively correlated with single PFCAs in several brain regions, whereas GS activity was positively correlated with PFASs primarily in occipital lobe. Results from the present study support the hypothesis that PFAS concentrations in polar bears from East Greenland have exceeded the threshold limits for neurochemical alterations. It is not known whether the observed alterations in neurochemical signaling are currently having negative effects on neurochemistry in East Greenland polar bears. However given the importance of these systems in cognitive processes and motor function, the present results indicate an urgent need for a better understanding of neurochemical effects of PFAS exposure to wildlife.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Robert Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Alana K Greaves
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
142
|
Prastiwi D, Djunaidi A, Partadiredja G. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Hum Exp Toxicol 2015; 34:1171-9. [DOI: 10.1177/0960327115572706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.
Collapse
Affiliation(s)
- D Prastiwi
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Nursing Program, Faculty of Health Sciences, Pekalongan University, Central Java, Indonesia
| | - A Djunaidi
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - G Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
143
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
144
|
Zhao S, Li G, Chen J. A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteomics 2015; 114:197-213. [DOI: 10.1016/j.jprot.2014.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023]
|
145
|
Chronotherapeutic effect of fisetin on expression of urea cycle enzymes and inflammatory markers in hyperammonaemic rats. Pharmacol Rep 2014; 66:1037-42. [DOI: 10.1016/j.pharep.2014.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022]
|
146
|
Sandström von Tobel J, Zoia D, Althaus J, Antinori P, Mermoud J, Pak HS, Scherl A, Monnet-Tschudi F. Immediate and delayed effects of subchronic Paraquat exposure during an early differentiation stage in 3D-rat brain cell cultures. Toxicol Lett 2014; 230:188-97. [DOI: 10.1016/j.toxlet.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
|
147
|
Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA, Salvemini D. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 2014; 155:2560-2567. [PMID: 25242567 DOI: 10.1016/j.pain.2014.09.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina 98122, Italy Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radic Res 2014; 48:1267-84. [PMID: 25119970 DOI: 10.3109/10715762.2014.953494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are subject to various posttranslational modifications, some of them being undesired from the point of view of metabolic efficiency. Prevention of such modifications is expected to provide new means of therapy of diseases and decelerate the process of aging. In this review, modifications of proteins by reactive nitrogen species and reactive halogen species, is briefly presented and means of prevention of these modifications and their sequelae are discussed, including the denitrase activity and inhibitors of myeloperoxidase.
Collapse
Affiliation(s)
- I Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów , Rzeszów , Poland
| | | | | | | |
Collapse
|
149
|
Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. Mol Genet Metab 2014; 113:142-7. [PMID: 25069822 PMCID: PMC4191821 DOI: 10.1016/j.ymgme.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia.
Collapse
Affiliation(s)
- B Feldman
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - M Tuchman
- Children's National Medical Center, Washington DC, USA
| | - L Caldovic
- Children's National Medical Center, Washington DC, USA.
| |
Collapse
|
150
|
Huyghe D, Nakamura Y, Terunuma M, Faideau M, Haydon P, Pangalos MN, Moss SJ. Glutamine synthetase stability and subcellular distribution in astrocytes are regulated by γ-aminobutyric type B receptors. J Biol Chem 2014; 289:28808-15. [PMID: 25172509 DOI: 10.1074/jbc.m114.583534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that functional γ-aminobutyric acid B receptors (GABABRs) are expressed by astrocytes within the mammalian brain. GABABRs are heterodimeric G-protein-coupled receptors that are composed of R1/R2 subunits. To date, they have been characterized in neurons as the principal mediators of sustained inhibitory signaling; however their roles in astrocytic physiology have been ill defined. Here we reveal that the cytoplasmic tail of the GABABR2 subunit binds directly to the astrocytic protein glutamine synthetase (GS) and that this interaction determines the subcellular localization of GS. We further demonstrate that the binding of GS to GABABR2 increases the steady state expression levels of GS in heterologous cells and in mouse primary astrocyte culture. Mechanistically this increased stability of GS in the presence of GABABR2 occurs via reduced proteasomal degradation. Collectively, our results suggest a novel role for GABABRs as regulators of GS stability. Given the critical role that GS plays in the glutamine-glutamate cycle, astrocytic GABABRs may play a critical role in supporting both inhibitory and excitatory neurotransmission.
Collapse
Affiliation(s)
- Deborah Huyghe
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yasuko Nakamura
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Miho Terunuma
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom
| | - Mathilde Faideau
- Department of Experimental Dementia Research, Lund University SE-221 00 Lund, Sweden
| | - Philip Haydon
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Menelas N Pangalos
- Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom, and
| | - Stephen J Moss
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6B, United Kingdom
| |
Collapse
|