101
|
Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R, Zhang Q, Singer E, Klose AD, Shen TH, Francis KP, Ray S, Vijayakumar S, Seward S, Bovino ME, Xu K, Takabe Y, Amaral FE, Mohan S, Wax R, Corbin K, Sanna-Cherchi S, Mori K, Johnson L, Nickolas T, D'Agati V, Lin CS, Qiu A, Al-Awqati Q, Ratner AJ, Barasch J. α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014; 124:2963-76. [PMID: 24937428 DOI: 10.1172/jci71630] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.
Collapse
|
102
|
Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 2014; 124:2355-63. [PMID: 24892710 PMCID: PMC4089444 DOI: 10.1172/jci72269] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) remains a major clinical event with rising incidence, severity, and cost; it now has a morbidity and mortality exceeding acute myocardial infarction. There is also a documented conversion to and acceleration of chronic kidney disease to end-stage renal disease. The multifactorial nature of AKI etiologies and pathophysiology and the lack of diagnostic techniques have hindered translation of preclinical success. An evolving understanding of epithelial, endothelial, and inflammatory cell interactions and individualization of care will result in the eventual development of effective therapeutic strategies. This review focuses on epithelial and endothelial injury mediators, interactions, and targets for therapy.
Collapse
|
103
|
Mao S, Zhang A, Huang S. The signaling pathway of uromodulin and its role in kidney diseases. J Recept Signal Transduct Res 2014; 34:440-4. [PMID: 24849497 DOI: 10.3109/10799893.2014.920029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The uromodulin (UMOD) is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. UMOD acts as a regulatory protein in health and in various conditions. For kidney diseases, its role remains elusive. On one hand, UMOD plays a role in binding and excretion of various potentially injurious products from the tubular fluid. On the other hand, chronic kidney disease is associated with higher serum levels of UMOD. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for UMOD to the investigators who were interested in the role of UMOD in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of UMOD and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | | | |
Collapse
|
104
|
Dinour D, Ganon L, Nomy LI, Ron R, Holtzman EJ. Wild-type uromodulin prevents NFkB activation in kidney cells, while mutant uromodulin, causing FJHU nephropathy, does not. J Nephrol 2014; 27:257-64. [PMID: 24648000 DOI: 10.1007/s40620-014-0079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Uromodulin (Tamm-Horsfall protein) is the most abundant urinary protein in healthy individuals. Despite 60 years of research, its physiological role remains rather elusive. Familial juvenile hyperuricemic nephropathy and medullary cystic kidney disease Type 2 are autosomal dominant tubulointerstitial nephropathies characterized by gouty arthritis and progressive renal insufficiency, caused by uromodulin (UMOD) mutations. The aim of this study was to compare the cellular effects of mutant and wild-type UMOD. METHODS Wild-type UMOD cDNA was cloned from human kidney cDNA into pcDNA3 expression vector. A mutant UMOD construct, containing the previously reported mutation, V273, was created by in vitro mutagenesis. Transient and stable transfection studies were performed in human embryonic kidney cells and mouse distal convoluted tubular cells, respectively. Expression was evaluated by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunofluorescence. Oligosaccharide cleavage by glycosidases was performed to characterize different forms of UMOD. Nuclear translocation of P65 and degradation of IκBα and IRAK1 in response to interleukin (IL)-1β were used to evaluate the effects of wild-type and mutant UMOD on the IL-1R-NFκB pathway. RESULTS The mutant protein was shown to be retained in the endoplasmic reticulum and was not excreted to the cell medium, as opposed to the wild-type protein. NFκB activation in cells expressing mutant UMOD was similar to that of untransfected cells. In contrast, cells over-expressing wild-type UMOD showed markedly reduced NFκB activation. CONCLUSION Our findings suggest that UMOD may have a physiologic function related to its inhibitory effect on the NFκB pathway.
Collapse
Affiliation(s)
- Dganit Dinour
- Department of Nephrology and Hypertension, The Chaim Sheba Medical Center, Tel-Hashomer and the Faculty of Medicine, Sackler School of Medicine, Sheba Medical Center, 52621, Tel-Aviv, Israel,
| | | | | | | | | |
Collapse
|
105
|
Olden M, Corre T, Hayward C, Toniolo D, Ulivi S, Gasparini P, Pistis G, Hwang SJ, Bergmann S, Campbell H, Cocca M, Gandin I, Girotto G, Glaudemans B, Hastie ND, Loffing J, Polasek O, Rampoldi L, Rudan I, Sala C, Traglia M, Vollenweider P, Vuckovic D, Youhanna S, Weber J, Wright AF, Kutalik Z, Bochud M, Fox CS, Devuyst O. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J Am Soc Nephrol 2014; 25:1869-82. [PMID: 24578125 DOI: 10.1681/asn.2013070781] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P<0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 μg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P<0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.
Collapse
Affiliation(s)
- Matthias Olden
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy; Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Harry Campbell
- Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Cocca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Ilaria Gandin
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Bob Glaudemans
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and
| | - Nicholas D Hastie
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | | | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Luca Rampoldi
- Dulbecco Telethon Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Igor Rudan
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | - Dragana Vuckovic
- Institute for Maternal and Child Health, Burlo Garofolo Pediatric Institute Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Sonia Youhanna
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium
| | - Julien Weber
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium
| | - Alan F Wright
- Institute of Genetics and Molecular Medicine, Western General Hospital, and
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; and
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, and Division of Nephrology, Catholic University of Louvain Medical School, Brussels, Belgium;
| |
Collapse
|
106
|
Kemter E, Sklenak S, Rathkolb B, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J Biol Chem 2014; 289:10715-10726. [PMID: 24567330 DOI: 10.1074/jbc.m113.537035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Stefanie Sklenak
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Research Center of Diabetes Research (DZD), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Research Center of Diabetes Research (DZD), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ruediger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
107
|
Li KJ, Siao SC, Wu CH, Shen CY, Wu TH, Tsai CY, Hsieh SC, Yu CL. EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway. Molecules 2014; 19:1328-43. [PMID: 24451252 PMCID: PMC6271557 DOI: 10.3390/molecules19011328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/16/2022] Open
Abstract
Our previous studies showed that urinary Tamm–Horsfall glycoprotein (THP) potently enhanced polymorphonuclear neutrophil (PMN) phagocytosis. However, the domain structure(s), signaling pathway and the intracellular events responsible for THP-enhanced PMN phagocytosis remain to be elucidated. THP was purified from normal human urine. The human promyelocytic leukemia cell line HL-60 was induced to differentiate into PMNs by all-trans retinoid acid. Pretreatment with different MAPK and PI3K inhibitors was used to delineate signaling pathways in THP-enhanced PMN phagocytosis. Phosphorylation of molecules responsible for PMN phagocytosis induced by bacterial lipopolysaccharide (LPS), THP, or human recombinant epidermal growth factor (EGF) was evaluated by western blot. A p38 MAPK inhibitor, SB203580, effectively inhibited both spontaneous and LPS- and THP-induced PMN phagocytosis. Both THP and LPS enhanced the expression of the Rho family proteins Cdc42 and Rac that may lead to F-actin re-arrangement. Further studies suggested that THP and EGF enhance PMN and differentiated HL-60 cell phagocytosis in a similar pattern. Furthermore, the EGF receptor inhibitor GW2974 significantly suppressed THP- and EGF-enhanced PMN phagocytosis and p38 and ERK1/2 phosphorylation in differentiated HL-60 cells. We conclude that EGF receptor-dependent signaling may be involved in THP-enhanced PMN phagocytosis by activating Rho family and MAP kinase.
Collapse
Affiliation(s)
- Ko-Jen Li
- Institute of Clinical Medicine, National Yang-Ming University College of Medicine, Taipei 11221, Taiwan.
| | - Sue-Cien Siao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Section of Nephrology, Taipei Veterans General Hospital, Taipei 11221, Taiwan.
| | - Chang-Youh Tsai
- Section of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, Taipei 11221, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| |
Collapse
|
108
|
Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J Cancer 2014; 5:103-14. [PMID: 24494028 PMCID: PMC3909765 DOI: 10.7150/jca.6890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/21/2013] [Indexed: 12/23/2022] Open
Abstract
Globally, Prostate cancer (PCa) is the most frequently occurring non-cutaneous cancer, and is the second highest cause of cancer mortality in men. Serum prostate specific antigen (PSA) has been the standard in PCa screening since its approval by the American Food & Drug Administration (FDA) in 1994. Currently, PSA is used as an indicator for PCa - patients with a serum PSA level above 4ng/mL will often undergo prostate biopsy to confirm cancer. Unfortunately fewer than ~30% of these men will biopsy positive for cancer, meaning that the majority of men undergo invasive biopsy with little benefit. Despite PSA's notoriously poor specificity (33%), there is still a significant lack of credible alternatives. Therefore an ideal biomarker that can specifically detect PCa at an early stage is urgently required. The aim of this study was to investigate the potential of using deregulation of urinary proteins in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the protein signatures specific for PCa, protein expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using LC-MS/MS. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This approach revealed that significant the down-regulation of Fibronectin and TP53INP2 was a characteristic event among PCa patients. Fibronectin mRNA down-regulation, was identified as offering improved specificity (50%) over PSA, albeit with a slightly lower although still acceptable sensitivity (75%) for detecting PCa. As for TP53INP2 on the other hand, its down-regulation was moderately sensitive (75%), identifying many patients with PCa, but was entirely non-specific (7%), designating many of the benign samples as malignant and being unable to accurately identify more than one negative.
Collapse
Affiliation(s)
- Taha A Haj-Ahmad
- 1. Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Moemen Ak Abdalla
- 2. Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| | - Yousef Haj-Ahmad
- 2. Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
109
|
Calvani R, Brasili E, Praticò G, Capuani G, Tomassini A, Marini F, Sciubba F, Finamore A, Roselli M, Marzetti E, Miccheli A. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Exp Gerontol 2014; 49:5-11. [DOI: 10.1016/j.exger.2013.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/08/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
110
|
Witasp A, Ekström TJ, Lindholm B, Stenvinkel P, Schalling M, Nordfors L. Novel insights from genetic and epigenetic studies in understanding the complex uraemic phenotype. Nephrol Dial Transplant 2013; 29:964-71. [PMID: 24235077 DOI: 10.1093/ndt/gft428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Like in many other common complex disorders, studies of chronic kidney disease (CKD) can now make use of the increasing knowledge of the human genome, its variations and impact on disease susceptibility, initiation, progression and complications. Such studies are facilitated by novel readily available high through-put genotyping methods and sophisticated analytical approaches to scan the genome for DNA variations and epigenetic modifications. Here, we review some of the recent discoveries that have emerged from these studies and expanded our knowledge of genetic risk loci and epigenetic markers in CKD pathophysiology. Obstacles and practical issues in this field are discussed.
Collapse
Affiliation(s)
- Anna Witasp
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
111
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
112
|
Youhanna S, Weber J, Beaujean V, Glaudemans B, Sobek J, Devuyst O. Determination of uromodulin in human urine: influence of storage and processing. Nephrol Dial Transplant 2013; 29:136-45. [PMID: 24097801 DOI: 10.1093/ndt/gft345] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Uromodulin (Tamm-Horsfall protein) is the most abundant protein excreted in the urine under physiological conditions. It is exclusively produced in the kidney and secreted into the urine via proteolytic cleavage. The involvement of UMOD, the gene that encodes uromodulin, in rare autosomal dominant diseases, and its robust genome-wide association with the risk of chronic kidney disease suggest that the level of uromodulin in urine could represent a critical biomarker for kidney function. The structure of uromodulin is complex, with multiple disulfide bonds and typical domains of extracellular proteins. METHODS Thus far, the conditions influencing stability and measurement of uromodulin in human urine have not been systematically investigated, giving inconsistent results. In this study, we used a robust, in-house ELISA to characterize the conditions of sampling and storage necessary to provide a faithful dosage of uromodulin in the urine. RESULTS The levels of uromodulin in human urine were significantly affected by centrifugation and vortexing, as well as by the conditions and duration of storage. CONCLUSIONS These results validate a simple, low-cost ELISA and document the optimal conditions of processing and storage for measuring uromodulin in human urine.
Collapse
Affiliation(s)
- Sonia Youhanna
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
113
|
Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. BIOMED RESEARCH INTERNATIONAL 2013; 2013:292953. [PMID: 24151593 PMCID: PMC3787572 DOI: 10.1155/2013/292953] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.
Collapse
Affiliation(s)
- Kanu Priya Aggarwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Shifa Narula
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Monica Kakkar
- Department of Biochemistry, Himalyan Institute Hospital Trust, Swami Ram Nagar, Dehradun, Uttrakhand 248140, India
| | - Chanderdeep Tandon
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| |
Collapse
|
114
|
Liu M, Chen Y, Liang Y, Liu Y, Wang S, Hou P, Zhang H, Zhao M. Novel UMOD mutations in familial juvenile hyperuricemic nephropathy lead to abnormal uromodulin intracellular trafficking. Gene 2013; 531:363-9. [PMID: 23988501 DOI: 10.1016/j.gene.2013.08.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder characterized by hyperuricemia and progressive chronic kidney disease. Uromodulin gene (UMOD) mutations, leading to abnormalities of uromodulin intracellular trafficking contribute to the progress of the disease. METHODS We did UMOD screening in three Chinese FJHN families. We thus constructed mutant uromodulin express plasmids by site-mutagenesis from wild type uromodulin vector and transfected them into HEK293 (human embryonic kidney) cells. And then we detected uromodulin expression by western blot and observed intracellular distribution by immunofluorescence. RESULTS We found three heterozygous mutations. Mutation Val109Glu (c.326T/A; p.Val109Glu) and mutation Pro236Gln (c.707C/A; p.Pro236Gln) were newly indentified mutations in two distinct families (family F1 and family F3). Another previously reported UMOD mutation Cys248Trp (c.744C/G; p.Cys248Trp) was detected in family F2. Phenotypes varied both within the same family and between different families. Uromodulin expression is abnormal in the patient biopsy. Functional analysis of mutation showed that mutant types of uromodulin were secreted into the supernatant medium much less when compared with wild type. In mutant type uromodulin transfected cells, intracellular uromodulin localized less in the Golgi apparatus and more in endoplasmic reticulum(ER). CONCLUSIONS Our results suggested that the novel uromodulin mutations found in the Chinese families lead to misfolded protein, which was retained in the endoplasmic reticulum, finally contributed to the phenotype of FJHN.
Collapse
Affiliation(s)
- Maojing Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing 100034, China
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Lee MN, Jun JE, Kwon GY, Huh WS, Ki CS. A novel UMOD mutation (c.187T>C) in a Korean family with juvenile hyperuricemic nephropathy. Ann Lab Med 2013; 33:293-6. [PMID: 23826568 PMCID: PMC3698310 DOI: 10.3343/alm.2013.33.4.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/04/2012] [Accepted: 02/26/2013] [Indexed: 11/25/2022] Open
Abstract
Familial juvenile hyperuricemic nephropathy (FJHN; OMIM 162000) is an autosomal dominant disorder characterized by hyperuricemia and gouty arthritis due to reduced kidney excretion of uric acid and progressive renal failure. Gradual progressive interstitial renal disease, with basement membrane thickening and glomerulosclerosis resulting from fibrosis, starts in early life. In most cases of FJHN, uromodulin gene (UMOD) is responsible for the disease; however, there has been only one report of a genetically confirmed FJHN family in Korea. Here we report another Korean family with FJHN, in which three male members. a father and 2 sons.developed gout and progressive renal insufficiency. The clinical, laboratory, and radiological findings were consistent with FJHN, and renal biopsy showed chronic parenchymal damage, which can be found in FJHN but is not specific to this disease. In order to confirm the diagnosis, sequence analysis of the UMOD was performed, and a novel heterozygous missense variant (c.187T>C; p.Cys63Arg) in exon 3 was identified. We assume that this variant is likely to be the causative mutation in this family, as the variant segregated with the disease. In addition, approximately two-thirds of the known mutations lead to a cysteine amino acid change in uromodulin, and all such variants have been shown to cause UMOD-associated kidney disease. In summary, we report a Korean FJHN family with three affected members by genetic analysis of the UMOD, and provide the first report of a novel heterozygous missense mutation.
Collapse
Affiliation(s)
- Mi-Na Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
116
|
Alfaro R, Vasavada N, Paueksakon P, Hernandez GT, Aronoff GR. Cocaine-induced acute interstitial nephritis: A case report and review of the literature. J Nephropathol 2013; 2:204-9. [PMID: 24475451 DOI: 10.12860/jnp.2013.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/02/2013] [Accepted: 01/28/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Acute tubular necrosis and pigment induced kidney injury are well described consequences of cocaine abuse. However, acute interstitial nephritis associated with cocaine use has been previously reported in only three patients. CASE PRESENTATION We present the case of a 49-year-old man who developed acute kidney injury from biopsy-proven interstitial nephritis after nasal insufflation of cocaine. Unlike prior reports, our patient remained non-oliguric and did not require renal replacement therapy. CONCLUSIONS Interstitial nephritis should be considered as a potential cause of acute kidney injury associated with cocaine use. The approach to management of cocaine associated acute kidney injury (AKI) may be different in patients with interstitial nephritis than for those with tubular necrosis or pigment induced renal injury.
Collapse
Affiliation(s)
- Rodrigo Alfaro
- Division of Nephrology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Nina Vasavada
- Division of Nephrology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Paisit Paueksakon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - German T Hernandez
- Division of Nephrology & Hypertension, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - George R Aronoff
- Division of Nephrology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
117
|
Kemter E, Prueckl P, Sklenak S, Rathkolb B, Habermann FA, Hans W, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum Mol Genet 2013; 22:4148-63. [PMID: 23748428 DOI: 10.1093/hmg/ddt263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uromodulin-associated kidney disease (UAKD) is a dominant heritable renal disease in humans which is caused by mutations in the uromodulin (UMOD) gene and characterized by heterogeneous clinical appearance. To get insights into possible causes of this heterogeneity of UAKD, we describe the new mutant mouse line Umod(C93F), leading to disruption of a putative disulfide bond which is also absent in a known human UMOD mutation, and compare the phenotype of this new mouse line with the recently published mouse line Umod(A227T). In both mutant mouse lines, which were both bred on the C3H background, the Umod mutations cause a gain-of-toxic function due to a maturation defect of the mutant uromodulin leading to a dysfunction of thick ascending limb of Henle's loop (TALH) cells of the kidney. Umod mutant mice exhibit increased plasma urea and Cystatin levels, impaired urinary concentration ability, reduced fractional excretion of uric acid and nephropathological alterations including uromodulin retention in TALH cells, interstitial fibrosis and inflammatory cell infiltrations, tubular atrophy and occasional glomerulo- und tubulocystic changes, a phenotype highly similar to UAKD in humans. The maturation defect of mutant uromodulin leads to the accumulation of immature uromodulin in the endoplasmic reticulum (ER) and to ER hyperplasia. Further, this study was able to demonstrate for the first time in vivo that the severity of the uromodulin maturation defect as well as onset and speed of progression of renal dysfunction and morphological alterations are strongly dependent on the particular Umod mutation itself and the zygosity status.
Collapse
|
118
|
Hato T, El-Achkar TM, Dagher PC. Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. Am J Physiol Renal Physiol 2013; 304:F1243-51. [PMID: 23515715 DOI: 10.1152/ajprenal.00101.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of innate immunity for survival is underscored by its presence at almost every level of the evolutionary tree of life. The task of "danger" recognition by the innate immune system is carried out by a broad class of pattern recognition receptors. These receptors are expressed in both hematopoietic and nonhematopoietic cells such as renal epithelial cells. Upon activation, pattern recognition receptors induce essentially two types of defensive responses: inflammation and phagocytosis. In this review, we highlight evidence that renal epithelial cells are endowed with such defensive capabilities and as such fully participate in renal innate immune responses.
Collapse
Affiliation(s)
- Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | | |
Collapse
|
119
|
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet 2013; 45:299-303. [PMID: 23396133 PMCID: PMC3901305 DOI: 10.1038/ng.2543] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/07/2013] [Indexed: 01/30/2023]
Abstract
Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
Collapse
|
120
|
El-Achkar TM, McCracken R, Liu Y, Heitmeier MR, Bourgeois S, Ryerse J, Wu XR. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol 2013; 304:F1066-75. [PMID: 23389456 DOI: 10.1152/ajprenal.00543.2012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tamm-Horsfall protein (THP) is a glycoprotein normally targeted to the apical membrane domain of the kidney's thick ascending limbs (TAL). We previously showed that THP of TAL confers protection to proximal tubules against acute kidney injury (AKI) via a possible cross talk between the two functionally distinct tubular segments. However, the extent, timing, specificity, and functional effects of basolateral translocation of THP during AKI remain unclear. Using an ischemia-reperfusion (IRI) model of murine AKI, we show here that, while THP expression in TAL is downregulated at the peak of injury, it is significantly upregulated 48 h after IRI. Confocal immunofluorescence and immunoelectron microscopy reveal a major redirection of THP during recovery from the apical membrane domain of TAL towards the basolateral domain, interstitium, and basal compartment of S3 segments. This corresponds with increased THP in the serum but not in the urine. The overall epithelial polarity of TAL cells does not change, as evidenced by correct apical targeting of Na(+)-K(+)-2Cl cotransporter (NKCC2) and basolateral targeting of Na(+)-K(+)-ATPase. Compared with the wild-type, THP(-/-) mice show a significantly delayed renal recovery after IRI, due possibly to reduced suppression by THP of proinflammatory cytokines and chemokines such as monocyte chemoattractant protein-1 during recovery. Taken together, our data suggest that THP redistribution in the TAL after AKI is a protein-specific event and its increased interstitial presence negatively regulates the evolving inflammatory signaling in neighboring proximal tubules, thereby enhancing kidney recovery. The increase of serum THP may be used as a prognostic biomarker for recovery from AKI.
Collapse
Affiliation(s)
- Tarek M El-Achkar
- Division of Nephrology, Indiana University and Roudebush Indianapolis Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal 'cilia hypothesis' for cyst formation and the evidence for non-ciliary proteins in cyst formation.
Collapse
|
122
|
Pal A, McCarthy MI. The genetics of type 2 diabetes and its clinical relevance. Clin Genet 2012; 83:297-306. [PMID: 23167659 DOI: 10.1111/cge.12055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/13/2022]
Abstract
The increasing worldwide prevalence of type 2 diabetes (T2D) motivates efforts to use genetics to define key pathways involved in disease predisposition, and thereby to improve management of the disease. Research over the past 5 years has taken the total number of genetic loci implicated in T2D susceptibility beyond 60, and the emphasis is now shifting to the translation of these genetic insights into clinical value. Clinical translation may flow from the identification of novel therapeutic targets, but opportunities also exist with respect to individual prediction, diagnostic biomarkers and therapeutic optimization. To date, the main clinical impact has been seen for relatively rare, monogenic forms of diabetes rather than common T2D. However, the advent of high throughput sequencing approaches may herald discovery of rare and low frequency variants that offer greater translational potential.
Collapse
Affiliation(s)
- A Pal
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | |
Collapse
|
123
|
|
124
|
Raffi HS, Bates JM, Flournoy DJ, Kumar S. Tamm-Horsfall protein facilitates catheter associated urinary tract infection. BMC Res Notes 2012; 5:532. [PMID: 23009031 PMCID: PMC3517338 DOI: 10.1186/1756-0500-5-532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022] Open
Abstract
Background Urinary catheters are associated, commonly with bacteriuria and frequently with urinary tract infection. Tamm-Horsfall Protein (THP) is urine's most abundant protein and is known to bind to uropathogenic bacteria. The role of THP in the pathogenesis of catheter associated urinary tract infection (CAUTI) is not clear. We examined the role of THP in facilitating bacterial binding to urinary catheters in vivo and in vitro. Findings Twenty one urinary catheters were obtained from 20 hospitalized patients. THP was eluted from the catheter surface and catheter segments were cultured. Additional studies were performed in vitro on unused silicone and latex catheters to determine the binding of THP, and the effect of THP on the binding of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), to the catheter surface. On catheters obtained from patients, the THP deposition was significantly more on culture positive catheters than on culture negative catheters. In the in vitro studies, THP bound to both silicone and latex catheters, and THP enhanced the adherence of E. coli and P. aeruginosa to both types of catheters. Conclusion THP binds to urinary catheters and facilitates the binding of uropathogenic bacteria to catheters.
Collapse
Affiliation(s)
- Hajamohideen S Raffi
- Department of Medicine/Nephrology, University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, 920 SL Young Blvd, WP 2250, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
125
|
Reznichenko A, Böger CA, Snieder H, van den Born J, de Borst MH, Damman J, van Dijk MCRF, van Goor H, Hepkema BG, Hillebrands JL, Leuvenink HGD, Niesing J, Bakker SJL, Seelen M, Navis G. UMOD as a susceptibility gene for end-stage renal disease. BMC MEDICAL GENETICS 2012; 13:78. [PMID: 22947327 PMCID: PMC3495046 DOI: 10.1186/1471-2350-13-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022]
Abstract
Background In recent genetic association studies, common variants including rs12917707 in the UMOD locus have shown strong evidence of association with eGFR, prevalent and incident chronic kidney disease and uromodulin urinary concentration in general population cohorts. The association of rs12917707 with end-stage renal disease (ESRD) in a recent case-control study was only nominally significant. Methods To investigate whether rs12917707 associates with ESRD, graft failure (GF) and urinary uromodulin levels in an independent cohort, we genotyped 1142 ESRD patients receiving a renal transplantation and 1184 kidney donors as controls. After transplantation, 1066 renal transplant recipients were followed up for GF. Urinary uromodulin concentration was measured at median [IQR] 4.2 [2.2-6.1] yrs after kidney transplantation. Results The rs12917707 minor allele showed association with lower risk of ESRD (OR 0.89 [0.76-1.03], p = 0.04) consistent in effect size and direction with the previous report (Böger et al, PLoS Genet 2011). Meta-analysis of these findings showed significant association of rs12917707 with ESRD (OR 0.91 [0.85-98], p = 0.008). In contrast, rs12917707 was not associated with incidence of GF. Urinary uromodulin concentration was lower in recipients-carriers of the donor rs12917707 minor allele as compared to non-carriers, again consistent with previous observations in general population cohorts. Conclusions Our study thus corroborates earlier evidence and independently confirms the association between UMOD and ESRD.
Collapse
Affiliation(s)
- Anna Reznichenko
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713AV, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Van Steendam K, De Ceuleneer M, Dhaenens M, Van Hoofstat D, Deforce D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Int J Legal Med 2012; 127:287-98. [PMID: 22843116 PMCID: PMC3578717 DOI: 10.1007/s00414-012-0747-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
Abstract
In forensic casework analysis, identification of the biological matrix and the species of a forensic trace, preferably without loss of DNA, is of major importance. The biological matrices that can be encountered in a forensic context are blood (human or non-human), saliva, semen, vaginal fluid, and to a lesser extent nasal secretions, feces, and urine. All these matrices were applied on swabs and digested with trypsin in order to obtain peptides. These peptides were injected on a mass spectrometer (ESI Q-TOF) resulting in the detection of several biomarkers that were used to build a decision tree for matrix identification. Saliva and blood were characterized by the presence of alpha-amylase 1 and hemoglobin, respectively. In vaginal fluid, cornulin, cornifin, and/or involucrin were found as biomarkers while semenogelin, prostate-specific antigen, and/or acid phosphatase were characteristic proteins for semen. Uromodulin or AMBP protein imply the presence of urine, while plunc protein is present in nasal secretions. Feces could be determined by the presence of immunoglobulins without hemoglobin. The biomarkers for the most frequently encountered biological matrices (saliva, blood, vaginal fluid, and semen) were validated in blind experiments and on real forensic samples. Additionally, by means of this proteomic approach, species identification was possible. This approach has the advantage that the analysis is performed on the first "washing" step of the chelex DNA extraction, a solution which is normally discarded, and that one single test is sufficient to determine the identity and the species of the biological matrix, while the conventional methods require cascade testing. This technique can be considered as a useful additional tool for biological matrix identification in forensic science and holds the promise of further automation.
Collapse
Affiliation(s)
- Katleen Van Steendam
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
127
|
Wei X, Xu R, Yang Z, Li Z, Liao Y, Johnson RJ, Yu X, Chen W. Novel uromodulin mutation in familial juvenile hyperuricemic nephropathy. Am J Nephrol 2012; 36:114-20. [PMID: 22776760 DOI: 10.1159/000339752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder characterized by early onset of hyperuricemia, decreased fractional renal urate excretion and progressive interstitial nephropathy. Mutations in the uromodulin (UMOD) gene encoding uromodulin/Tamm-Horsfall, a glycosylphosphatidylinositol (GPI)-anchored protein, cause this disease. METHODS One Chinese family with 13 FJHN-affected individuals is described. Clinical data, blood and urine samples of 7 affected members (all alive patients in this family) and 15 unaffected members were collected. Mutation analysis of the UMOD gene was performed by polymerase chain reaction and direct sequencing. Urinary uromodulin from affected or unaffected members of this family and healthy controls was examined by enzyme-linked immunosorbent assay kit. Expression of uromodulin in renal tissue was shown with immunofluorescence. RESULTS A novel mutation (p.T605G) within the uromodulin GPI anchor signal segment was identified in the affected individuals of this FJHN family. There was a markedly increased expression of uromodulin in renal tissue and significantly decreased urinary excretion of uromodulin in affected patients with an estimated glomerular filtration rate <60 ml/min/1.73 m(2). CONCLUSIONS The present study reported a novel mutation in exon 9 of UMOD in the Chinese Han population, within the GPI anchor signal segment of uromodulin. Since the GPI anchor is linked with the release or secretion of proteins, our finding may provide further evidence for the underlying mechanism of decreased urinary excretion of uromodulin in FJHN.
Collapse
Affiliation(s)
- Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P, Barasch J. NGAL-Siderocalin in kidney disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1451-8. [PMID: 22728330 DOI: 10.1016/j.bbamcr.2012.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022]
Abstract
Kidney damage induces the expression of a myriad of proteins in the serum and in the urine. The function of these proteins in the sequence of damage and repair is now being studied in genetic models and by novel imaging techniques. One of the most intensely expressed proteins is lipocalin2, also called NGAL or Siderocalin. While this protein has been best studied by clinical scientists, only a few labs study its underlying metabolism and function in tissue damage. Structure-function studies, imaging studies and clinical studies have revealed that NGAL-Siderocalin is an endogenous antimicrobial with iron scavenging activity. This review discusses the "iron problem" of kidney damage, the tight linkage between kidney damage and NGAL-Siderocalin expression and the potential roles that NGAL-Siderocalin may serve in the defense of the urogenital system. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Neal Paragas
- College of Physicians & Surgeons of Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
129
|
Lhotta K, Piret SE, Kramar R, Thakker RV, Sunder-Plassmann G, Kotanko P. Epidemiology of uromodulin-associated kidney disease - results from a nation-wide survey. NEPHRON EXTRA 2012; 2:147-58. [PMID: 22740033 PMCID: PMC3383240 DOI: 10.1159/000339102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Uromodulin-associated kidney disease (UAKD) is caused by uromodulin mutations and leads to end-stage renal disease. Our objective was to examine the epidemiology of UAKD. METHODS Data from all UAKD families in Austria were collected. Patients included in the Austrian Dialysis and Transplantation Registry (OEDTR) with unclear diagnoses or genetic diseases were asked whether they had (1) a family history of kidney disease or (2) had suffered from gout. Patients with gout and autosomal dominant renal disease underwent mutational analysis. Kaplan-Meier and Cox analysis was employed to estimate time to renal failure. RESULTS Of the 6,210 patients in the OEDTR, 541 were approached with a questionnaire; 353 patients answered the questionnaire. Nineteen of them gave two affirmative answers. In 7 patients, an autosomal dominant renal disease was found; in 1 patient a UMOD mutation was identified. One family was diagnosed through increased awareness as a consequence of the study. At present, 14 UAKD patients from 5 families are living in Austria (1.67 cases per million), and 6 of them require renal replacement therapy (0.73 per 1,000 patients). Progression to renal failure was significantly associated with UMOD genotype. CONCLUSION UAKD patients can be identified by a simple questionnaire. UMOD genotype may affect disease progression.
Collapse
Affiliation(s)
- Karl Lhotta
- Department of Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Austria
| | | | | | | | | | | |
Collapse
|
130
|
Ying WZ, Allen CE, Curtis LM, Aaron KJ, Sanders PW. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J Clin Invest 2012; 122:1777-85. [PMID: 22484815 DOI: 10.1172/jci46490] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/01/2012] [Indexed: 11/17/2022] Open
Abstract
A common renal complication of multiple myeloma is "myeloma kidney," a condition also known as cast nephropathy. The renal lesions (casts) are directly related to the production of monoclonal immunoglobulin free light chains (FLCs), which coprecipitate with Tamm-Horsfall glycoprotein (THP) in the lumen of the distal nephron, obstructing tubular fluid flow. Here, we report that analysis of the binding interaction between FLCs and THP demonstrates that the secondary structure and key amino acid residues on the complementarity-determining region 3 (CDR3) of FLCs are critically important determinants of the molecular interaction with THP. The findings permitted development of a cyclized competitor peptide that demonstrated strong inhibitory capability in the binding of FLCs to THP in vitro. When used in a rodent model of cast nephropathy, this cyclized peptide construct served as an effective inhibitor of intraluminal cast formation and prevented the functional manifestations of acute kidney injury in vivo. These experiments provide proof of concept that intraluminal cast formation is integrally involved in the pathogenesis of acute kidney injury from cast nephropathy. Further, the data support a clinically relevant approach to the management of renal failure in the setting of multiple myeloma.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | |
Collapse
|
131
|
Liu Y, El-Achkar TM, Wu XR. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem 2012; 287:16365-78. [PMID: 22451664 DOI: 10.1074/jbc.m112.348243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this "trapping" effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity.
Collapse
Affiliation(s)
- Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
132
|
Nakayama M, Mori Y, Ota N, Ishida M, Shiotsu Y, Matsuoka E, Kado H, Ishida R, Nakata M, Kitani T, Tamagaki K, Sekita C, Taniguchi A. A Japanese Family Suffering from Familial Juvenile Hyperuricemic Nephropathy due to a Rare Mutation of the Uromodulin Gene. CASE REPORTS IN NEPHROLOGY AND UROLOGY 2012. [PMID: 23197950 PMCID: PMC3482064 DOI: 10.1159/000337343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We report the case of a Japanese family suffering from familial juvenile hyperuricemic nephropathy (FJHN) due to a rare missense mutation of the uromodulin (UMOD) gene. An 18-year-old male presented with gout, hyperuricemia, and stage 3 chronic kidney disease. Mostly, FJHN is caused by a mutation altering the cystine residue of UMOD/Tamm-Horsfall protein. However, in the present case, a T688C mutation was identified in exon 4, resulting in amino acid substitution with arginine replacing tryptophan at position 230 (Trp230Arg). This mutation was also found in his brother and father with the same phenotype, indicating autosomal dominant inheritance. The affected amino acid was conserved in 200 healthy Japanese controls. Therefore, mutation T688C most likely causes rare structural and/or functional abnormalities in UMOD/Tamm-Horsfall protein.
Collapse
Affiliation(s)
- Mayuka Nakayama
- Division of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Qu Y, Du E, Zhang Y, Li S, Han R, Qiu M. Changes in the expression of bone morphogenetic protein 7 and tamm- horsfall protein in the early stages of diabetic nephropathy. Nephrourol Mon 2012; 4:466-9. [PMID: 23573468 PMCID: PMC3614272 DOI: 10.5812/numonthly.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 7 (BMP7) has been suggested to play a protective role against kidney injury in chronic kidney disease. OBJECTIVES To identify the critical molecular regulators in the early stage of diabetic nephropathy, we studied the expression of BMP7 and 2 important kidney-specific markers, podocin and Tamm-Horsfall protein (THP). MATERIALS AND METHODS A diabetic nephropathy model was established by intraperitoneally injecting streptozotocin (STZ) in male Kunming mice. Kidney weight index was used as an indicator of early renal injury. Kidney tissue from the diabetic model mice was obtained at 4, 8, and 12 weeks, and total protein was extracted to assess the expression of BMP7, podocin, and THP by western blot analysis. RESULTS Diabetic model mice were successfully established, and the kidney weight index of the model animals increased significantly. The expression of BMP7 was significantly downregulated, while the expression of THP was increased in the early stage of diabetic nephropathy. However, the expression of podocin did not change. CONCLUSIONS Our observations suggested that down-regulation of BMP7 expression and up-regulation of THP expression were early events that occur prior to podocyte injury with the structure protein, podocin spoiled, which further confirmed that BMP7 is a key molecular regulator in the early stage of diabetic nephropathy.
Collapse
Affiliation(s)
- Yanchun Qu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
- Corresponding author: Yanchun Qu, Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, 300211, Tianjin, China. Tel.: +86-2288326390, Fax: +86-2288326188, E-mail:
| | - E Du
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shengzhi Li
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Ruifa Han
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Mengsheng Qiu
- Tianjin Institute of Urology, 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
134
|
Mori T, Kitani Y, Ogihara J, Sugiyama M, Yamamoto G, Kishida O, Nishimura K. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation. Biol Open 2012; 1:308-17. [PMID: 23213421 PMCID: PMC3509453 DOI: 10.1242/bio2012604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01) in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01) in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS) analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.
Collapse
Affiliation(s)
- Tsukasa Mori
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | |
Collapse
|
135
|
OIT3 deficiency impairs uric acid reabsorption in renal tubule. FEBS Lett 2012; 586:760-5. [DOI: 10.1016/j.febslet.2012.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/20/2022]
|
136
|
El-Achkar TM, Wu XR. Uromodulin in kidney injury: an instigator, bystander, or protector? Am J Kidney Dis 2012; 59:452-61. [PMID: 22277744 DOI: 10.1053/j.ajkd.2011.10.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
Abstract
Uromodulin, also known as Tamm-Horsfall protein, is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. Although the physiologic functions of this protein remain elusive, significant progress has been made during the last decade that highlights the importance of uromodulin in the pathophysiology of various diseases, such as medullary cystic kidney disease, urinary tract infections, and nephrolithiasis. Meanwhile, there is renewed interest in the role of uromodulin in kidney injury, both acute and chronic. In this article, we review the existing evidence that supports a role for uromodulin in acute kidney injury, chronic kidney disease, and renal inflammation. Contrary to the conventional view of uromodulin as an instigator in kidney injury, new data from uromodulin knockout mice show a protective role for this protein in acute kidney injury, possibly through downregulating interstitial inflammation. In chronic kidney disease, uromodulin excretion, when adjusted for kidney function, is increased; the significance of this is unclear. Although it has been suggested that uromodulin exacerbates progressive kidney injury, we propose that the elevation in uromodulin secretion is instead reactive to injury and reflects an increase of uromodulin in the renal parenchyma, where it slows the injury process.
Collapse
|
137
|
Abstract
Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease. Previous in vitro studies found retention in the endoplasmic reticulum as a common feature of all uromodulin mutant isoforms. Both in vitro and in vivo we found that mutant isoforms partially escaped retention in the endoplasmic reticulum and reached the plasma membrane where they formed large extracellular aggregates that have a dominant-negative effect on coexpressed wild-type protein. Notably, mutant uromodulin excretion was detected in patients carrying uromodulin mutations. Thus, our results suggest that mutant uromodulin exerts a gain-of-function effect that can be exerted by both intra- and extracellular forms of the protein.
Collapse
|
138
|
Mainini V, Gianazza E, Chinello C, Bilo G, Revera M, Giuliano A, Caldara G, Lombardi C, Piperno A, Magni F, Parati G. Modulation of urinary peptidome in humans exposed to high altitude hypoxia. ACTA ACUST UNITED AC 2012; 8:959-66. [DOI: 10.1039/c1mb05377a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
139
|
Abstract
Familial juvenile hyperuricemic nephropathy is a rare autosomal dominant disease. It is characterized by abnormal handling of urate responsible for hyperuricaemia often complicated of gouty arthritis. Renal failure is due to tubulointerstitial nephritis. Ultrasonography sometimes finds renal cysts of variable size and number. Renal histology, although not specific, shows interstitial fibrosis, atrophic tubules, sometimes enlarged and with irregular membrane thickening. Renal failure progresses to end stage between 30 and 60 years of age. Allopurinol treatment is recommended at the early stages of the disease, its efficacy on slowing down the progression of the disease is however not proven. There is genetic heterogeneity in familial juvenile hyperuricemic nephropathy. Uromodulin encoding Tamm-Horsfall protein is the only gene to date identified, responsible in less than half of the families. The described mutations most often concern a cystein and are clustering in exon 4. These mutations result in abnormal retention of the protein in endoplasmic reticulum of Henle loop cells and in reduction of its urinary excretion. The pathophysiology of the disease is however still dubious. Indeed, Tamm-Horsfall protein functions are not well known (anti-infectious role, cristallisation inhibition, immunomodulating role). Knock-out mice do not develop renal phenotype but are more prone to E. coli urinary infections. Uromodulin gene mutations have also been described in medullary cystic kidney disease, an autosomal dominant tubulointerstitial nephropathy, considered at first as a distinct disorder. Genetic progress allowed us to consider familial juvenile hyperuricemic nephropathy and medullary cystic kidney disease as the two facets of a same disease, we should call uromodulin associated kidney diseases. At least two other genes have been implicated in similar clinical presentation: TCF2 and the gene encoding renin.
Collapse
Affiliation(s)
- Aurélie Hummel
- Service de néphrologie, hôpital Necker-Enfants-Malades, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
140
|
Ma L, Liu Y, El-Achkar TM, Wu XR. Molecular and cellular effects of Tamm-Horsfall protein mutations and their rescue by chemical chaperones. J Biol Chem 2011; 287:1290-305. [PMID: 22117067 DOI: 10.1074/jbc.m111.283036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct folding of a nascent polypeptide in the lumen of the endoplasmic reticulum (ER) into a three-dimensional conformation is a crucial step in the stability, intracellular trafficking, and targeting to the final destination of a protein. By transiently and stably expressing human-relevant mutants of Tamm-Horsfall protein in polarized Madin-Darby canine kidney cells, we show here that a cysteine-altering mutation in the evolutionally conserved cysteine-rich domain had more severe defects in ER exit and surface translocation and triggered more apoptosis than a cysteine-altering mutation outside the domain. Both mutants were able to specifically bind and trap the wild-type Tamm-Horsfall protein (THP) and prevent it from exiting the ER and translocating to the cell surface. This explains at least partly why in patients with THP-associated diseases there is a marked urinary reduction of both the mutant and the wild-type THP. Exposure of mutant-expressing cells to low temperature (30 °C), osmolytes (glycerol, trimethylamine N-oxide, and dimethyl sulfoxide), and the Ca(2+)-ATP inhibitor thapsigargin only slightly relieved ER retention and increased surface targeting of the mutants. In contrast, sodium 4-phenylbutyrate and probenecid, the latter a uricosuric drug used clinically to treat gout, markedly reduced ER retention of the mutants and increased their surface translocation and secretion into the culture media. The rescue of the THP mutants was associated with the restoration of the level and subcellular localization of cytosolic chaperone HSP70. Our results reveal intricate mechanistic details that may underlie THP-associated diseases and suggest that novel therapeutics enhancing the refolding of THP mutants may be of important value in therapy.
Collapse
Affiliation(s)
- Lijie Ma
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
141
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
142
|
Poon NW, Gohel MDI. Urinary glycosaminoglycans and glycoproteins in a calcium oxalate crystallization system. Carbohydr Res 2011; 347:64-8. [PMID: 22119438 DOI: 10.1016/j.carres.2011.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/29/2022]
Abstract
This study measures the effects of total urinary glycosaminoglycans (GAGs), glycoproteins (GPs) and individual GAGs on the nucleation rates (Bo), growth rates (G) and suspension densities (Mт) of calcium oxalate (CaOx) crystallization by the mixed suspension mixed product removal (MSMPR) system. Total urinary GAGs, glycoproteins and individual GAGs including heparan sulfate (HS), chondroitin sulfate (CS) and Hyaluronic acid (HA) were added into the artificial urine (AU) and then introduced into the MSMPR test chamber and the crystal sizes and numbers were analyzed by a particle counter. The effects of added GAGs and GPs on CaOx crystallization were reflected by the changes on the crystallization indexes including the Bo, G and Mт of CaOx that were calculated based on the crystal size and numbers. Total urinary GAGs showed no statistical significance on CaOx crystallization. However, individual GAGs such as HA, CS and HS enhanced Bo and suppressed the G when measured individually. CS and HS enhanced the Mт while HA shown no significant change in the Mт of CaOx. Total urinary GPs showed an increase in the G and Mт of crystals. Although total urinary GAGs showed no statistically significant effect on CaOx crystallization, individual GAGs (CS, HS) promoted the CaOx crystallization by increasing the suspension density of smaller crystals, indicative of reduced risk of stones while HA showed no significance in the M(T) of CaOx formed. Urinary GPs indicated increased sizes and M(T) suggesting larger crystals and/or aggregates.
Collapse
Affiliation(s)
- Ngork Wah Poon
- Dept. of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | |
Collapse
|
143
|
Reznichenko A, van Dijk MCRF, van der Heide JH, Bakker SJL, Seelen M, Navis G. Uromodulin in renal transplant recipients: elevated urinary levels and bimodal association with graft failure. Am J Nephrol 2011; 34:445-51. [PMID: 21968132 DOI: 10.1159/000332231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/28/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Urinary uromodulin (UMOD) predicts renal prognosis in native kidneys, but data are conflicting. We investigated its prognostic impact for graft failure (GF) in renal transplant recipients (RTR; n = 600). METHODS UMOD concentration was measured cross-sectionally in RTR at 6.0 years [2.6-11.4] post-transplant, in matched patients with native chronic kidney disease (CKD) and healthy subjects. In 59 cases, RTR allograft biopsies were reviewed. RESULTS During a follow-up of 5.3 years [4.5-5.7], GF had occurred in 7% of RTR. Median UMOD excretion (mg/24 h) was 20.4 in RTR, 11.6 in CKD and 5.7 in controls (p < 0.001). There was a curvilinear association between UMOD excretion and baseline renal function (p < 0.003) and death-censored GF, with 5.5, 11.5 and 4.0% of the cases in subsequent UMOD excretion tertiles, respectively (p = 0.002). On multivariate Cox regression analysis, hazard ratios for GF for the 1st and 3rd tertiles were 0.37 (p = 0.01) and 0.21 (p = 0.001), respectively. Interstitial fibrosis and tubular atrophy were more severe in the middle tertile (p = 0.007). CONCLUSIONS Urinary UMOD is elevated in RTR and associated with graft function, morphology and outcome in a bimodal fashion. Dissection of the disparate mechanisms of GF prediction by urinary UMOD might provide new clues for its alleged pathogenetic significance in progressive renal function loss.
Collapse
Affiliation(s)
- Anna Reznichenko
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
144
|
|
145
|
Bollée G, Dahan K, Flamant M, Morinière V, Pawtowski A, Heidet L, Lacombe D, Devuyst O, Pirson Y, Antignac C, Knebelmann B. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol 2011; 6:2429-38. [PMID: 21868615 DOI: 10.2215/cjn.01220211] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND UMOD mutations cause familial juvenile hyperuricemic nephropathy (FJHN) and medullary cystic kidney disease (MCKD), although these phenotypes are nonspecific. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We reviewed cases of UMOD mutations diagnosed in the genetic laboratories of Necker Hospital (Paris, France) and of Université Catholique de Louvain (Brussels, Belgium). We also analyzed patients with MCKD/FJHN but no UMOD mutation. To determine thresholds for hyperuricemia and uric-acid excretion fraction (UAEF) according to GFR, these parameters were analyzed in 1097 patients with various renal diseases and renal function levels. RESULTS Thirty-seven distinct UMOD mutations were found in 109 patients from 45 families, all in exon 4 or 5 except for three novel mutations in exon 8. Median renal survival was 54 years. The type of mutation had a modest effect on renal survival, and intrafamilial variability was high. Detailed data available in 70 patients showed renal cysts in 24 (34.3%) of nonspecific localization in most patients. Uricemia was >75th percentile in 31 (71.4%) of 42 patients not under dialysis or allopurinol therapy. UAEF (n = 27) was <75th percentile in 70.4%. Among 136 probands with MCKD/FJHN phenotype, UMOD mutation was found in 24 (17.8%). Phenotype was not accurately predictive of UMOD mutation. Six probands had HNF1B mutations. CONCLUSIONS Hyperuricemia disproportionate to renal function represents the hallmark of renal disease caused by UMOD mutation. Renal survival is highly variable in patients with UMOD mutation. Our data also add novel insights into the interpretation of uricemia and UAEF in patients with chronic kidney diseases.
Collapse
Affiliation(s)
- Guillaume Bollée
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Urinary analysis is one of the most requested tests in the clinical laboratory. This test includes the physical, chemical and microscopic analysis of urine. This last one allows for the observation of urinary sediment (US) in search of formed elements (cellular cast, leukocytes, etc.), with different diagnostic uses. Urinary analysis can be assessed by manual or automated methods. In the laboratory diagnosis of autoimmune diseases, US analysis is mainly oriented towards the assessment of renal function in patients with lupus nephritis (LN) as this is a common clinical manifestation associated to systemic lupus erythematosus (SLE). Additionally, its value lies mainly for diagnostic criteria and evaluation of kidney injury, as well as for several damage indexes directed to patients with SLE. In the last years, several groups have sought to establish new urinary biomarkers of kidney damage in patients with SLE; however, this requires a greater number of studies to determine their true diagnostic value in this patients group.
Collapse
|
147
|
Brandt LE, Bohn AA, Charles JB, Ehrhart EJ. Localization of canine, feline, and mouse renal membrane proteins. Vet Pathol 2011; 49:693-703. [PMID: 21712517 DOI: 10.1177/0300985811410720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunohistochemistry allows the localization of proteins to specific regions of the nephron. This article reports the identification and localization of proteins in situ within normal canine, feline, and mouse kidney by immunohistochemistry; maps their distribution; and compares results to previously reported findings in other species. The proteins investigated are aquaporin 1, aquaporin 2, calbindin D-28k, glutathione S-transferase-α, and Tamm-Horsfall protein. Aquaporins are integral membrane proteins involved in water transport across cell membranes. Calbindin D-28k is involved in renal calcium metabolism. Glutathione S-transferase-α is a protein that aids in detoxification and drug metabolism. The role of Tamm-Horsfall protein is not fully understood. Proposed functions include inhibition of calcium crystallization and reduction of bacterial urinary tract infection. The authors' findings in the dog are similar to those in other species: Specifically, the authors localize aquaporin 1 to the proximal convoluted tubule epithelium, vasa recta endothelium, and descending thin limbs; aquaporin 2 to collecting duct epithelium; and calbindin D-28k within distal convoluted tubule epithelium. Glutathione S-transferase-α has variable expression and is found in only the renal transitional epithelium in some individuals, in only the proximal straight tubules in others, or in both locations in others. Tamm-Horsfall protein localizes to thick ascending limb epithelium. These findings are similar in the cat, with the exception that aquaporin 1 is located in glomerular podocytes, in addition to proximal convoluted tubule epithelium, and glutathione S-transferase-α is found solely within the proximal convoluted tubule within all kidney samples examined. The mouse kidney is almost identical to the dog but expresses glutathione S-transferase-α in the glomeruli only.
Collapse
Affiliation(s)
- L E Brandt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | |
Collapse
|
148
|
Hurtes X, Meria P. [Hyperuricemia and uro-nephrological disorders]. Presse Med 2011; 40:865-8. [PMID: 21684106 DOI: 10.1016/j.lpm.2011.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022] Open
Abstract
Hyperuricemia is a specific risk factor for cardiovascular morbidity and mortality. Uric acid lithiasis is urological symptom of hyperuricemia. In case of uric acid lithiasis, you must search a metabolic syndrome, an insulin resistance, a type 2 diabetes. Chronic tubular interstitial nephropathy is the renal disease of hyperuricemia. Hyperuricemia is a specific risk factor for chronic renal failure. Metabolism of uric acid involves the uromodulin.
Collapse
Affiliation(s)
- Xavier Hurtes
- CHRU de Tours, service d'urologie, 37000 Tours, France
| | | |
Collapse
|
149
|
The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 2011; 80:338-47. [PMID: 21654721 DOI: 10.1038/ki.2011.134] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uromodulin (Tamm-Horsfall protein) is the most abundant protein excreted in the urine under physiological conditions. It is exclusively produced in the kidney and secreted into the urine via proteolytic cleavage. Its biological function is still not fully understood. Uromodulin has been linked to water/electrolyte balance and to kidney innate immunity. Also, studies in knockout mice demonstrated that it has a protective role against urinary tract infections and renal stone formation. Mutations in the gene encoding uromodulin lead to rare autosomal dominant diseases, collectively referred to as uromodulin-associated kidney diseases. They are characterized by progressive tubulointerstitial damage, impaired urinary concentrating ability, hyperuricemia, renal cysts, and progressive renal failure. Novel in vivo studies point at intracellular accumulation of mutant uromodulin as a key primary event in the disease pathogenesis. Recently, genome-wide association studies identified uromodulin as a risk factor for chronic kidney disease (CKD) and hypertension, and suggested that the level of uromodulin in the urine could represent a useful biomarker for the development of CKD. In this review, we summarize these recent investigations, ranging from invalidation studies in mouse to Mendelian disorders and genome-wide associations, which led to a rediscovery of uromodulin and boosted the scientific and clinical interest for this long discovered molecule.
Collapse
|
150
|
Isling L, Aalbæk B, Birck M, Heegaard P, Leifsson P. Host Response to Porcine Strains of Escherichia coli in a Novel Pyelonephritis Model. J Comp Pathol 2011; 144:257-68. [DOI: 10.1016/j.jcpa.2010.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/23/2010] [Accepted: 10/16/2010] [Indexed: 11/24/2022]
|