101
|
Avanzo M, Stancanello J, Trovò M, Jena R, Roncadin M, Trovò MG, Capra E. Complication probability model for subcutaneous fibrosis based on published data of partial and whole breast irradiation. Phys Med 2012; 28:296-306. [DOI: 10.1016/j.ejmp.2011.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/24/2011] [Accepted: 11/06/2011] [Indexed: 11/16/2022] Open
|
102
|
Nguyen BT, Hornby C, Kron T, Cramb J, Rolfo A, Pham D, Haworth A, Tai KH, Foroudi F. Optimising the dosimetric quality and efficiency of post-prostatectomy radiotherapy: a planning study comparing the performance of volumetric-modulated arc therapy (VMAT) with an optimised seven-field intensity-modulated radiotherapy (IMRT) technique. J Med Imaging Radiat Oncol 2012; 56:211-9. [PMID: 22498196 DOI: 10.1111/j.1754-9485.2011.02324.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study was to compare and evaluate radiotherapy treatment plans using volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) for post-prostatectomy radiotherapy. METHODS AND MATERIALS The quality of radiotherapy plans for 10 patients planned and treated with a seven-field IMRT technique for biochemical failure post-prostatectomy were subsequently compared with 10 prospectively planned single-arc VMAT plans using the same computed tomography data set and treatment planning software. Plans were analysed using parameters to assess for target volume coverage, dose to organs at risk (OAR), biological outcomes, dose conformity and homogeneity, as well as the total monitor units (MU), planning and treatment efficiency. RESULTS The mean results for the study population are reported for the purpose of comparison. For IMRT, the median dose to the planning target volume, V(95%) and D(95%) was 71.1 Gy, 98.9% and 68.3 Gy compared with 71.2 Gy, 99.2% and 68.6 Gy for VMAT. There was no significant difference in the conformity index or homogeneity index. The VMAT plans achieved better sparing of the rectum and the left and right femora with a reduction in the median dose by 7.9, 6.3 and 3.6 Gy, respectively. The total number of monitor units (MU) was reduced by 24% and treatment delivery time by an estimated 3 min per fraction without a significant increase in planning requirements. CONCLUSIONS VMAT can achieve post-prostatectomy radiotherapy plans of comparable quality to IMRT with the potential to reduce dose to OAR and improve the efficiency of treatment delivery.
Collapse
Affiliation(s)
- Brandon T Nguyen
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett Street, Vic. 8006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Moiseenko V, Lapointe V, James K, Yin L, Liu M, Pawlicki T. Biological consequences of MLC calibration errors in IMRT delivery and QA. Med Phys 2012; 39:1917-24. [PMID: 22482613 DOI: 10.1118/1.3692177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this work is threefold: (1) to explore biological consequences of the multileaf collimator (MLC) calibration errors in intensity modulated radiotherapy (IMRT) of prostate and head and neck cancers, (2) to determine levels of planning target volume (PTV) and normal tissue under- or overdose flagged with clinically used QA action limits, and (3) to provide biologically based input for MLC QA and IMRT QA action limits. METHODS Ten consecutive prostate IMRT cases and ten consecutive head and neck IMRT cases were used. Systematic MLC offsets (i.e., calibration error) were introduced for each control point of the plan separately for X1 and X2 leaf banks. Offsets were from - 2 to 2 mm with a 0.5 mm increment. The modified files were imported into the planning system for forward dose recalculation. The original plan served as the reference. The generalized equivalent uniform dose (gEUD) was used as the biological index for the targets, rectum, parotid glands, brainstem, and spinal cord. Each plan was recalculated on a CT scan of a 27 cm diameter cylindrical phantom with a contoured 0.6 cc ion chamber. Dose to ion chamber and 3D gamma analysis were compared to the reference plan. QA pass criteria: (1) at least 95% of voxels with a dose cutoff of 50% of maximum dose have to pass at 3 mm/3% and (2) dose to chamber within 2% of the reference dose. RESULTS For prostate cases, differences in PTV and rectum gEUD greater than 2% were identified. However, a larger proportion of plans leading to greater than 2% difference in prostate PTV gEUD passed the ion chamber QA but not 3D gamma QA. A similar trend was found for the rectum gEUD. For head and neck IMRT, the QA pass criteria flagged plans leading to greater than 4% differences in PTV gEUD and greater than 5% differences in the maximum dose to brainstem. If pass criteria were relaxed to 90% for gamma and 3% for ion chamber QA, plans leading to a 5% difference in PTV gEUD and a 5%-8% difference in brainstem maximum dose would likely pass IMRT QA. A larger proportion of head and neck plans with greater than 2% PTV gEUD difference passed 3D gamma QA compared to ion chamber QA. CONCLUSIONS For low modulation plans, there is a better chance to catch MLC calibration errors with 3D gamma QA rather than ion chamber QA. Conversely, for high modulation plans, there is a better chance to catch MLC calibration errors with ion chamber QA rather than with 3D gamma QA. Ion chamber and 3D gamma analysis IMRT QA can detect greater than 2% change in gEUD for PTVs and critical structures for low modulation treatment plans. For high modulation treatment plans, ion chamber and 3D gamma analysis can detect greater than 2% change in gEUD for PTVs and a 5% change in critical structure gEUD since either QA methods passes the QA criteria. For gEUD changes less than those listed above, either QA method has the same proportion of passing rate.
Collapse
Affiliation(s)
- Vitali Moiseenko
- British Columbia Cancer Agency, Vancouver Cancer Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
104
|
Risk-adaptive volumetric modulated arc therapy using biological objective functions for subvolume boosting in radiotherapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:348471. [PMID: 22792127 PMCID: PMC3390113 DOI: 10.1155/2012/348471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/26/2012] [Indexed: 11/24/2022]
Abstract
Objectives. Simultaneous integrated boost (SIB) for prostate cancer allows increases in tumor control probability while respecting normal tissue dose constraints. Biological optimization functions that optimize based on treatment outcome can be used to create SIB prostate plans. This study investigates the feasibility of biologically optimized volumetric modulated arc therapy (VMAT) for SIB prostate radiotherapy. Methods. Five prostate cancer patients with diffusion-weighted MR images were selected for analysis. A two-step VMAT optimization was performed, which consisted of an initial biological optimization of a static gantry angle delivery followed by conversion of the static delivery to a single arc VMAT plan. A dosimetric analysis was performed on the resulting plans. Results. The VMAT plans resulted in a ΔEUD between the prostate and the boost volume of between 15.1 Gy and 20.3 Gy. Rectal volumes receiving 75.6 Gy ranged from 4.5 to 9.9%. Expected rectal normal tissue complication probabilities were between 8.6% and 21.4%. Maximum bladder doses ranged from 73.6 Gy to 75.8 Gy. Estimated treatment time was 120 s or less. Conclusions. The presented biological optimization method resulted in deliverable VMAT plans that achieved sufficient modulation for SIB without violating rectal and bladder dose constraints. Advances in knowledge. This study presents a method for creating simultaneous integrated boost VMAT treatments using biological outcome objective functions.
Collapse
|
105
|
Qamhiyeh S, Geismar D, Pöttgen C, Stuschke M, Farr J. The effects of motion on the dose distribution of proton radiotherapy for prostate cancer. J Appl Clin Med Phys 2012; 13:3639. [PMID: 22584166 PMCID: PMC5716555 DOI: 10.1120/jacmp.v13i3.3639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
Proton radiotherapy of the prostate basal or whole seminal vesicles using scattering delivery systems is an effective treatment of prostate cancer that has been evaluated in prospective trials. Meanwhile, the use of pencil beam scanning (PBS) can further reduce the dose in the beam entrance channels and reduce the dose to the normal tissues. However, PBS dose distributions can be affected by intra‐ and interfractional motion. In this treatment planning study, the effects of intra‐ and interfractional organ motion on PBS dose distributions are investigated using repeated CT scans at close and distant time intervals. The minimum dose (Dmin) and the dose to 2% and 98% of the volumes (D2% and D98%), as well as EUD in the clinical target volumes (CTV), is used as measure of robustness. In all patients, D98% was larger than 96% and D2% was less than 106% of the prescribed dose. The combined information from Dmin, D98% and EUD led to the conclusion that there are no relevant cold spots observed in any of the verification plans. Moreover, it was found that results of single field optimization are more robust than results from multiple field optimizations. PACS numbers: 87.55.D‐, 87.55.de, 87.53.Bn, 87.55.dk, 87.55.ne
Collapse
Affiliation(s)
- Sima Qamhiyeh
- Westdeutsches Protonentherapiezentrum Essen, Germany.
| | | | | | | | | |
Collapse
|
106
|
Lee TF, Ting HM, Chao PJ, Fang FM. Dual Arc Volumetric-modulated Arc Radiotherapy (VMAT) of Nasopharyngeal Carcinomas: A Simultaneous Integrated Boost Treatment Plan Comparison with Intensity-modulated Radiotherapies and Single Arc VMAT. Clin Oncol (R Coll Radiol) 2012; 24:196-207. [DOI: 10.1016/j.clon.2011.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/24/2011] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
|
107
|
Liu H, Wu Q. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer. Med Phys 2012; 38:6362-70. [PMID: 22149819 DOI: 10.1118/1.3658567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Online image guidance (IG) has been used to effectively correct the setup error and inter-fraction rigid organ motion for prostate cancer. However, planning margins are still necessary to account for uncertainties such as deformation and intra-fraction motion. The purpose of this study is to investigate the effectiveness of an adaptive planning technique incorporating offline dose feedback to manage inter-fraction motion and residuals from online correction. METHODS Repeated helical CT scans from 28 patients were included in the study. The contours of prostate and organs-at-risk (OARs) were delineated on each CT, and online IG was simulated by matching center-of-mass of prostate between treatment CTs and planning CT. A seven beam intensity modulated radiation therapy (IMRT) plan was designed for each patient on planning CT for a total of 15 fractions. Dose distribution at each fraction was evaluated based on actual contours of the target and OARs from that fraction. Cumulative dose up to each fraction was calculated by tracking each voxel based on a deformable registration algorithm. The cumulative dose was compared with the dose from initial plan. If the deviation exceeded the pre-defined threshold, such as 2% of the D₉₉ to the prostate, an adaptive planning technique called dose compensation was invoked, in which the cumulative dose distribution was fed back to the treatment planning system and the dose deficit was made up through boost radiation in future treatment fractions. The dose compensation was achieved by IMRT inverse planning. Two weekly compensation delivery strategies were simulated: one intended to deliver the boost dose in all future fractions (schedule A) and the other in the following week only (schedule B). The D₉₉ to prostate and generalized equivalent uniform dose (gEUD) to rectal wall and bladder were computed and compared with those without the dose compensation. RESULTS If only 2% underdose is allowed at the end of the treatment course, then 11 patients fail. If the same criteria is assessed at the end of each week (every five fractions), then 14 patients fail, with three patients failing the 1st or 2nd week but passing at the end. The average dose deficit from these 14 patients was 4.4%. They improved to 2% after the weekly compensation. Out of these 14 patients who needed dose compensation, ten passed the dose criterion after weekly dose compensation, three patients failed marginally, and one patient still failed the criterion significantly (10% deficit), representing 3.6% of the patient population. A more aggressive compensation frequency (every three fractions) could successfully reduce the dose deficit to the acceptable level for this patient. The average number of required dose compensation re-planning per patient was 0.82 (0.79) per patient for schedule A (B) delivery strategy. The doses to OARs were not significantly different from the online IG only plans without dose compensation. CONCLUSIONS We have demonstrated the effectiveness of offline dose compensation technique in image-guided radiotherapy for prostate cancer. It can effectively account for residual uncertainties which cannot be corrected through online IG. Dose compensation allows further margin reduction and critical organs sparing.
Collapse
Affiliation(s)
- Han Liu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
108
|
Anderson N, Lawford C, Khoo V, Rolfo M, Joon DL, Wada M. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT. Technol Cancer Res Treat 2012; 10:575-83. [PMID: 22066597 PMCID: PMC4509883 DOI: 10.1177/153303461101000607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.
Collapse
Affiliation(s)
- N Anderson
- Department of Radiation Oncology, Austin Health, Heidelberg Heights, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
109
|
Niyazi M, Söhn M, Schwarz SB, Lang P, Belka C, Ganswindt U. Radiation treatment parameters for re-irradiation of malignant glioma. Strahlenther Onkol 2012; 188:328-33. [PMID: 22349710 DOI: 10.1007/s00066-011-0055-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/20/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Most patients with malignant glioma ultimately fail locally or loco-regionally after the first treatment, with re-irradiation being a reasonable treatment option. However, only limited data are presently available allowing for a precise selection of patients suitable for re-treatment with regard to safety and efficacy. MATERIAL AND METHODS Using the department database, 39 patients with a second course of radiation were identified. Doses to gross tumor volume (GTV), planning target volume (PTV), and relevant organs at risk (OARs; brainstem, optic chiasm, optic nerves, brain) were retrospectively analyzed and correlated to outcome parameters. Relevant treatment parameters including D(max), D(min), D(mean), and volume (ml) were obtained. Equivalent uniform dose (EUD) values were calculated for the tumor and OARs. To address the issue of radiation necrosis/leukoencephalopathy posttherapeutic MRI images were routinely examined every 3 months. RESULTS Median follow-up was 147 days. The time interval between first and second irradiation was regularly greater than 6 months. Median EUDs to the OARs were 11.9 Gy (range 0.7-27.4 Gy) to the optic chiasm, 17.6 Gy (range 0.7-43.0 Gy) to the brainstem, 4.9/2.1 Gy (range 0.3-24.5 Gy) to the right/left optic nerve, and 29.4 Gy (range 25.2-32.5 Gy) to the brain. No correlation between treated volume and survival was observed. Cold spots and dose did not correlate with survival. Re-irradiated volumes were treated with on average lower doses if they were larger and vice versa. CONCLUSION In general, re-irradiation is a safe and feasible re-treatment option. No relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. In this regard, this analysis provides baseline data for the selection of putative patients. EUD values are derived and may serve as reference for further studies, including intensity-modulated radiotherapy (IMRT) protocols.
Collapse
Affiliation(s)
- M Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
110
|
Mihaylov IB, Curran B, Sternick E. The effect of gantry spacing resolution on plan quality in a single modulated arc optimization. J Appl Clin Med Phys 2011; 12:3603. [PMID: 22089019 PMCID: PMC5718730 DOI: 10.1120/jacmp.v12i4.3603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
Volumetric‐modulated arc technique (VMAT) is an efficient form of IMRT delivery. It is advantageous over conventional IMRT in terms of treatment delivery time. This study investigates the relation between the number of segments and plan quality in VMAT optimization for a single modulated arc. Five prostate, five lung, and five head‐and‐neck (HN) patient plans were studied retrospectively. For each case, four VMAT plans were generated. The plans differed only in the number of control points used in the optimization process. The control points were spaced 2°, 3°, 4°, and 6° apart, respectively. All of the optimization parameters were the same among the four schemes. The 2° spacing plan was used as a reference to which the other three plans were compared. The plan quality was assessed by comparison of dose indices (DIs) and generalized equivalent uniform doses (gEUDs) for targets and critical structures. All optimization schemes generated clinically acceptable plans. The differences between the majority of reference and compared DIs and gEUDs were within 3%. DIs and gEUDs which differed in excess of 3% corresponded to dose levels well below the organ tolerances. The DI and the gEUD differences increased with an increase in plan complexity from prostates to HNs. Optimization with gantry spacing resolution of 4° seems to be a very balanced alternative between plan quality and plan complexity. PACS number: 87.55.de
Collapse
Affiliation(s)
- Ivaylo B Mihaylov
- Department of Radiation Oncology, Rhode Island Hospital/Brown Medical Center, Providence, RI 02903, USA.
| | | | | |
Collapse
|
111
|
Lee TF, Chao PJ, Ting HM, Lo SH, Wang YW, Tuan CC, Fang FM, Su TJ. Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma. J Appl Clin Med Phys 2011; 12:3587. [PMID: 22089015 PMCID: PMC5718754 DOI: 10.1120/jacmp.v12i4.3587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate and quantify the planning performance of SmartArc‐based volumetric‐modulated arc radiotherapy (VMAT) versus fixed‐beam intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc‐VMAT (DA‐VMAT) using the Pinnacle3 Smart‐Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven‐field (7F)‐IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and gamma (Γ3mm,3%) evaluations were also analyzed. DA‐VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F‐IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA‐VMAT plans. The mean value of CQI at 0.98±0.02 indicated a 2% benefit in sparing OARs by DA‐VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA‐VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high‐quality assurance (QA) passing rate (>98%) of the (Γ3mm,3%) criterion. The major difference between DA‐VMAT and 7F‐IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr. PACS number: 87.53.Tf, 87.55.x, 87.55.D, 87.55.dk
Collapse
Affiliation(s)
- Tsair-Fwu Lee
- Medical Physics & Informatics Lab., Department of Electronics Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Li R, Xing L. Bridging the gap between IMRT and VMAT: dense angularly sampled and sparse intensity modulated radiation therapy. Med Phys 2011; 38:4912-9. [PMID: 21978036 DOI: 10.1118/1.3618736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. METHODS In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator's intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. RESULTS Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the HN, pancreas, and lung cases, respectively) is similar with that of conventional IMRT with seven beams and ten intensity levels (0.88, 0.79, and 0.83) and is higher than that of single-arc VMAT (0.75, 0.75, and 0.82). It is also found that the DASSIM-RT plans generally have better sparing of organs-at-risk than IMRT plans. It is estimated that the dose delivery time of DASSIM-RT with 15 beams and 5 intensity levels is about 4.5, 4.4, and 4.2 min for the HN, pancreas, and lung case, respectively, similar to that of IMRT plans with 7 beams and 10 intensity levels. CONCLUSION DASSIS-RT bridges the gap between IMRT and VMAT and allows optimal sampling of angular space and intrabeam modulation, thus it provides improved conformity in dose distributions while maintaining high delivery efficiency.
Collapse
Affiliation(s)
- Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847, USA
| | | |
Collapse
|
113
|
Henríquez FC, Castrillón SV. A quality index for equivalent uniform dose. J Med Phys 2011; 36:126-32. [PMID: 21897557 PMCID: PMC3159218 DOI: 10.4103/0971-6203.83466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/12/2010] [Accepted: 02/18/2011] [Indexed: 12/25/2022] Open
Abstract
Equivalent uniform dose (EUD) is the absorbed dose that, when homogeneously given to a tumor, yields the same mean surviving clonogen number as the given non-homogeneous irradiation. EUD is used as an evaluation tool under the assumption that two plans with the same value of EUD are equivalent, and their biological effect on the tumor (clonogen survival) would be the same as the one of a homogeneous irradiation of absorbed dose EUD. In this work, this assumption has been studied, and a figure of merit of its applicability has been obtained. Distributions of surviving clonogen number for homogeneous and non-homogeneous irradiations are found to be different even if their mean values are the same, the figure of merit being greater when there is a wider difference, and the equivalence assumption being less valid. Therefore, EUD can be closer to a uniform dose for some cases than for other ones (high α values, extreme heterogeneity), and the accuracy of the radiobiological indices obtained for evaluation, could be affected. Results show that the equivalence is very sensitive to the choice of radiobiological parameters, and this conclusion has been derived from mathematical properties of EUD.
Collapse
|
114
|
Zhang GG, Ku L, Dilling TJ, Stevens CW, Zhang RR, Li W, Feygelman V. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique. Radiat Oncol 2011; 6:152. [PMID: 22070866 PMCID: PMC3354344 DOI: 10.1186/1748-717x-6-152] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/09/2011] [Indexed: 01/10/2023] Open
Abstract
Purpose Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. Methods A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Results Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p < 0.05 respectively) while the coplanar VMAT plans do not show significant difference compared to 3D plans. Dose to the target is typically more homogeneous in FFF-VMAT plans. FFF-VMAT plans require more monitor units than 3D or non-coplanar VMAT ones. Conclusion Besides the advantage of faster delivery times, VMAT plans demonstrated better conformity to target, sharper dose fall-off in normal tissues and lower dose to normal lung than the 3D plans for lung SBRT. More monitor units are often required for FFF-VMAT plans.
Collapse
|
115
|
Pulliam KB, Howell RM, Followill D, Luo D, White RA, Kry SF. The clinical impact of the couch top and rails on IMRT and arc therapy. Phys Med Biol 2011; 56:7435-47. [PMID: 22056949 DOI: 10.1088/0031-9155/56/23/007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical impact of the Varian Exact Couch on dose, volume coverage to targets and critical structures, and tumor control probability (TCP) has not been described. Thus, we examined their effects on IMRT and arc therapy. Five clinical prostate patients were planned with both 6 MV eight-field IMRT and 6 MV two-arc RapidArc techniques using the Eclipse treatment planning system. These plans neglected treatment couch attenuation, as is a common clinical practice. Dose distributions were then recalculated in Eclipse with the inclusion of the Varian Exact Couch (imaging couch top) and the rails in varying configurations. The changes in dose and coverage were evaluated using the dose-volume histograms from each plan iteration. We used a TCP model to calculate losses in tumor control resulting from not accounting for the couch top and rails. We also verified dose measurements in a phantom. Failure to account for the treatment couch and rails resulted in clinically unacceptable dose and volume coverage losses to the targets for both IMRT and RapidArc. The couch caused average prescription dose losses (relative to plans that ignored the couch) to the prostate of 4.2% and 2.0% for IMRT with the rails out and in, respectively, and 3.2% and 2.9% for RapidArc with the rails out and in, respectively. On average, the percentage of the target covered by the prescribed dose dropped to 35% and 84% for IMRT (rails out and in, respectively) and to 18% and 17% for RapidArc (rails out and in, respectively). The TCP was also reduced by as much as 10.5% (6.3% on average). Dose and volume coverage losses for IMRT plans were primarily due to the rails, while the imaging couch top contributed most to losses for RapidArc. Both the couch top and rails contribute to dose and coverage losses that can render plans clinically unacceptable. A follow-up study we performed found that the less attenuating unipanel mesh couch top available with the Varian Exact couch does not cause a clinically impactful loss of dose or coverage for IMRT but still causes an unacceptable loss for RapidArc. Therefore, both the imaging or mesh couch top and the rails should be accounted for in arc therapy. The imaging couch top should be accounted for in IMRT treatment planning or the mesh top can be used, which would not need to be accounted for, and the rails should be moved to avoid the beams during treatment.
Collapse
Affiliation(s)
- Kiley B Pulliam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
116
|
Pinkawa M, Corral NE, Caffaro M, Piroth MD, Holy R, Djukic V, Otto G, Schoth F, Eble MJ. Application of a spacer gel to optimize three-dimensional conformal and intensity modulated radiotherapy for prostate cancer. Radiother Oncol 2011; 100:436-41. [PMID: 21963289 DOI: 10.1016/j.radonc.2011.09.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to evaluate the impact of a spacer gel on the dose distribution, applying three-dimensional conformal (3D CRT) and intensity modulated radiotherapy (IMRT) planning techniques. MATERIAL AND METHODS The injection of a spacer gel (10 ml SpaceOAR™) was performed between the prostate and rectum under transrectal ultrasound guidance in 18 patients with prostate cancer. 3D CRT and IMRT treatment plans were compared based on CT before and after injection (78 Gy prescription dose). RESULTS In contrast to the PTV and bladder, significant advantages (p<0.01) resulted in respect of all analysed rectal dose values comparing pre spacer with post spacer plans for both techniques. Rectal NTCP (normal tissue complication probability) reached the lowest percentage after spacer injection irrespective of the technique, with a mean reduction of >50% for both IMRT and 3D CRT. Significantly (p<0.01) higher D(mean), and V(78) for the PTV were reached with IMRT vs. 3D CRT plans, with a smaller rectum V(76) but larger rectum V(50). CONCLUSIONS The injection of a spacer gel between the prostate and anterior rectal wall is associated with considerably lower doses to the rectum and consequentially lower NTCP values irrespective of the radiotherapy technique.
Collapse
Affiliation(s)
- Michael Pinkawa
- Department of Radiation Oncology, RWTH Aachen University, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Tsai CL, Wu JK, Chao HL, Tsai YC, Cheng JCH. Treatment and Dosimetric Advantages Between VMAT, IMRT, and Helical TomoTherapy in Prostate Cancer. Med Dosim 2011; 36:264-71. [PMID: 20634054 DOI: 10.1016/j.meddos.2010.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 04/21/2010] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
|
118
|
Advantage of biological over physical optimization in prostate cancer? Z Med Phys 2011; 21:228-35. [DOI: 10.1016/j.zemedi.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/17/2010] [Accepted: 02/02/2011] [Indexed: 11/20/2022]
|
119
|
Stabenau H, Rivera L, Yorke E, Yang J, Lu R, Radke RJ, Jackson A. Reduced order constrained optimization (ROCO): clinical application to lung IMRT. Med Phys 2011; 38:2731-41. [PMID: 21776810 DOI: 10.1118/1.3575416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors use reduced-order constrained optimization (ROCO) to create clinically acceptable IMRT plans quickly and automatically for advanced lung cancer patients. Their new ROCO implementation works with the treatment planning system and full dose calculation used at Memorial Sloan-Kettering Cancer Center (MSKCC). The authors have implemented mean dose hard constraints, along with the point-dose and dose-volume constraints that the authors used for our previous work on the prostate. METHODS ROCO consists of three major steps. First, the space of treatment plans is sampled by solving a series of optimization problems using penalty-based quadratic objective functions. Next, an efficient basis for this space is found via principal component analysis (PCA); this reduces the dimensionality of the problem. Finally, a constrained optimization problem is solved over this basis to find a clinically acceptable IMRT plan. Dimensionality reduction makes constrained optimization computationally efficient. RESULTS The authors apply ROCO to 12 stage III non-small-cell lung cancer (NSCLC) cases, generating IMRT plans that meet all clinical constraints and are clinically acceptable, and demonstrate that they are competitive with the clinical treatment plans. The authors also test how many samples and PCA modes are necessary to achieve an adequate lung plan, demonstrate the importance of long-range dose calculation for ROCO, and evaluate the performance of nonspecific normal tissue ("rind") constraints in ROCO treatment planning for the lung. Finally, authors show that ROCO can save time for planners, and they estimate that in the clinic, planning using their approach would save a median of 105 min for the patients in the study. CONCLUSIONS New challenges arise when applying ROCO to the lung site, which include the lack of a class solution, a larger treatment site, an increased number of parameters and beamlets, a variable number of beams and beam arrangement, and the customary use of rinds in clinical plans to avoid high-dose areas outside the PTV. In the authors previous work, use of an approximate dose calculation in the hard constraint optimization sometimes meant that clinical constraints were not met when evaluated with the full dose calculation. This difficulty has been removed in the current work by using the full dose calculation in the hard constraint optimization. The authors have demonstrated that ROCO offers a fast and automatic way to create IMRT plans for advanced NSCLC, which extends their previous application of ROCO to prostate cancer IMRT planning.
Collapse
Affiliation(s)
- Hans Stabenau
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, New York 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Helical Tomotherapy vs. Intensity-Modulated Proton Therapy for Whole Pelvis Irradiation in High-Risk Prostate Cancer Patients: Dosimetric, Normal Tissue Complication Probability, and Generalized Equivalent Uniform Dose Analysis. Int J Radiat Oncol Biol Phys 2011; 80:1589-600. [DOI: 10.1016/j.ijrobp.2010.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 07/16/2010] [Accepted: 10/15/2010] [Indexed: 11/21/2022]
|
121
|
Liu H, Wu Q. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy. Phys Med Biol 2011; 56:5045-62. [PMID: 21772083 DOI: 10.1088/0031-9155/56/15/024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies.
Collapse
Affiliation(s)
- Han Liu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
122
|
Moiseenko V, Song WY, Mell LK, Bhandare N. A comparison of dose-response characteristics of four NTCP models using outcomes of radiation-induced optic neuropathy and retinopathy. Radiat Oncol 2011; 6:61. [PMID: 21645390 PMCID: PMC3127783 DOI: 10.1186/1748-717x-6-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/06/2011] [Indexed: 12/25/2022] Open
Abstract
Background Biological models are used to relate the outcome of radiation therapy to dose distribution. As use of biological models in treatment planning expands, uncertainties associated with the use of specific models for predicting outcomes should be understood and quantified. In particular, the question to what extent model predictions are data-driven or dependent on the choice of the model has to be explored. Methods Four dose-response models--logistic, log-logistic, Poisson-based and probit--were tested for their ability and consistency in describing dose-response data for radiation-induced optic neuropathy (RION) and retinopathy (RIRP). Dose to the optic nerves was specified as the minimum dose, Dmin, received by any segment of the organ to which the damage was diagnosed by ophthalmologic evaluation. For retinopathy, the dose to the retina was specified as the highest isodose covering at least 1/3 of the retinal surface (D33%) that geometrically covered the observed retinal damage. Data on both complications were modeled separately for patients treated once daily and twice daily. Model parameters D50 and γ and corresponding confidence intervals were obtained using maximum-likelihood method. Results Model parameters were reasonably consistent for RION data for patients treated once daily, D50 ranging from 94.2 to 104.7 Gy and γ from 0.88 to 1.41. Similar consistency was seen for RIRP data which span a broad range of complication incidence, with D50 from 72.2 to 75.0 Gy and γ from 1.51 to 2.16 for patients treated twice daily; 72.2-74.0 Gy and 0.84-1.20 for patients treated once daily. However, large variations were observed for RION in patients treated twice daily, D50 from 96.3 to 125.2 Gy and γ from 0.80 to 1.56. Complication incidence in this dataset in any dose group did not exceed 20%. Conclusions For the considered data sets, the log-logistic model tends to lead to larger D50 and lower γ compared to other models for all datasets. Statements regarding normal tissue radiosensitivity and steepness of dose-response, based on model parameters, should be made with caution as the latter are not only model-dependent but also sensitive to the range of complication incidence exhibited by clinical data.
Collapse
Affiliation(s)
- Vitali Moiseenko
- University of Florida Health Sciences Center, Gainesville, FL 32610-0385, USA
| | | | | | | |
Collapse
|
123
|
A Method for the Prediction of Late Organ-at-Risk Toxicity After Radiotherapy of the Prostate Using Equivalent Uniform Dose. Int J Radiat Oncol Biol Phys 2011; 80:608-13. [DOI: 10.1016/j.ijrobp.2010.07.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/26/2010] [Accepted: 07/16/2010] [Indexed: 11/17/2022]
|
124
|
Winkfield KM, Niemierko A, Bussière MR, Crowley EM, Napolitano BN, Beaudette KP, Loeffler JS, Shih HA. Modeling Intracranial Second Tumor Risk and Estimates of Clinical Toxicity with Various Radiation Therapy Techniques for Patients with Pituitary Adenoma. Technol Cancer Res Treat 2011; 10:243-51. [DOI: 10.7785/tcrt.2012.500199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study was designed to estimate the risk of radiation-associated tumors and clinical toxicity in the brain following fractionated radiation treatment of pituitary adenoma. A standard case of a patient with a pituitary adenoma was planned using 8 different dosimetric techniques. Total dose was 50.4 Gy (GyE) at daily fractionation of 1.8 Gy (GyE). All methods utilized the same CT simulation scan with designated target and normal tissue volumes. The excess risk of radiation-associated second tumors in the brain was calculated using the corresponding dose-volume histograms for the whole brain and based on the data published by the United Nation Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and a risk model proposed by Schneider. The excess number of second tumor cases per 10,000 patients per year following radiation is 9.8 for 2-field photons, 18.4 with 3-field photons, 20.4 with photon intensity modulated radiation therapy (IMRT), and 25 with photon stereotactic radiotherapy (SRT). Proton radiation resulted in the following excess second tumor risks: 2-field = 5.1, 3-field = 12, 4-field = 15, 5-field = 16. Temporal lobe toxicity was highest for the 2-field photon plan. Proton radiation therapy achieves the best therapeutic ratio when evaluating plans for the treatment of pituitary adenoma. Temporal lobe toxicity can be reduced through the use of multiple fields but is achieved at the expense of exposing a larger volume of normal brain to radiation. Limiting the irradiated volume of normal brain by reducing the number of treatment fields is desirable to minimize excess risk of radiation-associated second tumors.
Collapse
Affiliation(s)
- K. M. Winkfield
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - A. Niemierko
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - M. R. Bussière
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - E. M. Crowley
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - B. N. Napolitano
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - K. P. Beaudette
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - J. S. Loeffler
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| | - H. A. Shih
- Department of Radiation Oncology Massachusetts General Hospital 100 Blossom Street, Cox 3, Boston, MA 02114, USA
| |
Collapse
|
125
|
Oliver M, Bush K, Zavgorodni S, Ansbacher W, Beckham WA. Understanding the impact of RapidArc therapy delivery errors for prostate cancer. J Appl Clin Med Phys 2011; 12:3409. [PMID: 21844850 PMCID: PMC5718657 DOI: 10.1120/jacmp.v12i3.3409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study is to simulate random and systematic RapidArc delivery errors for external beam prostate radiotherapy plans in order to determine the dose sensitivity for each error type. Ten prostate plans were created with a single 360° arc. The DICOM files for these treatment plans were then imported into an in‐house computer program that introduced delivery errors. Random and systematic gantry position (0.25°, 0.5°, 1°), monitor unit (MU) (1.25%, 2.5%, 5%), and multileaf collimator (MLC) position (0.5, 1, 2 mm) errors were introduced. The MLC errors were either random or one of three types of systematic errors, where the MLC banks moved in the same (MLC gaps remain unchanged) or opposing directions (increasing or decreasing the MLC gaps). The generalized equivalent uniform dose (gEUD) was calculated for the original plan and all treatment plans with errors introduced. The dose sensitivity for the cohort was calculated using linear regression for the gantry position, MU, and MLC position errors. Because there was a large amount of variability for systematic MLC position errors, the dose sensitivity of each plan was calculated and correlated with plan MU, mean MLC gap, and the percentage of MLC leaf gaps less than 1 and 2 cm for each individual plan. We found that random and systematic gantry position errors were relatively insignificant (< 0.1% gEUD change) for gantry errors up to 1°. Random MU errors were also insignificant, and systematic MU increases caused a systematic increase in gEUD. For MLC position errors, random MLC errors were relatively insignificant up to 2 mm as had been determined in previous IMRT studies. Systematic MLC shift errors caused a decrease of approximately −1% in the gEUD per mm. For systematic MLC gap open errors, the dose sensitivity was 8.2%/mm and for MLC gap close errors the dose sensitivity was −7.2%/mm. There was a large variability for MLC gap open/close errors for the ten RapidArc plans which correlated strongly with MU, mean gap width, and percentage of MLC gaps less than 1 or 2 cm. This study evaluates the magnitude of various simulated RapidArc delivery errors by calculating gEUED on various prostate plans. PACS numbers: 87.55.x, 87.55.D, 87.55.de, 87.55.dk
Collapse
Affiliation(s)
- Michael Oliver
- Department of Medical Physics, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
126
|
Mihaylov IB, Fatyga M, Bzdusek K, Gardner K, Moros EG. Biological optimization in volumetric modulated arc radiotherapy for prostate carcinoma. Int J Radiat Oncol Biol Phys 2011; 82:1292-8. [PMID: 21570214 DOI: 10.1016/j.ijrobp.2010.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 06/03/2010] [Accepted: 06/09/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the potential benefits achievable with biological optimization for modulated volumetric arc (VMAT) treatments of prostate carcinoma. METHODS AND MATERIALS Fifteen prostate patient plans were studied retrospectively. For each case, planning target volume, rectum, and bladder were considered. Three optimization schemes were used: dose-volume histogram (DVH) based, generalized equivalent uniform dose (gEUD) based, and mixed DVH/gEUD based. For each scheme, a single or dual 6-MV, 356° VMAT arc was used. The plans were optimized with Pinnacle(3) (v. 9.0 beta) treatment planning system. For each patient, the optimized dose distributions were normalized to deliver the same prescription dose. The quality of the plans was evaluated by dose indices (DIs) and gEUDs for rectum and bladder. The tallied DIs were D(1%), D(15%), D(25%), and D(40%), and the tallied gEUDs were for a values of 1 and 6. Statistical tests were used to quantify the magnitude and the significance of the observed differences. Monitor units and treatment times for each optimization scheme were also assessed. RESULTS All optimization schemes generated clinically acceptable plans. The statistical tests indicated that biological optimization yielded increased organs-at-risk sparing, ranging from ~1% to more than ~27% depending on the tallied DI, gEUD, and anatomical structure. The increased sparing was at the expense of longer treatment times and increased number of monitor units. CONCLUSIONS Biological optimization can significantly increase the organs-at-risk sparing in VMAT optimization for prostate carcinoma. In some particular cases, however, the DVH-based optimization resulted in superior treatment plans.
Collapse
Affiliation(s)
- Ivaylo B Mihaylov
- Department of Radiation Oncology, Rhode Island Hospital/Brown Medical Center, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
127
|
Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Jacques R, Taylor R, McNutt T. Data-Driven Approach to Generating Achievable Dose–Volume Histogram Objectives in Intensity-Modulated Radiotherapy Planning. Int J Radiat Oncol Biol Phys 2011; 79:1241-7. [DOI: 10.1016/j.ijrobp.2010.05.026] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
128
|
Beltran C, Sharma S, Merchant TE. Role of adaptive radiation therapy for pediatric patients with diffuse pontine glioma. J Appl Clin Med Phys 2011. [PMCID: PMC5718676 DOI: 10.1120/jacmp.v12i2.3421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chris Beltran
- Department of Radiological Sciences; St. Jude Children's Research Hospital; Memphis TN USA
| | - Saumya Sharma
- Department of Radiological Sciences; St. Jude Children's Research Hospital; Memphis TN USA
| | - Thomas E. Merchant
- Department of Radiological Sciences; St. Jude Children's Research Hospital; Memphis TN USA
| |
Collapse
|
129
|
Clinical significance of multi-leaf collimator positional errors for volumetric modulated arc therapy. Radiother Oncol 2010; 97:554-60. [DOI: 10.1016/j.radonc.2010.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 11/19/2022]
|
130
|
Zhao B, Joiner MC, Orton CG, Burmeister J. “SABER”: A new software tool for radiotherapy treatment plan evaluation. Med Phys 2010; 37:5586-92. [DOI: 10.1118/1.3497152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
131
|
de Crevoisier R, Fiorino C, Dubray B. Radiothérapie prostatique : prédiction de la toxicité tardive à partir des données dosimétriques. Cancer Radiother 2010; 14:460-8. [DOI: 10.1016/j.canrad.2010.07.225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/12/2010] [Indexed: 12/25/2022]
|
132
|
Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T, Mottaghy FM, Weibrecht M, Eble MJ. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 2010; 186:600-6. [PMID: 20936457 DOI: 10.1007/s00066-010-2122-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/30/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE To report the own experience with 66 patients who received 18F-choline PET-CT (positron emission tomography-computed tomography) for treatment planning. PATIENTS AND METHODS Image acquisition followed 1 h after injection of 178-355 MBq (18)F-choline. An intraprostatic lesion (GTV(PET) [gross tumor volume]) was defined by a tumor-to-background SUV (standard uptake value) ratio > 2. A dose of 76 Gy was prescribed to the prostate in 2-Gy fractions, with a simultaneous integrated boost up to 80 Gy. RESULTS A boost volume could not be defined for a single patient. One, two and three or more lesions were found for 36 (55%), 22 (33%) and seven patients (11%). The lobe(s) with a positive biopsy correlated with a GTV(PET) in the same lobe in 63 cases (97%). GTV(PET) was additionally defined in 33 of 41 prostate lobes (80%) with only negative biopsies. GTV(PET), SUV(mean) and SUV(max) were found to be dependent on well-known prognostic risk factors, particularly T-stage and Gleason Score. In multivariate analysis, Gleason Score > 7 resulted as an independent factor for GTV(PET) > 8 cm(3) (hazard ratio 5.5; p = 0.02) and SUV(max) > 5 (hazard ratio 4.4; p = 0.04). Neoadjuvant hormonal treatment (NHT) did not affect SUV levels. The mean EUDs (equivalent uniform doses) to the rectum and bladder (55.9 Gy and 54.8 Gy) were comparable to patients (n = 18) who were treated in the same period without a boost (54.3 Gy and 55.6 Gy). CONCLUSION Treatment planning with (18)F-choline PET-CT allows the definition of an integrated boost in nearly all prostate cancer patients - including patients after NHT - without considerably affecting EUDs for the organs at risk. GTV(PET) and SUV levels were found to be dependent on prognostic risk factors, particularly Gleason Score.
Collapse
|
133
|
Gielda BT, Millunchick CH, Smart JP, Marsh JC, Turian JV, Coleman JL. Helical Tomotherapy and Larynx Sparing in Advanced Oropharyngeal Carcinoma: A Dosimetric Study. Med Dosim 2010; 35:214-9. [DOI: 10.1016/j.meddos.2009.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/28/2009] [Accepted: 06/08/2009] [Indexed: 11/16/2022]
|
134
|
Aleman DM, Glaser D, Romeijn HE, Dempsey JF. Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT. Phys Med Biol 2010; 55:5467-82. [DOI: 10.1088/0031-9155/55/18/013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Lee TF, Chao PJ, Fang FM, Su TJ, Leung SW, Hsu HC. Helical tomotherapy for single and multiple liver tumours. Radiat Oncol 2010; 5:58. [PMID: 20576108 PMCID: PMC2900282 DOI: 10.1186/1748-717x-5-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/24/2010] [Indexed: 12/25/2022] Open
Abstract
Purpose Dosimetric evaluations of single and multiple liver tumours performed using intensity-modulated helical tomotherapy (HT) were quantitatively investigated. Step-and-shoot intensity-modulated radiotherapy (SaS-IMRT) was used as a benchmark. Methods Sixteen patients separated into two groups with primary hepatocellular carcinomas or metastatic liver tumours previously treated using SaS-IMRT were examined and re-planned by HT. The dosimetric indices used included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), max/mean dose, quality index (QI), normal tissue complication probability (NTCP), V30 Gy, and V50% for the specified organs at risk (OARs). The monitor units per fraction (MU/fr) and delivery time were also analysed. Results For the single tumour group, both planning systems satisfied the required PTV prescription, but no statistical significance was shown by the indexes checking. A shorter delivery time and lower MU/fr value were achieved by the SaS-IMRT. For the group of multiple tumours, the average improvement in CI and HI was 14% and 4% for HT versus SaS-IMRT, respectively. Lower V50%, V30 Gy and QI values were found, indicating a significant dosimetric gain in HT. The NTCP value of the normal liver was 20.27 ± 13.29% for SaS-IMRT and 2.38 ± 2.25% for HT, indicating fewer tissue complications following HT. The latter also required a shorter delivery time. Conclusions Our study suggests dosimetric benefits of HT over SaS-IMRT plans in the case of multiple liver tumours, especially with regards sparing of OARs. No significant dosimetric difference was revealed in the case of single liver tumour, but SaS-IMRT showed better efficiency in terms of MU/fr and delivery time.
Collapse
Affiliation(s)
- Tsair-Fwu Lee
- Medical Physics and Informatics Lab, (EE), National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
136
|
Mzenda B, Hosseini-Ashrafi M, Gegov A, Brown DJ. A fuzzy convolution model for radiobiologically optimized radiotherapy margins. Phys Med Biol 2010; 55:3219-35. [DOI: 10.1088/0031-9155/55/11/015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
137
|
Albertini F, Hug EB, Lomax AJ. The influence of the optimization starting conditions on the robustness of intensity-modulated proton therapy plans. Phys Med Biol 2010; 55:2863-78. [DOI: 10.1088/0031-9155/55/10/005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
138
|
Prabhakar R, Rath GK. Slice-based plan evaluation methods for three dimensional conformal radiotherapy treatment planning. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 32:233-9. [PMID: 20169843 DOI: 10.1007/bf03179244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dose volume histograms (DVHs) play a vital role in determining the optimal plan for radiotherapy treatment delivery. The current concepts of conformality index (CI), equivalent uniform dose (EUD) derived from dose volume histogram (DVH) does not provide any spatial information. In this study, slice-based evaluation methods have been proposed for spatially analyzing the radiotherapy treatment plans. A case of prostate cancer has been selected for demonstrating the proposed tools for evaluating the dose distribution. Three dimensional conformal radiotherapy treatment planning (3D-CRT) was performed to a dose of 27 Gy/15# with three fields (6 MV anteroposterior and two 15 MV lateral fields) employing multileaf collimator after delivering 45 Gy/25#. The dose was normalized to isocenter and the treatment plan was evaluated with DVH. The dose maximum point, conformality index, planning target volume coverage index (PCI), planning target volume overdose index (POI) and equivalent uniform dose (EUD) were evaluated for every single slice along the cranio-caudal direction for all the planning target volume (PTV) contours and plotted against the slice location. The dose maximum point plotted against the slice position helps in identifying the slices where the dose maximum point is outside the target volume. The plot of conformality index gives the information about the location of those slices where excess of surrounding normal tissues is encompassed inside the prescription isodose. POI quantifies the high dose regions inside the PTV slices that receive doses above 107% of the prescription dose. Similarly, the plot of PCI and EUD with slice position gives the information about those slices where the tumor is not covered adequately. The proposed methods in this study forms as a simpler way to assess the spatial distribution of the dose inside the target volume. It could be used in combination with the current plan evaluation tools and will be very helpful in analyzing the treatment plans.
Collapse
Affiliation(s)
- R Prabhakar
- Department of Radiation Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
139
|
Beltran C, Naik M, Merchant TE. Dosimetric effect of setup motion and target volume margin reduction in pediatric ependymoma. Radiother Oncol 2010; 96:216-22. [PMID: 20347495 DOI: 10.1016/j.radonc.2010.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/17/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Quantify the dosimetric effect of inter- and intrafractional motion on intensity-modulated radiation therapy (IMRT) and three-dimensional (3D) planning via changes in the generalized equivalent uniform dose (gEUD), predicted tumor control probability (TCP) and normal tissue complication probability (NTCP) for pediatric ependymoma. METHODS AND MATERIALS Twenty patients treated between 1998 and 2002 with a 3D plan (CTV = 1 cm, PTV = 5 mm) were selected. Two IMRT plans were created for the 1 cm CTV (PTV = 5 mm and PTV = 0 mm), and a third IMRT plan for a 5 mm CTV (PTV = 0 mm). Direct simulation with inter- and intrafractional motion was performed for 3D and IMRT plans based on daily pre and post-treatment cone beam CT information obtained from 20 well-matched patients (age, supine/prone, use of GA) on a localization protocol. Calculated TCP, NTCP, Conformity Index (CI), and predictive IQ were compared. RESULTS IMRT improved the calculated TCP by 2.8+/-2.8 vs. 3D (p<0.001). Inter- and intrafractional motion results in a TCP loss of 0.4+/-0.7 (p=0.02) and 0.0+/-0.1 (p=0.14) for the IMRT plan with PTV = 0 mm. Mean NTCP for 3D and IMRT with PTV = 5 mm, PTV = 0 mm, and CTV = 5 mm for the cochlea was: 66.6, 29.4, 8.7. Mean NTCP change due to motion was <5%. CI was 0.70+/-0.06 for IMRT and 0.5+/-0.10 for 3D. Predictive IQ was 10.0+/-10.3 points higher for IMRT vs. 3D. CONCLUSIONS IMRT improves calculated TCP vs. 3D. Daily localization can allow for a safe reduction in the PTV margin, while maintaining target coverage; reducing the CTV margin can further reduce NTCP and may reduce future side-effects.
Collapse
Affiliation(s)
- Chris Beltran
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN 38120, USA.
| | | | | |
Collapse
|
140
|
Barrett HH, Wilson DW, Kupinski MA, Aguwa K, Ewell L, Hunter R, Müller S. Therapy Operating Characteristic (TOC) Curves and their Application to the Evaluation of Segmentation Algorithms. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2010; 7627:76270Z. [PMID: 20948981 DOI: 10.1117/12.844189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This paper presents a general framework for assessing imaging systems and image-analysis methods on the basis of therapeutic rather than diagnostic efficacy. By analogy to receiver operating characteristic (ROC) curves, it utilizes the Therapy Operating Characteristic or TOC curve, which is a plot of the probability of tumor control vs. the probability of normal-tissue complications as the overall level of a radiotherapy treatment beam is varied. The proposed figure of merit is the area under the TOC, denoted AUTOC. If the treatment planning algorithm is held constant, AUTOC is a metric for the imaging and image-analysis components, and in particular for segmentation algorithms that are used to delineate tumors and normal tissues. On the other hand, for a given set of segmented images, AUTOC can also be used as a metric for the treatment plan itself. A general mathematical theory of TOC and AUTOC is presented and then specialized to segmentation problems. Practical approaches to implementation of the theory in both simulation and clinical studies are presented. The method is illustrated with a a brief study of segmentation methods for prostate cancer.
Collapse
Affiliation(s)
- Harrison H Barrett
- College of Optical Sciences and Department of Radiology, University of Arizona, Tucson AZ
| | | | | | | | | | | | | |
Collapse
|
141
|
Mihailidis DN, Plants B, Farinash L, Harmon M, Whaley L, Raja P, Tomara P. Superiority of Equivalent Uniform Dose (EUD)-Based Optimization for Breast and Chest Wall*. Med Dosim 2010; 35:67-76. [DOI: 10.1016/j.meddos.2009.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
|
142
|
Estall VJ, Eaton D, Burton KE, Jefferies SJ, Jena R, Burnet NG. Intensity-modulated radiotherapy plan optimisation for skull base lesions: practical class solutions for dose escalation. Clin Oncol (R Coll Radiol) 2010; 22:313-20. [PMID: 20181465 DOI: 10.1016/j.clon.2010.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/19/2009] [Accepted: 02/03/2010] [Indexed: 11/29/2022]
Abstract
AIMS To identify practical intensity-modulated radiotherapy planning solutions when attempting dose escalation in the skull base. MATERIALS AND METHODS Twenty cases of skull base meningioma were re-planned using a variation of beam number (three, five, seven and nine), beam arrangement (coplanar vs non-coplanar) and multileaf collimator (MLC) width (2.5 mm vs 10 mm) to 60 Gy/30 fractions. Plan quality and planning target volume coverage was assessed using planning target volume V(95%), equivalent uniform dose (EUD) and integral dose. RESULTS Critical structures were maintained below clinical tolerance levels. The 2.5 mm MLC achieved an average improvement in V(95%) by 22.8% (P=0.0003), EUD by 3.7 Gy (P=0.002) and reduced the integral dose by 13.4 Gy (P=0.0001). V(95%) and the integral dose improved with five vs three beams and seven vs five beams, but did not change with nine vs seven beams. There was no effect of beam number on EUD. There was no difference in V(95%) (P=0.54), integral dose (P=0.44) or EUD (P=0.47) for beam arrangement used. Segments per plan increased by a factor of 1.5 with each addition of two beams to a plan, and by a factor of 2.5 for 2.5 mm MLC plans vs 10 mm MLC plans. CONCLUSIONS We present evidence-based planning solutions for skull base intensity-modulated radiotherapy, and show that 2.5 mm MLC and five to seven beams can achieve safe dose escalation up to 60 Gy. This must be balanced with an increase in segmentation, which will increase treatment times.
Collapse
Affiliation(s)
- V J Estall
- PeterMac Cancer Centre, East Melbourne, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
143
|
Perrin R, Evans PM, Webb S, Partridge M. The use of PET images for radiotherapy treatment planning: An error analysis using radiobiological endpoints. Med Phys 2010; 37:516-31. [DOI: 10.1118/1.3276776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
144
|
Liao Y, Joiner M, Huang Y, Burmeister J. Hypofractionation: what does it mean for prostate cancer treatment? Int J Radiat Oncol Biol Phys 2010; 76:260-8. [PMID: 19879698 DOI: 10.1016/j.ijrobp.2009.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/26/2009] [Accepted: 06/01/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE Using current radiobiologic models and biologic parameters, we performed an exploratory study of the clinical consequences of hypofractionation in prostate cancer radiotherapy. METHODS AND MATERIALS Four hypofractionated treatment regimens were compared with standard fractionation of 2 Gy x 39 for prostate carcinoma using a representative set of anatomical structures. The linear-quadratic model and generalized equivalent uniform dose formalism were used to calculate normalized equivalent uniform dose (gEUD(2)), from which tumor control probability and normal tissue complication probability were calculated, as well as "complication-free tumor control probability" (P+). The robustness of the results was tested for various tumor alpha/beta values and broad interval of biologic parameters such as surviving fraction after a dose of 2 Gy (SF2). RESULTS A 2.5% and 5.8% decrease in NTCP for rectum and bladder, respectively, was predicted for the 6.5 Gy/fraction regimen compared with the 2 Gy/fraction. Conversely, TCP for hypofractionated regimens decreased significantly with increasing SF2 and alpha/beta. For tumor cells with SF2 = 0.4-0.5, P+ was superior for nearly all hypofractionated regimens even for alpha/beta values up to 6.5 Gy. For less responsive tumor cells (SF2 = 0.6), hypofractionation regimens were inferior to standard fractionation at much lower alpha/beta. CONCLUSION For a sample set of anatomical structures, existing radiobiologic data and models predict improved clinical results from hypofractionation over standard fractionation not only for prostate carcinoma with low alpha/beta but also for high alpha/beta (up to 6.5 Gy) when SF2 < 0.5. Predicted results for specific patients may vary with individual anatomy, and large-scale clinical conclusions can be drawn only after performing similar analysis on an appropriate population of patients.
Collapse
Affiliation(s)
- Yixiang Liao
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA.
| | | | | | | |
Collapse
|
145
|
Lee HP, Foskey M, Levy J, Saboo R, Chaney E. Image estimation from marker locations for dose calculation in prostate radiation therapy. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2010; 13:335-342. [PMID: 20879417 PMCID: PMC4280082 DOI: 10.1007/978-3-642-15711-0_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tracking implanted markers in the prostate during each radiation treatment delivery provides an accurate approximation of prostate location, which enables the use of higher daily doses with tighter margins of the treatment beams and thus improves the efficiency of the radiotherapy. However, the lack of 3D image data with such a technique prevents calculation of delivered dose as required for adaptive planning. We propose to use a reference statistical shape model generated from the planning image and a deformed version of the reference model fitted to the implanted marker locations during treatment to estimate a regionally dense deformation from the planning space to the treatment space. Our method provides a means of estimating the treatment image by mapping planning image data to treatment space via the deformation field and therefore enables the calculation of dose distributions with marker tracking techniques during each treatment delivery.
Collapse
Affiliation(s)
- Huai-Ping Lee
- Dept. of Computer Science, University of North Carolina at Chapel Hill, USA
| | | | | | | | | |
Collapse
|
146
|
|
147
|
Dose-escalation using intensity-modulated radiotherapy for prostate cancer – Evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol 2009; 93:213-9. [DOI: 10.1016/j.radonc.2009.07.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/21/2022]
|
148
|
Simple carotid-sparing intensity-modulated radiotherapy technique and preliminary experience for T1-2 glottic cancer. Int J Radiat Oncol Biol Phys 2009; 77:455-61. [PMID: 19679406 DOI: 10.1016/j.ijrobp.2009.04.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. METHODS AND MATERIALS Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. RESULTS Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. CONCLUSIONS Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.
Collapse
|
149
|
Tamborra P, Simeone G, Carioggia E. SORS: a new software for the simulation of radiotherapy schedule. Med Dosim 2009; 35:208-13. [PMID: 19931032 DOI: 10.1016/j.meddos.2009.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 11/26/2022]
Abstract
We present a software for choosing the best radiotherapy treatment schedule for head and neck cancers as a beginning radiotherapy plan or a temporarily interrupted plan. Its application occurs according to two modalities: the first adopts the best estimates for model parameters; the second takes into account the parameters' uncertainty too. In both cases, the choice becomes the schedule with the highest uncomplicated tumor control probability (UTCP). In the UTCP valuation, the normal tissue complication probability (NTCP) of each organ is related to the gravity of its possible late injury. For NTCP calculation, it has been adopted the empirical LKB (Lyman-Kutcher-Burman) model corrected for dose/fraction via linear-quadratic model and the incomplete repair effect. The tumor control probability (TCP) model is Poisson based and contains corrections for dose/fraction and regrowth effect; optionally, it can be accounted for the incomplete repair effect as well. At the end of processing, a detailed file with all informations about UTCP, TCP and single organ NTCP is furnished for every examined schedule. Moreover, a useful 3-D graphic representation of the schedule's UTCP is available, allowing the physician to easily understand the schedules with the highest radiotherapeutic efficacy. The open source characteristic allows the program to adapt to the individual clinical case as well as to be a valid support in radiobiological research.
Collapse
Affiliation(s)
- Pasquale Tamborra
- U.O. Fisica Sanitaria, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | | |
Collapse
|
150
|
Liu D, Ajlouni M, Jin JY, Ryu S, Siddiqui F, Patel A, Movsas B, Chetty IJ. Analysis of outcomes in radiation oncology: an integrated computational platform. Med Phys 2009; 36:1680-9. [PMID: 19544785 DOI: 10.1118/1.3114022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use.
Collapse
Affiliation(s)
- Dezhi Liu
- Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | |
Collapse
|