Stroom JC, Kroonwijk M, Pasma KL, Koper PC, van Dieren EB, Heijmen BJ. Detection of internal organ movement in prostate cancer patients using portal images.
Med Phys 2000;
27:452-61. [PMID:
10757597 DOI:
10.1118/1.598913]
[Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous research has indicated that the appearance of large gas pockets in portal images of prostate cancer patients might imply internal prostate motion. This was verified with simulations based on multiple computed tomography (CT) data for 15 patients treated in supine position. Apart from the planning CT scan, three extra scans were made during treatment. The clinical target volume (CTV) and the rectum were outlined in all scans. Lateral portal images were simulated from the CT data and difference images were calculated for all possible combinations of CT scans per patient; each scan was used both as reference and repeat scan but gas pockets in the reference scan were removed. Gas pockets in a repeat CT scan then show up as black areas in a difference image. Due to gravity, they normally appear in the ventral part of the rectum. The distances between the ventral edge of a gas pocket in a difference image and the projection of the delineated ventral rectum wall in the reference scan were calculated. These distances were correlated with the "true" rectum wall shifts (determined from direct comparison of the rectum delineations in reference and repeat scan) and with CTV movements determined by three-dimensional chamfer matching. Gas pockets occurred in 23% of cases. Nevertheless, about 50% of rectum wall shifts larger than 5 mm could be detected because they were associated with gas pockets with a lateral diameter > 2 cm. When gas pockets were visible in the repeat scan, rectum wall shifts could be accurately detected by the ventral gas pocket edge in the difference images (r= 0.97). The shift of the rectum wall as detected from gas pockets also correlated significantly with the anterior-posterior shift of the center of mass of the CTV (r=0.88). In conclusion, the simulations showed that lateral pelvic images contain more information than the bony structures that are normally used for setup verification. If large gas pockets appear in those images, a quantitative estimate of the position of prostate and rectum wall can be obtained by determination of the ventral edge of the gas pocket.
Collapse