101
|
Alfieri C, Gambetta MC, Matos R, Glatt S, Sehr P, Fraterman S, Wilm M, Müller J, Müller CW. Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements. Genes Dev 2013; 27:2367-79. [PMID: 24186981 PMCID: PMC3828522 DOI: 10.1101/gad.226621.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polycomb group (PcG) complexes repress developmental regulator genes by modifying their chromatin. However, how PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, Alfieri et al. report the crystal structure of the core of the PcG complex PhoRC, which contains the DNA-binding protein Pho and corepressor Sfmbt. The authors show that tethering of Sfmbt by Pho to Polycomb response elements is essential for Polycomb repression of developmental regulator genes in Drosophila. This study thus reveals the molecular basis for PcG protein complex assembly at specific genomic sites. Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.
Collapse
Affiliation(s)
- Claudio Alfieri
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Wu H, Zeng H, Dong A, Li F, He H, Senisterra G, Seitova A, Duan S, Brown PJ, Vedadi M, Arrowsmith CH, Schapira M. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS One 2013; 8:e83737. [PMID: 24367611 PMCID: PMC3868588 DOI: 10.1371/journal.pone.0083737] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.
Collapse
Affiliation(s)
- Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (CHA); (MS)
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (CHA); (MS)
| |
Collapse
|
103
|
Li T, Cai J, Ding H, Xu L, Yang Q, Wang Z. EZH2 participates in malignant biological behavior of epithelial ovarian cancer through regulating the expression of BRCA1. Cancer Biol Ther 2013; 15:271-8. [PMID: 24335192 DOI: 10.4161/cbt.27306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aberrant overexpression of the enhancer of zeste homolog 2 (EZH2), a histone methyltransferase inhibiting targets expression via epigenetic mechanisms, is associated with an invasive phenotype and drug resistance in ovarian cancer. Breast cancer 1 (BRCA1) gene is a well-recognized tumor suppressor, whose downregulation plays a key role in the development of ovarian cancer. In the present study, we found depletion of EZH2 increased BRCA1 protein expression and promoted its nuclear translocation, but decreased BRCA1 mRNA expression. Treatment with the Akt-1 activator insulin-like growth factor-1 (IGF-1) prevented EZH2-induced BRCA1 nuclear/cytoplasmic shuttling. Loss of BRCA1 partially rescued the effects of EZH2 downregulation on proliferation, G 2/M transition, and migration in ovarian cancer cells. However, in a cisplatin-resistant sub-line of A2780 (A2780/DDP), both EZH2 and BRCA1 were overexpressed compared with parental A2780 cells and depletion of EZH2 reduced BRCA1 expression at both mRNA and protein levels. Downregulation of EZH2 or BRCA1 sensitized A2780/DDP cells to cisplatin, whereas simultaneous inhibition of them only resulted in modest resensitization instead of showing any synergistic effect because EZH2 expression was reactivated when BRCA1 expression was very low. Accordingly, our results suggest the expression of BRCA1 is modulated by EZH2 in epithelial ovarian cancer and BRCA1 is required for the effects of EZH2 downregulation on biological behaviors of tumor cells.
Collapse
Affiliation(s)
- Tao Li
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| | - Jing Cai
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| | - Hui Ding
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| | - Linjuan Xu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| | - Qiang Yang
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| | - Zehua Wang
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, PR China
| |
Collapse
|
104
|
Balboula AZ, Stein P, Schultz RM, Schindler K. Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Cell Cycle 2013; 13:600-11. [PMID: 24317350 DOI: 10.4161/cc.27410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During mouse oocyte maturation histones are deacetylated, and inhibiting this deacetylation leads to abnormal chromosome segregation and aneuploidy. RBBP7 is a component of several different complexes that contain histone deacetylases, and therefore could be implicated in histone deacetylation. We find that Rbbp7 is a dormant maternal mRNA that is recruited for translation during oocyte maturation to regulate the histone deacetylation. Importantly, we show that the maturation-associated decrease of histone acetylation is required for localization and function of the chromosomal passenger complex (CPC) during oocyte meiotic maturation. This finding can explain the phenotypes of oocytes where Rbbp7 is depleted by an siRNA/morpholino cocktail including severe chromosome misalignment, improper kinetochore-microtubule attachments, impaired SAC function, cytokinesis defects, and increased incidence of aneuploidy at metaphase II (Met II). These results implicate RBBP7 as a novel regulator of histone deacetylation during oocyte maturation and provide evidence that such deacetylation is required for proper chromosome segregation by regulating localized CPC function.
Collapse
Affiliation(s)
- Ahmed Z Balboula
- Department of Genetics; Rutgers; The State University of New Jersey; Piscataway, NJ USA; Department of Biology; University of Pennsylvania; Philadelphia, PA USA; Theriogenology Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura, Egypt
| | - Paula Stein
- Department of Biology; University of Pennsylvania; Philadelphia, PA USA
| | - Richard M Schultz
- Department of Biology; University of Pennsylvania; Philadelphia, PA USA
| | - Karen Schindler
- Department of Genetics; Rutgers; The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
105
|
Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 2013; 14:853-64. [PMID: 24217316 DOI: 10.1038/nrg3603] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic repressors that are essential for the transcriptional control of cell differentiation and development. PcG-mediated repression is associated with specific post-translational histone modifications and is thought to involve both biochemical and physical modulation of chromatin structure. Recent advances show that PcG complexes comprise a multiplicity of variants and are far more biochemically diverse than previously thought. The importance of these new PcG complexes for normal development and disease, their targeting mechanisms and their shifting roles in the course of differentiation are now the subject of investigation and the focus of this Review.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Byggnad 6L, Norrlands University Hospital, 901 87 Umeå, Sweden
| | | |
Collapse
|
106
|
Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 2013; 33:5005-20. [PMID: 24144980 DOI: 10.1128/mcb.00866-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X chromosome inactivation is a remarkable example of chromosome-wide gene silencing and facultative heterochromatin formation. Numerous histone posttranslational modifications, including H3K9me2 and H3K27me3, accompany this process, although our understanding of the enzymes that lay down these marks and the factors that bind to them is still incomplete. Here we identify Cdyl, a chromodomain-containing transcriptional corepressor, as a new chromatin-associated protein partner of the inactive X chromosome (Xi). Using mouse embryonic stem cell lines with mutated histone methyltransferase activities, we show that Cdyl relies on H3K9me2 for its general association with chromatin in vivo. For its association with Xi, Cdyl requires the process of differentiation and the presence of H3K9me2 and H3K27me3, which both become chromosomally enriched following Xist RNA coating. We further show that the removal of the PRC2 component Eed and subsequent loss of H3K27me3 lead to a reduction of both Cdyl and H3K9me2 enrichment on inactive Xi. Finally, we show that Cdyl associates with the H3K9 histone methyltransferase G9a and the MGA protein, both of which are also found on Xi. We propose that the combination of H3K9me2 and H3K27me3 recruits Cdyl to Xi, and this, in turn, may facilitate propagation of the H3K9me2 mark by anchoring G9a.
Collapse
|
107
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
108
|
Elements of the polycomb repressor SU(Z)12 needed for histone H3-K27 methylation, the interface with E(Z), and in vivo function. Mol Cell Biol 2013; 33:4844-56. [PMID: 24100017 DOI: 10.1128/mcb.00307-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is an essential chromatin-modifying enzyme that implements gene silencing. PRC2 methylates histone H3 on lysine-27 and is conserved from plants to flies to humans. In Drosophila melanogaster, PRC2 contains four core subunits: E(Z), SU(Z)12, ESC, and NURF55. E(Z) bears a SET domain that houses the enzyme active site. However, PRC2 activity depends upon critical inputs from SU(Z)12 and ESC. The stimulatory mechanisms are not understood. We present here functional dissection of the SU(Z)12 subunit. SU(Z)12 contains two highly conserved domains: an ∼140-amino-acid VEFS domain and a Cys2-His2 zinc finger (ZnF). Analysis of recombinant PRC2 bearing VEFS domain alterations, including some modeled after leukemia mutations, identifies distinct elements needed for SU(Z)12 assembly with E(Z) and stimulation of histone methyltransferase. The results define an extensive VEFS subdomain that organizes the SU(Z)12-E(Z) interface. Although the SU(Z)12 ZnF is not needed for methyltransferase in vitro, genetic rescue assays show that the ZnF is required in vivo. Chromatin immunoprecipitations reveal that this ZnF facilitates PRC2 binding to a genomic target. This study defines functionally critical SU(Z)12 elements, including key determinants of SU(Z)12-E(Z) communication. Together with recent findings, this illuminates PRC2 modulation by conserved inputs from its noncatalytic subunits.
Collapse
|
109
|
EED gene polymorphism in patients with colorectal cancer. Int J Biol Markers 2013; 28:274-9. [PMID: 23709348 DOI: 10.5301/jbm.5000024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Our previous work indicated that, first, the embryonic ectoderm development (EED) gene is a candidate gene associated with the pathogenesis of ulcerative colitis (UC) and, second, that the haplotypes of the EED polymorphism are one of the markers for UC susceptibility. The risk of developing colorectal cancer (CRC) increases in patients with inflammatory bowel disease.
AIM The present study aimed at determining the association between polymorphisms in the EED gene and CRC.
METHODS Genotype analysis of EED single nucleotide polymorphisms (SNPs) was performed with high-resolution melting analysis, and the genotype and allele frequencies of the EED SNPs were compared between CRC patients and healthy controls. The haplotype frequencies of EED for multiple loci were estimated using the expectation maximization (EM) algorithm.
RESULTS Our study had a power of 76.6% at a 0.05 significance level. Genotype and allele frequencies of the SNPs and haplotype frequencies of the EED gene in CRC patients were not significantly different from those in healthy controls. Only the allele frequency of g.-1850G>C in the rectal cancer (RC) patient group was significantly different from that of the control group (p=0.04). Similarly, the genotype and allelic frequencies of the EED SNPs for either tumor site (left or right) or tumor stage were not significantly different from those in healthy controls. However, our data show an association between the g.-993G>C polymorphism in the EED gene and the presence of lymph node metastasis in CRC.
CONCLUSIONS These results suggest that the SNPs of the EED gene might not be associated with susceptibility to CRC. However, this study shows that the allele frequency of g.-1850G>C in the RC patient group was significantly different from that in the control group (p=0.04) and that g.-993G>C may play a role in the lymph node metastatic process of CRC.
Collapse
|
110
|
Jedrusik-Bode M. Histone H1 and heterochromatin protein 1 (HP1) regulate specific gene expression and not global transcription. WORM 2013; 2:e23703. [PMID: 24058872 PMCID: PMC3704446 DOI: 10.4161/worm.23703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 02/01/2023]
Abstract
The highly conserved Hox transcription factors define positional identity along the anterior-posterior body axis during development. Inappropriate expression of Hox genes causes homeotic transformation, which leads to abnormal development of a specific region or segment. C. elegans offers an excellent model for studying factors required for the establishment of the spatially-restricted expression of Hox genes. We have recently identified chromatin factors, including a linker histone (H1) variant, HIS-24 and heterochromatin protein 1 (HP1) homolog, HPL-2, which contribute to the regulation of specific Hox gene expression through their binding to the repressive mark, H3K27me3. Furthermore, HIS-24 and HPL-2 act in a parallel pathway as members of the evolutionally conserved Polycomb group (PcG) silencing complex, MES-2/3/6. By microarray analysis, we found that HIS-24 and HPL-2 are not global transcriptional repressors as suggested by early studies, but rather are fine tuners of selected genes. Here, we discuss how HIS-24 and HPL-2 are responsible for the repression of specific genes in C. elegans. We suggest possible mechanisms for such an unanticipated function of an individual H1 variant and HP1 in the transcriptional repression of Hox genes.
Collapse
Affiliation(s)
- Monika Jedrusik-Bode
- Max Planck Institute for Biophysical Chemistry; Epigenetics in C elegans Group; Göttingen, Germany
| |
Collapse
|
111
|
Bosch-Presegué L, Vaquero A. Sirtuins in stress response: guardians of the genome. Oncogene 2013; 33:3764-75. [DOI: 10.1038/onc.2013.344] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
|
112
|
Chen X, Song N, Matsumoto K, Nanashima A, Nagayasu T, Hayashi T, Ying M, Endo D, Wu Z, Koji T. High expression of trimethylated histone H3 at lysine 27 predicts better prognosis in non-small cell lung cancer. Int J Oncol 2013; 43:1467-80. [PMID: 23969945 DOI: 10.3892/ijo.2013.2062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
Epigenetic parameters such as DNA methylation and histone modifications play pivotal roles in carcinogenesis. Global histone modification patterns have been implicated as possible predictors of cancer recurrence and prognoses in a great variety of tumor entities. Our study was designed to evaluate the association among trimethylated histone H3 at lysine 27 (H3K27me3), clinicopathological variables and outcome in early-stage non-small cell lung cancer (NSCLC). The expression of H3K27me3 and its methyl-transferase, enhancer of zeste homolog 2 (EZH2) together with proliferating cell nuclear antigen (PCNA) were evaluated by immunohistochemistry in normal lung tissue (n=5) and resected NSCLC patients (n=42). In addition, the specificity of antibody for H3K27me3 was tested by western blot analysis. The optimal cut-off point of H3K27me3 expression for prognosis was determined by the X-tile program. The prognostic significance was determined by means of Kaplan-Meier survival estimates and log-rank tests. As a result, enhanced trimethylation of H3K27me3 was correlated with longer overall survival (OS) and better prognosis (P<0.05). Moreover, both univariate and multivariate analyses indicated that H3K27me3 level was a significant and independent predictor of better survival (hazard ratio, 0.187; 95% confidence interval, 0.066-0.531, P=0.002). Furthermore, H3K27me3 expression was positively correlated with DNA methylation level at CCGG sites while reversely related to EZH2 expression (P<0.05). In conclusion, H3K27me3 level defines unrecognized subgroups of NSCLC patients with distinct epigenetic phenotype and clinical outcome, and can probably be used as a novel predictor for better prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1. Proc Natl Acad Sci U S A 2013; 110:14729-34. [PMID: 23959866 DOI: 10.1073/pnas.1216844110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) gene are associated to early-onset recessive forms of Parkinson disease. PINK1 function is related to mitochondria homeostasis, but the molecular pathways in which PINK1 is involved are largely unknown. Here, we report the identification of the embryonic ectoderm development polycomb histone-methylation modulator (EED/WAIT1) as a PINK1-interacting and -regulated protein. The PINK1:EED/WAIT1 physical interaction was mediated by the PINK1 kinase domain and the EED/WAIT1 40 amino acid ending with tryptophan and aspartate (WD40)-repeat region, and PINK1 phosphorylated EED/WAIT1 in vitro. PINK1 associated with EED/WAIT1 in cells and relocated EED/WAIT1 to the mitochondria. This interaction reduced the trimethylation of lysine 27 from histone H3, which affected polycomb-regulated gene transcription during RA differentiation of SH-SY5Y human neuroblastoma cells. Our findings unveil a pathway by which PINK1 regulates histone methylation and gene expression through the polycomb repressor complex.
Collapse
|
114
|
Mujtaba S, Winer BY, Jaganathan A, Patel J, Sgobba M, Schuch R, Gupta YK, Haider S, Wang R, Fischetti VA. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages. J Biol Chem 2013; 288:23458-72. [PMID: 23720780 PMCID: PMC5395026 DOI: 10.1074/jbc.m113.467696] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Toxins play a major role in the pathogenesis of Bacillus anthracis by subverting the host defenses. However, besides toxins, B. anthracis expresses effector proteins, whose role in pathogenesis are yet to be investigated. Here we present that suppressor-of-variegation, enhancer-of-zeste, trithorax protein from B. anthracis (BaSET) methylates human histone H1, resulting in repression of NF-κB functions. Notably, BaSET is secreted and undergoes nuclear translocation to enhance H1 methylation in B. anthracis-infected macrophages. Compared with wild type Sterne, delayed growth kinetics and altered septum formation were observed in the BaSET knock-out (BaΔSET) bacilli. Uncontrolled BaSET expression during complementation of the BaSET gene in BaΔSET partially restored growth during stationary phase but resulted in substantially shorter bacilli throughout the growth cycle. Importantly, in contrast to Sterne, the BaΔSET B. anthracis is avirulent in a lethal murine bacteremia model of infection. Collectively, BaSET is required for repression of host transcription as well as proper B. anthracis growth, making it a potentially unique virulence determinant.
Collapse
Affiliation(s)
| | - Benjamin Y. Winer
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| | | | | | - Miriam Sgobba
- the Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Raymond Schuch
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| | | | - Shozeb Haider
- the Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Rong Wang
- the Department of Genetics and Genomics Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| |
Collapse
|
115
|
Přikrylová T, Pacherník J, Kozubek S, Bártová E. Epigenetics and chromatin plasticity in embryonic stem cells. World J Stem Cells 2013; 5:73-85. [PMID: 23951389 PMCID: PMC3744133 DOI: 10.4252/wjsc.v5.i3.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Terézia Přikrylová
- Terézia Přikrylová, Stanislav Kozubek, Eva Bártová, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
116
|
Zhang J, Bonasio R, Strino F, Kluger Y, Holloway JK, Modzelewski AJ, Cohen PE, Reinberg D. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev 2013; 27:749-66. [PMID: 23592795 DOI: 10.1101/gad.210963.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SFMBT1 (Scm [Sex comb on midleg] with four MBT [malignant brain tumor] domains 1) is a poorly characterized mammalian MBT domain-containing protein homologous to Drosophila SFMBT, a Polycomb group protein involved in epigenetic regulation of gene expression. Here, we show that SFMBT1 regulates transcription in somatic cells and during spermatogenesis through the formation of a stable complex with LSD1 and CoREST. When bound to its gene targets, SFMBT1 recruits its associated proteins and causes chromatin compaction and transcriptional repression. SFMBT1, LSD1, and CoREST share a large fraction of target genes, including those encoding replication-dependent histones. Simultaneous occupancy of histone genes by SFMBT1, LSD1, and CoREST is regulated during the cell cycle and correlates with the loss of RNA polymerase II at these promoters during G2, M, and G1. The interplay between the repressive SFMBT1-LSD1-CoREST complex and RNA polymerase II contributes to the timely transcriptional regulation of histone genes in human cells. SFMBT1, LSD1, and CoREST also form a stable complex in germ cells, and their chromatin binding activity is regulated during spermatogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
118
|
Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49:808-24. [PMID: 23473600 DOI: 10.1016/j.molcel.2013.02.013] [Citation(s) in RCA: 542] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin modification by Polycomb proteins provides an essential strategy for gene silencing in higher eukaryotes. Polycomb repressive complexes (PRCs) silence key developmental regulators and are centrally integrated in the transcriptional circuitry of stem cells. PRC2 trimethylates histone H3 on lysine 27 (H3K27me3), and PRC1-type complexes ubiquitylate histone H2A and compact polynucleosomes. How PRCs are deployed to select and silence genomic targets is the subject of intense investigation. We review advances on targeting, modulation, and functions of PRC1 and PRC2 and progress on defining the transcriptional steps they impact. Recent findings emphasize PRC1 targeting independent of H3K27me3, nonenzymatic PRC1-mediated compaction, and connections between PRCs and noncoding RNAs. Systematic analyses of Polycomb complexes and associated histone modifications during DNA replication and mitosis have also emerged. The stage is now set to reveal fundamental epigenetic mechanisms that determine how Polycomb target genes are silenced and how Polycomb silence is preserved through cell-cycle progression.
Collapse
|
119
|
Horiuchi KY, Eason MM, Ferry JJ, Planck JL, Walsh CP, Smith RF, Howitz KT, Ma H. Assay development for histone methyltransferases. Assay Drug Dev Technol 2013; 11:227-36. [PMID: 23557020 DOI: 10.1089/adt.2012.480] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications play a crucial role in human diseases. Unlike genetic mutations, however, they do not change the underlying DNA sequences. Epigenetic phenomena have gained increased attention in the field of cancer research, with many studies indicating that they are significantly involved in tumor establishment and progression. Histone methyltransferases (HMTs) are a large group of enzymes that specifically methylate protein lysine and arginine residues, especially in histones, using S-adenosyl-L-methionine (SAM) as the methyl donor. However, in general, HMTs have no widely accepted high-throughput screening (HTS) assay format, and reference inhibitors are not available for many of the enzymes. In this study, we describe the application of a miniaturized, radioisotope-based reaction system: the HotSpot(SM) platform for methyltransferases. Since this platform employs tritiated SAM as a cofactor, it can be applied to the assay of any HMT. The key advantage of this format is that any substrate can be used, including peptides, proteins, or even nucleosomes, without the need for labeling or any other modifications. Using this platform, we have determined substrate specificities, characterized enzyme kinetics, performed compound profiling for both lysine and arginine methyltransferases, and carried out HTS for a small-library LOPAC against DOT1L. After hit confirmation and profiling, we found that suramin inhibited DOT1L, NSD2, and PRMT4 with IC₅₀ values at a low μM range.
Collapse
Affiliation(s)
- Kurumi Y Horiuchi
- Department of Biochemistry, Reaction Biology Corporation, One Great Valley Parkway, Suite 2, Malvern, PA 19355, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Grzenda A, Lomberk G, Svingen P, Mathison A, Calvo E, Iovanna J, Xiong Y, Faubion W, Urrutia R. Functional characterization of EZH2β reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression. Epigenetics Chromatin 2013; 6:3. [PMID: 23448518 PMCID: PMC3606351 DOI: 10.1186/1756-8935-6-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Histone methyltransferase enhancer of zeste homologue 2 (EZH2) forms an obligate repressive complex with suppressor of zeste 12 and embryonic ectoderm development, which is thought, along with EZH1, to be primarily responsible for mediating Polycomb-dependent gene silencing. Polycomb-mediated repression influences gene expression across the entire gamut of biological processes, including development, differentiation and cellular proliferation. Deregulation of EZH2 expression is implicated in numerous complex human diseases. To date, most EZH2-mediated function has been primarily ascribed to a single protein product of the EZH2 locus. RESULTS We report that the EZH2 locus undergoes alternative splicing to yield at least two structurally and functionally distinct EZH2 methyltransferases. The longest protein encoded by this locus is the conventional enzyme, which we refer to as EZH2α, whereas EZH2β, characterized here, represents a novel isoform. We find that EZH2β localizes to the cell nucleus, complexes with embryonic ectoderm development and suppressor of zeste 12, trimethylates histone 3 at lysine 27, and mediates silencing of target promoters. At the cell biological level, we find that increased EZH2β induces cell proliferation, demonstrating that this protein is functional in the regulation of processes previously attributed to EZH2α. Biochemically, through the use of genome-wide expression profiling, we demonstrate that EZH2β governs a pattern of gene repression that is often ontologically redundant from that of EZH2α, but also divergent for a wide variety of specific target genes. CONCLUSIONS Combined, these results demonstrate that an expanded repertoire of EZH2 writers can modulate histone code instruction during histone 3 lysine 27-mediated gene silencing. These data support the notion that the regulation of EZH2-mediated gene silencing is more complex than previously anticipated and should guide the design and interpretation of future studies aimed at understanding the biochemical and biological roles of this important family of epigenomic regulators.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Zhang W, Tyl M, Ward R, Sobott F, Maman J, Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, EL-Mkami H, Murzina NV, Norman D, Laue ED. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol 2013; 20:29-35. [PMID: 23178455 PMCID: PMC3538076 DOI: 10.1038/nsmb.2446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marek Tyl
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Richard Ward
- Nucleic Acids Research Group, School of Life Sciences, MSI/WTB Complex, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Frank Sobott
- Department of Chemistry, Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Maman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Andal S. Murthy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Aleksandra A. Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Oleg Fedorov
- The Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Andrew Bowman
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Hassane EL-Mkami
- Millimetre wave and EPR Group, School of Physics and Astronomy , University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom
| | - Natalia V. Murzina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - David Norman
- Nucleic Acids Research Group, School of Life Sciences, MSI/WTB Complex, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| |
Collapse
|
122
|
|
123
|
Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2012; 27:523-33. [PMID: 23257781 DOI: 10.1038/leu.2012.368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.
Collapse
|
124
|
Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338:1465-9. [PMID: 23239736 DOI: 10.1126/science.1227604] [Citation(s) in RCA: 684] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Kexin Xu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Ciferri C, Lander GC, Maiolica A, Herzog F, Aebersold R, Nogales E. Molecular architecture of human polycomb repressive complex 2. eLife 2012; 1:e00005. [PMID: 23110252 PMCID: PMC3482686 DOI: 10.7554/elife.00005] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/13/2012] [Indexed: 12/18/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is essential for gene silencing, establishing transcriptional repression of specific genes by tri-methylating Lysine 27 of histone H3, a process mediated by cofactors such as AEBP2. In spite of its biological importance, little is known about PRC2 architecture and subunit organization. Here, we present the first three-dimensional electron microscopy structure of the human PRC2 complex bound to its cofactor AEBP2. Using a novel internal protein tagging-method, in combination with isotopic chemical cross-linking and mass spectrometry, we have localized all the PRC2 subunits and their functional domains and generated a detailed map of interactions. The position and stabilization effect of AEBP2 suggests an allosteric role of this cofactor in regulating gene silencing. Regions in PRC2 that interact with modified histone tails are localized near the methyltransferase site, suggesting a molecular mechanism for the chromatin-based regulation of PRC2 activity.DOI:http://dx.doi.org/10.7554/eLife.00005.001.
Collapse
Affiliation(s)
- Claudio Ciferri
- Department of Molecular and Cell Biology , University of California , Berkeley , United States
| | | | | | | | | | | |
Collapse
|
126
|
EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012; 48:572-86. [PMID: 23063525 DOI: 10.1016/j.molcel.2012.09.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.
Collapse
|
127
|
Casa V, Gabellini D. A repetitive elements perspective in Polycomb epigenetics. Front Genet 2012; 3:199. [PMID: 23060903 PMCID: PMC3465993 DOI: 10.3389/fgene.2012.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non-functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression, and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome re-arrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements' activity is fundamental. Polycomb group (PcG) proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins. Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.
Collapse
Affiliation(s)
- Valentina Casa
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute and San Raffaele Scientific Institute Milano, Italy ; Università Vita-Salute San Raffaele Milano, Italy
| | | |
Collapse
|
128
|
Marchesi I, Fiorentino FP, Rizzolio F, Giordano A, Bagella L. The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation. Cell Cycle 2012; 11:3828-36. [PMID: 22983009 DOI: 10.4161/cc.22025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric tumor that arises from muscle precursor cells. RMS cells express several markers of early myogenic differentiation, but they fail to complete both differentiation program and cell cycle arrest, resulting in uncontrolled proliferation and incomplete myogenesis. Previous studies showed that EZH2, which is involved in both differentiation and cancer progression, is overexpressed in RMS, but a functional binding between its expression and its functional role in tumor formation or progression has not yet been demonstrated. We hypothesized that EZH2 is a key regulator of muscular differentiation program in RMS cells. In this study, we demonstrated that EZH2 directly binds muscle specific genes in RD cells. Silencing of EZH2 promotes the recruitment of a multiprotein complex at muscle-specific promoters, their transcriptional activation and protein expression. Moreover, we demonstrated that EZH2 is directly involved in transcriptional repression of MyoD, the main factor promoting myogenesis. EZH2 ablation induces MyoD activation the recovery of its binding on muscle-specific genes.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences, Division of Biochemistry and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
129
|
Abstract
Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.
Collapse
|
130
|
O'Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 2012; 37:466-76. [PMID: 22959736 DOI: 10.1016/j.tibs.2012.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 02/01/2023]
Abstract
During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
131
|
Valencia-Morales MDP, Camas-Reyes JA, Cabrera-Ponce JL, Alvarez-Venegas R. The Arabidopsis thaliana SET-domain-containing protein ASHH1/SDG26 interacts with itself and with distinct histone lysine methyltransferases. JOURNAL OF PLANT RESEARCH 2012; 125:679-692. [PMID: 22438063 DOI: 10.1007/s10265-012-0485-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have central roles in cell proliferation, growth and development. In animals, PcG and trxG proteins form higher order protein complexes that contain SET domain proteins with histone methyltransferase activity, and are responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. However, whether H3K4 methyltransferase complexes exist in Arabidopsis thaliana remains unknown. Here, we make use of the yeast two-hybrid system and the bimolecular fluorescence complementation assay to provide evidence for the self-association of the Arabidopsis thaliana SET-domain-containing protein SET DOMAIN GROUP 26 (SDG26), also known as ABSENT, SMALL, OR HOMEOTIC DISCS 1 HOMOLOG 1 (ASHH1). In addition, we show that the ASHH1 protein associates with SET-domain-containing sequences from two distinct histone lysine methyltransferases, the ARABIDOPSIS HOMOLOG OF TRITHORAX-1 (ATX1) and ASHH2 proteins. Furthermore, after screening a cDNA library we found that ASHH1 interacts with two proteins from the heat shock protein 40 kDa (Hsp40/DnaJ) superfamily, thus connecting the epigenetic network with a system sensing external cues. Our findings suggest that trxG complexes in Arabidopsis thaliana could involve different sets of histone lysine methyltransferases, and that these complexes may be engaged in multiple developmental processes in Arabidopsis.
Collapse
Affiliation(s)
- María del Pilar Valencia-Morales
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, C.P. 36821, Irapuato, Guanajuato, Mexico
| | | | | | | |
Collapse
|
132
|
|
133
|
Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol Cell Biol 2012; 32:4044-52. [PMID: 22851697 DOI: 10.1128/mcb.00513-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
JMJD5 is a Jumonji C (JmjC) protein that has been implicated in breast cancer tumorigenesis, circadian rhythm regulation, embryological development, and osteoclastogenesis. Recently, JMJD5 (also called KDM8) has been reported to demethylate dimethylated Lys-36 in histone H3 (H3K36me2), regulating genes that control cell cycle progression. Here, we report high-resolution crystal structures of the human JMJD5 catalytic domain in complex with the substrate 2-oxoglutarate (2-OG) and the inhibitor N-oxalylglycine (NOG). The structures reveal a β-barrel fold that is conserved in the JmjC family and a long shallow cleft that opens into the enzyme's active site. A comparison with other JmjC enzymes illustrates that JMJD5 shares sequence and structural homology with the asparaginyl and histidinyl hydroxylase FIH-1 (factor inhibiting hypoxia-inducible factor 1 [HIF-1]), the lysyl hydroxylase JMJD6, and the RNA hydroxylase TYW5 but displays limited homology to JmjC lysine demethylases (KDMs). Contrary to previous findings, biochemical assays indicate that JMJD5 does not display demethylase activity toward methylated H3K36 nor toward the other methyllysines in the N-terminal tails of histones H3 and H4. Together, these results imply that JMJD5 participates in roles independent of histone demethylation and may function as a protein hydroxylase given its structural homology with FIH-1 and JMJD6.
Collapse
|
134
|
Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 2012; 120:e17-27. [PMID: 22802335 DOI: 10.1182/blood-2011-12-397844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We recently generated 2 phenotypically similar Hoxa9+Meis1 overexpressing acute myeloid leukemias that differ by their in vivo biologic behavior. The first leukemia, named FLA2, shows a high frequency of leukemia stem cells (LSCs; 1 in 1.4 cells), whereas the second, FLB1, is more typical with a frequency of LSCs in the range of 1 per several hundred cells. To gain insights into possible mechanisms that determine LSC self-renewal, we profiled and compared the abundance of nuclear and cytoplasmic proteins and phosphoproteins from these leukemias using quantitative proteomics. These analyses revealed differences in proteins associated with stem cell fate, including a hyperactive p38 MAP kinase in FLB1 and a differentially localized Polycomb group protein Ezh2, which is mostly nuclear in FLA2 and predominantly cytoplasmic in FLB1. Together, these newly documented proteomes and phosphoproteomes represent a unique resource with more than 440 differentially expressed proteins and 11 543 unique phosphopeptides, of which 80% are novel and 7% preferentially phosphorylated in the stem cell-enriched leukemia.
Collapse
|
135
|
Yu JI, Kang IH, Seo GS, Choi SC, Yun KJ, Chae SC. Promoter polymorphism of the EED gene is associated with the susceptibility to ulcerative colitis. Dig Dis Sci 2012; 57:1537-43. [PMID: 22271413 DOI: 10.1007/s10620-012-2045-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/05/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Embryonic ectoderm development (EED) protein is involved in multiple cellular protein complexes. EED mediates the repression of gene activity through histone deacetylation, and it may act as a specific regulator of integrin's function. This gene was identified as a candidate gene for the susceptibility to IBD by our previous cDNA microarray analysis. AIM The present study aimed to validate the expression level of the EED gene in patients with IBD by performing RT-PCR, and we investigated whether the polymorphisms in the EED gene are associated with the susceptibility to UC, and whether a functional EED promoter polymorphism is related to UC. METHODS Genotype analysis of the EED SNPs was performed by single-base extension analysis. The haplotype frequencies of the EED gene for multiple loci were estimated using the expectation maximization algorithm. The promoter region of the human EED gene, including the g.-1850G>C allele, was isolated by PCR. The amplified PCR products were inserted into the pGL3-basic vector and the luciferase activity was analyzed. RESULTS The expression level of the EED gene was significantly decreased in both the UC and CD patients and it was significantly higher in the liver and ileum than in the other tissues of the human digestive system. The genotype and allele frequencies of the g.-1850G>C polymorphism of the EED gene in the UC patients were significantly different from those of the healthy controls (p = 0.018 and 0.017, respectively). The luciferase activity assay showed that the promoter activity was decreased about twofold in the construct containing the g.-1850G allele compared to that of the construct containing the g.-1850C allele, which means that the allele G could produce less EED mRNA. CONCLUSIONS These results suggest that the g.-1850G>C polymorphism in the EED gene might be associated with the susceptibility to UC by the change of the EED expression level.
Collapse
Affiliation(s)
- Ji-In Yu
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, South Korea
| | | | | | | | | | | |
Collapse
|
136
|
Lange M, Demajo S, Jain P, Di Croce L. Combinatorial assembly and function of chromatin regulatory complexes. Epigenomics 2012; 3:567-80. [PMID: 22126247 DOI: 10.2217/epi.11.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The introduction of new methods for genome-wide analyses of the chromatin state, together with the power of refined techniques for mass spectrometry and biochemistry, has provided an unprecedented view on the complexity of eukaryotic gene regulation. Chromatin structure, the state of histone modifications and DNA methylation are highly dynamic and subject to various levels of regulation. In addition, the subunit compositions of the protein complexes that bring about these changes appear to be assembled in a combinatorial manner that is specific for the cell type and developmental stage, providing increased specificity to these complexes. Here we discuss recent evidence regarding the combinatorial control of chromatin regulatory complexes.
Collapse
Affiliation(s)
- Martin Lange
- Center for Genomic Regulation & UPF, Barcelona, Spain
| | | | | | | |
Collapse
|
137
|
Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, Miller G, Margueron R, Reinberg D, Bar-Sagi D. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev 2012; 26:439-44. [PMID: 22391448 DOI: 10.1101/gad.181800.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) is well recognized for its role as a key regulator of cell differentiation, its involvement in tissue regeneration is largely unknown. Here we show that EZH2 is up-regulated following cerulein-induced pancreatic injury and is required for tissue repair by promoting the regenerative proliferation of progenitor cells. Loss of EZH2 results in impaired pancreatic regeneration and accelerates KRas(G12D)-driven neoplasia. Our findings implicate EZH2 in constraining neoplastic progression through homeostatic mechanisms that control pancreatic regeneration and provide insights into the documented link between chronic pancreatic injury and an increased risk for pancreatic cancer.
Collapse
Affiliation(s)
- Jon Mallen-St Clair
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Invasive breast carcinomas in Ghana: high frequency of high grade, basal-like histology and high EZH2 expression. Breast Cancer Res Treat 2012; 135:59-66. [PMID: 22527102 DOI: 10.1007/s10549-012-2055-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/30/2012] [Indexed: 12/27/2022]
Abstract
Breast cancer in African-American women has a worse outcome than in Caucasian women. The ancestors of most African-American women come from West Africa, including Ghana. The Polycomb group protein EZH2 is a marker of poor outcome in breast cancers from Caucasian women. The histopathological features and biomarker expression of African breast cancers remain obscure. Here, we investigated a cohort of Ghanaian breast cancers to better define the prevalent tumor types and to test if EZH2 protein may identify aggressive tumors. A group of 169 breast tissues (100 invasive carcinomas and 69 benign) from women treated at Komfo Anoyke Teaching Hospital between 2006 and 2011 were histologically classified and investigated for EZH2 expression. EZH2 nuclear expression we defined as high or low following previously published criteria. Of the 100 invasive carcinomas, 89 % were ductal, 2 % were lobular, and 9 % were metaplastic. Basal-like pathological features were present in 30 % of the tumors. Of the invasive carcinomas, 7 % were grade 1, 41 % grade 2, and 52 % grade 3. EZH2 protein was overexpressed in invasive carcinomas compared to benign breast (p < 0.0001). In invasive carcinomas nuclear EZH2 overexpression was significantly associated with basal-like subtype (p = 0.03) and high histologic grade (p < 0.05). Cytoplasmic EZH2, which has not been previously reported, was present in 16 % of invasive carcinomas and it was associated with triple negative status (p = 0.02). Our results provide the first comprehensive histopathological study of this patient population and uncover the association of EZH2 with high grade and basal-like tumors. We provide the basis for further detailed investigations on this cohort to advance diagnosis and treatment of African and African-American women.
Collapse
|
139
|
Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One 2012; 7:e34618. [PMID: 22514644 PMCID: PMC3326058 DOI: 10.1371/journal.pone.0034618] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.
Collapse
|
140
|
Ruan J, Ouyang H, Amaya MF, Ravichandran M, Loppnau P, Min J, Zang J. Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a. PLoS One 2012; 7:e35376. [PMID: 22514736 PMCID: PMC3325965 DOI: 10.1371/journal.pone.0035376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
Background HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain. Methodology/Principal Findings Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3 with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3 chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a conserved mechanism. Conclusions/Significance The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26 and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-histone proteins.
Collapse
Affiliation(s)
- Jianbin Ruan
- Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
| | - Hui Ouyang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maria F. Amaya
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mani Ravichandran
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JM); (JZ)
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
- * E-mail: (JM); (JZ)
| |
Collapse
|
141
|
Sustáčková G, Kozubek S, Stixová L, Legartová S, Matula P, Orlova D, Bártová E. Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 2012; 227:1838-50. [PMID: 21732356 DOI: 10.1002/jcp.22912] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycomb group (PcG) proteins, organized into Polycomb bodies, are important regulatory components of epigenetic processes involved in the heritable transcriptional repression of target genes. Here, we asked whether acetylation can influence the nuclear arrangement and function of the BMI1 protein, a core component of the Polycomb group complex, PRC1. We used time-lapse confocal microscopy, micro-irradiation by UV laser (355 nm) and GFP technology to study the dynamics and function of the BMI1 protein. We observed that BMI1 was recruited to UV-damaged chromatin simultaneously with decreased lysine acetylation, followed by the recruitment of heterochromatin protein HP1β to micro-irradiated regions. Pronounced recruitment of BMI1 was rapid, with half-time τ = 15 sec; thus, BMI1 is likely involved in the initiation step leading to the recognition of UV-damaged sites. Histone hyperacetylation, stimulated by HDAC inhibitor TSA, suppression of transcription by actinomycin D, and ATP-depletion prevented increased accumulation of BMI1 to γH2AX-positive irradiated chromatin. Moreover, BMI1 had slight ability to recognize spontaneously occurring DNA breaks caused by other pathophysiological processes. Taken together, our data indicate that the dynamics of recognition of UV-damaged chromatin, and the nuclear arrangement of BMI1 protein can be influenced by acetylation and occur as an early event prior to the recruitment of HPβ to UV-irradiated chromatin.
Collapse
Affiliation(s)
- Gabriela Sustáčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
143
|
Inner workings and regulatory inputs that control Polycomb repressive complex 2. Chromosoma 2012; 121:221-34. [PMID: 22349693 DOI: 10.1007/s00412-012-0361-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 01/27/2023]
Abstract
Polycomb repressive complex 2 (PRC2) is a conserved multisubunit enzyme that methylates histone H3 on lysine-27. This chromatin modification is a hallmark of target genes transcriptionally silenced by the Polycomb system. At its core, PRC2 activity depends upon the SET domain active site of its catalytic subunit, EZH2, as well as critical stimulatory inputs from noncatalytic subunits, especially EED and SU(Z)12. We review recent progress on this core PRC2 machinery, including key features of the active site, control mechanisms that operate via EZH2 phosphorylation, and subunit elements and architectures that influence PRC2 function. Among these, we highlight work identifying an EED regulatory site that enables PRC2 to bind pre-existing methylated H3-K27 and stimulate enzyme output. These advances illuminate basic inner workings of PRC2 and also provide insights that could aid design of PRC2 inhibitors. The chromatin landscape that PRC2 encounters in vivo is decorated with many histone modifications that accompany active transcription, such as H3-K4 methylation. It has long been assumed that these "active" modifications oppose PRC2 at some level but, until recently, mechanisms of this antagonistic cross-talk have been elusive. We discuss new findings that illuminate how H3-K4 and H3-K36 methylation, H3-K27 acetylation, and H3-S28 phosphorylation each exert a negative impact on PRC2 function. The emerging picture presents PRC2 as a cooperative multipart machine, intricately outfitted to sense and respond to the local chromatin environment and other cues. This PRC2 design ensures flexibility and fine tuning of its fundamental gene silencing roles in diverse biological contexts.
Collapse
|
144
|
Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol 2012; 32:1433-41. [PMID: 22290439 DOI: 10.1128/mcb.06315-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main impairment to tissue maintenance during aging is the reduced capacity for stem cell self-renewal over time due to senescence, the irreversible block in proliferation. We have previously described that the basic helix-loop-helix (bHLH) transcription factor Twist-1 can greatly enhance the life span of bone marrow-derived mesenchymal stem/stromal cells (MSCs). In the present study, we show that Twist-1 potently suppresses senescence and the Ink4A/Arf locus with a dramatic decrease in the expression of p16 and to some extent a decrease in p14. Furthermore, the polycomb group protein and histone methyltransferase Ezh2, which suppresses the Ink4A/Arf locus, was found to be induced by Twist-1, resulting in an increase in H3K27me3 along the Ink4A/Arf locus, repressing transcription of both p16/p14 and senescence of human MSCs. Furthermore, Twist-1 inhibits the expression of the bHLH transcription factor E47, which is normally expressed in senescent MSCs and induces transcription of the p16 promoter. Reduced Twist-1 wild-type expression and function in bone cells derived from Saethre-Chotzen patients also revealed an increase in senescence. These studies for the first time link Twist-1 to histone methylation of the Ink4A/Arf locus by controlling the expression of histone methyltransferases as well as the expression of other bHLH factors.
Collapse
|
145
|
Abstract
Understanding the molecular mechanisms involved in the control of cell differentiation during embryonic development is currently one of the main objectives of developmental biology. This knowledge will provide a basis for the development of new strategies in the field of regenerative medicine, one of the most promising weapons to fight many human diseases. Cell differentiation during embryonic development is controlled primarily by epigenetic factors, that is, mechanisms involved in the regulation of chromatin structure and gene expression. Here we describe the best known epigenetic modifications, and pathways, mainly focused on DNA methylation and histone modifications, and try to depict the state of art in our knowledge about epigenetic regulation of embryonic stem cell maintenance and differentiation.
Collapse
|
146
|
Gao FL, Lv Y, Cao J, Zou XP, Gastroenterology DO, University TADTHOMSON, 210008 N, Province J, China. Significance of H3K27me3 expression in gastric cancer Fu-Li Gao, Ying Lv, Jun Cao, Xiao-Ping Zou. Shijie Huaren Xiaohua Zazhi 2011; 19:3597-3602. [DOI: 10.11569/wcjd.v19.i35.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of trimethylation at lysine 27 of histone H3 (H3K27me3) in gastric cancer tissue and cell lines and to evaluate its correlation with clinicopathological parameters of gastric carcinoma.
METHODS: The protein expression of H3K27me3 was detected by Western blot in gastric cancer lines SGC7901, BGC823, AGS and normal gastric mucosal epithelial cell line GES-1. Immunohistochemistry (IHC) was utilized to examine the protein expression of H3K27me3 in 61 gastric cancer specimens and 20 normal gastric epithelial specimens.
RESULTS: H3K27me3 expression significantly increased in gastric cancer lines (SGC7901, BGC823, and AGS) compared to normal gastric mucosal epithelial cell line GES-1. The positive rates of H3K27me3 protein expression in gastric cancer was 80.3%. The expression levels of H3K27me3 were significantly associated with tumor size, depth of invasion, lymph node metastasis, vascular invasion, clinical stage, and T staging (P = 0.049, 0.030, 0.034, 0.025, 0.003, and 0.031, respectively), but had no correlation with patient's age, sex, tumor location, tumor differentiation degree, or nerve invasion.
CONCLUSION: High expression of H3K27me3 correlates closely with tumor invasion and metastasis in gastric cancer and may be an important prognostic factor in patients with gastric cancer.
Collapse
|
147
|
Nishioka C, Ikezoe T, Yang J, Udaka K, Yokoyama A. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins. Blood Cancer J 2011; 1:e48. [PMID: 22829096 PMCID: PMC3255508 DOI: 10.1038/bcj.2011.33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022] Open
Abstract
We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients.
Collapse
|
148
|
Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci U S A 2011; 108:20526-31. [PMID: 22158900 DOI: 10.1073/pnas.1109360108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.
Collapse
|
149
|
Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer 2011; 130:1715-25. [PMID: 22025288 DOI: 10.1002/ijc.27316] [Citation(s) in RCA: 550] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16.
Collapse
Affiliation(s)
- Hani Rayess
- Department of Surgery, VA Greater Los Angeles Healthcare system, West Los Angeles, CA, USA
| | | | | |
Collapse
|
150
|
Wang J, Kumar RM, Biggs VJ, Lee H, Chen Y, Kagey MH, Young RA, Abate-Shen C. The Msx1 Homeoprotein Recruits Polycomb to the Nuclear Periphery during Development. Dev Cell 2011; 21:575-88. [PMID: 21852201 DOI: 10.1016/j.devcel.2011.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/15/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
Control of gene expression during development requires the concerted action of sequence-specific transcriptional regulators and epigenetic modifiers, which are spatially coordinated within the nucleus through mechanisms that are poorly understood. Here we show that transcriptional repression by the Msx1 homeoprotein in myoblast cells requires the recruitment of Polycomb to target genes located at the nuclear periphery. Target genes repressed by Msx1 display an Msx1-dependent enrichment of Polycomb-directed trimethylation of lysine 27 on histone H3 (H3K27me3). Association of Msx1 with the Polycomb complex is required for repression and regulation of myoblast differentiation. Furthermore, Msx1 promotes a dynamic spatial redistribution of the H3K27me3 repressive mark to the nuclear periphery in myoblast cells and the developing limb in vivo. Our findings illustrate a hitherto unappreciated spatial coordination of transcription factors with the Polycomb complex for appropriate regulation of gene expression programs during development.
Collapse
Affiliation(s)
- Jingqiang Wang
- Departments of Urology and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|