101
|
Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Anal Bioanal Chem 2017; 409:4709-4718. [DOI: 10.1007/s00216-017-0415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
|
102
|
Meng X, Yang G, Li F, Liang T, Lai W, Xu H. Sensitive Detection of Staphylococcus aureus with Vancomycin-Conjugated Magnetic Beads as Enrichment Carriers Combined with Flow Cytometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21464-21472. [PMID: 28590745 DOI: 10.1021/acsami.7b05479] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel sandwich strategy was designed to detect Staphylococcus aureus. The strategy is based on an antibacterial agent that captures bacterial cells and a fluorescein-labeled antibody that acts as the signal-output probe. Vancomycin (Van), which exerts a strong antibacterial effect on Gram-positive bacteria, was utilized as a molecular recognition agent to detect pathogenic bacteria. To effectively concentrate S. aureus, we used bovine serum albumin (BSA) as the amplification carrier to modify magnetic beads (MBs), which were then functionalized with Van. To improve the specificity of the method for S. aureus detection, we adopted fluorescein isothiocyanate (FITC)-tagged pig immunoglobulin G (FITC-pig IgG) as the signal probe and the second recognition agent that bound between the Fc fragment of pig IgG and protein A in the surface of S. aureus. To quantify S. aureus, we measured the fluorescence signal by flow cytometry (FCM). The use of multivalent magnetic nanoprobes (Van-BSA-MBs) showed a high concentration efficiency (>98%) at bacterial concentrations of only 33 colony-forming units (CFU)/mL. Furthermore, the sandwich mode (FITC-pig IgG/SA/Van-BSA-MBs) also showed ideal specificity because Van and IgG bound with S. aureus at two distinct sites. The detection limit for S. aureus was 3.3 × 101 CFU/mL and the total detection process could be completed within 120 min. Other Gram-positive bacteria and Gram-negative bacteria, including Listeria monocytogenes, Bacillus cereus, Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis, negligibly interfered with S. aureus detection. The proposed detection strategy for S. aureus possesses attractive characteristics, such as high sensitivity, simple operation, short testing time, and low cost.
Collapse
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Guotai Yang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Fulai Li
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Taobo Liang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| |
Collapse
|
103
|
Chen M, Li W, Xiong H, Wen W, Zhang X, Wang S. Discrimination and ultrasensitive detection of β
2-agonists using copper nanoclusters as a fluorescent probe. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2357-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
104
|
Hulme J. Recent advances in the detection of methicillin resistant Staphylococcus aureus (MRSA). BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-016-1201-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
105
|
Wang Y, Gan N, Zhou Y, Li T, Hu F, Cao Y, Chen Y. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron 2017; 97:100-106. [PMID: 28578167 DOI: 10.1016/j.bios.2017.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
Abstract
Novel label-free and multiplex aptasensors have been developed for simultaneous detection of several antibiotics based on a microchip electrophoresis (MCE) platform and target catalyzed hairpin assembly (CHA) for signal amplification. Kanamycin (Kana) and oxytetracycline (OTC) were employed as models for testing the system. These aptasensors contained six DNA strands termed as Kana aptamer-catalysis strand (Kana apt-C), Kana inhibit strand (Kana inh), OTC aptamer-catalysis strand (OTC apt-C), OTC inhibit strand (OTC inh), hairpin structures H1 and H2 which were partially complementary. Upon the addition of Kana or OTC, the binding event of aptamer and target triggered the self-assembly between H1 and H2, resulting in the formation of many H1-H2 complexes. They could show strong signals which represented the concentration of Kana or OTC respectively in the MCE system. With the help of the well-designed and high-quality CHA amplification, the assay could yield 300-fold amplified signal comparing that from non-amplified system. Under optimal conditions, this assay exhibited a linear correlation in the ranges from 0.001ngmL-1 to 10ngmL-1, with the detection limits of 0.7pgmL-1 and 0.9pgmL-1 (S/N=3) toward Kana and OTC, respectively. The platform has the following advantages: firstly, the aptamer probes can be fabricated easily without labeling signal tags for MCE detection; Secondly, the targets can just react with probes and produce the amplified signal in one-pot. Finally, the targets can be simultaneously detected within 10min in different channels, thus high-throughput measurement can be achieved. Based on this work, it is estimated that this detection platform will be universally served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples.
Collapse
Affiliation(s)
- Ye Wang
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - You Zhou
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Futao Hu
- Faculty of Marine, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yinji Chen
- Department of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210000, China
| |
Collapse
|
106
|
Yu M, Zhu Z, Wang H, Li L, Fu F, Song Y, Song E. Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions. Biosens Bioelectron 2017; 91:143-148. [DOI: 10.1016/j.bios.2016.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
107
|
Yu M, Wang H, Fu F, Li L, Li J, Li G, Song Y, Swihart MT, Song E. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles. Anal Chem 2017; 89:4085-4090. [PMID: 28287715 DOI: 10.1021/acs.analchem.6b04958] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 108 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.
Collapse
Affiliation(s)
- Mengqun Yu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Hong Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Fei Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Jing Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Gan Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, 400715, People's Republic of China
| |
Collapse
|
108
|
Wang N, Wei X, Zheng AQ, Yang T, Chen ML, Wang JH. Dual Functional Core-Shell Fluorescent Ag 2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment. ACS Sens 2017; 2:371-378. [PMID: 28723213 DOI: 10.1021/acssensors.6b00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dual functional fluorescent core-shell Ag2S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag2S nanocomposite shortly as Ag2S@C). The nanostructure exhibits strong fluorescent emission at λex/λem = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag2S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag2S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag2S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL-1. Meanwhile, the Ag2S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 106-107 cfu mL-1 with 3.3 or 10 μg mL-1 of Ag2S@C with an interaction time of 5 or 0.5 min, respectively.
Collapse
Affiliation(s)
- Ning Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Xing Wei
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - An-Qi Zheng
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ting Yang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ming-Li Chen
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Jian-Hua Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| |
Collapse
|
109
|
Wen CY, Jiang YZ, Li XY, Tang M, Wu LL, Hu J, Pang DW, Zeng JB. Efficient Enrichment and Analyses of Bacteria at Ultralow Concentration with Quick-Response Magnetic Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9416-9425. [PMID: 28241111 DOI: 10.1021/acsami.6b16831] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enrichment and purification of bacteria from complex matrices are crucial for their detection and investigation, in which magnetic separation techniques have recently show great application advantages. However, currently used magnetic particles all have their own limitations: Magnetic microparticles exhibit poor binding capacity with targets, while magnetic nanoparticles suffer slow magnetic response and high loss rate during treatment process. Herein, we used a highly controllable layer-by-layer assembly method to fabricate quick-response magnetic nanospheres (MNs), and with Salmonella typhimurium as a model, we successfully achieve their rapid and efficient enrichment. The MNs combined the advantages of magnetic microparticles and nanoparticles. On the one hand, the MNs had a fast magnetic response, and almost 100% of the MNs could be recovered by 1 min attraction with a simple magnetic scaffold. Hence, using antibody conjugated MNs (immunomagnetic nanospheres, IMNs) to capture bacteria hardly generated loss and did not need complex separation tools or techniques. On the other hand, the IMNs showed much excellent capture capacity. With 20 min interaction, almost all of the target bacteria could be captured, and even only one bacterium existing in the samples was not missed, comparing with the immunomagnetic microparticles which could only capture less than 50% of the bacteria. Besides, the IMNs could achieve the same efficient enrichment in complex matrices, such as milk, fetal bovine serum, and urine, demonstrating their good stability, strong anti-interference ability, and low nonspecific adsorption. In addition, the isolated bacteria could be directly used for culture, polymerase chain reaction (PCR) analyses, and fluorescence immunoassay without a release process, which suggested our IMNs-based enrichment strategy could be conveniently coupled with the downstream identification and analysis techniques. Thus, the MNs provided by this work showed great superiority in bacteria enrichment, which would be a promising tool for bacteria detection and investigation.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Science, China University of Petroleum (East China) , Qingdao, 266580, P. R. China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Yong-Zhong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
- Hubei Provincial Center for Disease Control and Prevention , Wuhan 430072, P. R. China
| | - Xi-You Li
- College of Science, China University of Petroleum (East China) , Qingdao, 266580, P. R. China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Jing-Bin Zeng
- College of Science, China University of Petroleum (East China) , Qingdao, 266580, P. R. China
| |
Collapse
|
110
|
Urmann K, Modrejewski J, Scheper T, Walter JG. Aptamer-modified nanomaterials: principles and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAptamers are promising alternative binders that can substitute antibodies in various applications. Due to the advantages of aptamers, namely their high affinity, specificity and stability, along with the benefits originating from the chemical synthesis of aptamers, they have attracted attention in various applications including their use on nanostructured material. This necessitates the immobilization of aptamers on a solid support. Since aptamer immobilization may interfere with its binding properties, the immobilization of aptamers has to be investigated and optimized. Within this review, we give general insights into the principles and factors controlling the binding affinity of immobilized aptamers. Specific features of aptamer immobilization on nanostructured surfaces and nanoparticles are highlighted and a brief overview of applications of aptamer-modified nanostructured materials is given.
Collapse
|
111
|
Hu SW, Qiao S, Xu BY, Peng X, Xu JJ, Chen HY. Dual-Functional Carbon Dots Pattern on Paper Chips for Fe3+ and Ferritin Analysis in Whole Blood. Anal Chem 2017; 89:2131-2137. [DOI: 10.1021/acs.analchem.6b04891] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shan-Wen Hu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shu Qiao
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Bi-Yi Xu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Xiang Peng
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
112
|
Zheng G, Lu Q, Wang F, Jin Q, Teng M, Zhang N, Ren T, Ding P, Zhang G. Selection of affinity peptides for the purification potential of porcine circovirus type 2 (PCV2) Cap virus-like particles (VLPs). RSC Adv 2017. [DOI: 10.1039/c7ra05790c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we describe the use of a M13 phage-displayed random peptide library for screening novel peptide motifs that specifically recognize recombinant PCV2 Cap protein for the first time.
Collapse
Affiliation(s)
- Guanmin Zheng
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Nana Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Tingting Ren
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| | - Peiyang Ding
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
- Henan Provincial Key Laboratory of Animal Immunology
- Henan Academy of Agricultural Sciences
- Zhengzhou 450002
- People's Republic of China
| | - Gaiping Zhang
- College of Animal Husbandry and Veterinary Science
- Henan Agricultural University
- Zhengzhou 450002
- People's Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture
| |
Collapse
|
113
|
Yang X, Zhou X, Zhu M, Xing D. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens Bioelectron 2016; 91:238-245. [PMID: 28013018 DOI: 10.1016/j.bios.2016.11.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Pathogens pose a significant threat to public health worldwide. Despite many technological advances in the rapid diagnosis of pathogens, sensitive pathogen detection remains challenging because target pathogenic bacteria usually exist in complex samples at very low concentrations. Here, the construction of multivalent brush-like magnetic nanoprobes and their application for the efficient enriching of pathogens are demonstrated. Brush-like magnetic nanoprobes were constructed by modification with poly-L-lysine (PLL) onto amino-modified magnetic beads, followed by coupling of PEG (amine-PEG5000-COOH) to the amine sites of PLL. Subsequently, vancomycin (Van), a small-molecule antibiotic with affinity to the terminal peptide (D-alanyl-D-alanine) on the cell wall of Gram-positive bacteria, was conjugated to the carboxyl of the PEG. The use of multivalent brush-like magnetic nanoprobes (Van-PEG-PLL-MNPs) results in a high enrichment efficiency (>94%) and satisfactory purity for Listeria monocytogenes (employed as a model) within 20min, even at bacterial concentrations of only 102cfumL-1. Integrated with the enrichment of the Van-PEG-PLL-MNP nano-platform and electrochemiluminescence (ECL) detection, Listeria monocytogenes can be rapidly and accurately detected at levels as low as 10cfumL-1. The approach described herein holds great potential for realizing rapid and sensitive pathogen detection in clinical samples.
Collapse
Affiliation(s)
- Xiaoke Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
114
|
Li Y, Li P, Zhu R, Luo C, Li H, Hu S, Nie Z, Huang Y, Yao S. Multifunctional Gold Nanoclusters-Based Nanosurface Energy Transfer Probe for Real-Time Monitoring of Cell Apoptosis and Self-Evaluating of Pro-Apoptotic Theranostics. Anal Chem 2016; 88:11184-11192. [DOI: 10.1021/acs.analchem.6b03389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Pei Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Wuhan Agricultural Inspection Center, Wuhan, 430016, P. R. China
| | - Rong Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chao Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hao Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shanfang Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
115
|
Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 2016; 85:68-75. [DOI: 10.1016/j.bios.2016.04.089] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
|
116
|
Shen H, Wang J, Liu H, Li Z, Jiang F, Wang FB, Yuan Q. Rapid and Selective Detection of Pathogenic Bacteria in Bloodstream Infections with Aptamer-Based Recognition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19371-8. [PMID: 27411775 DOI: 10.1021/acsami.6b06671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sepsis and bacteremia are life-threatening clinical syndromes associated with significant patient morbidity and mortality. Rapid and sensitive detection of pathogenic bacteria is the key to improve patient survival rates. Herein, we have rationally constructed a simple aptamer-based capture platform to shorten the time needed for confirmation of bacterial bloodstream infection in clinical blood samples. This capture platform is made of a mesoporous TiO2-coated magnetic nanoparticle and is modified with target aptamer. It features excellent bacterial enrichment efficiency of about 80% even at low bacterial concentrations (10-2000 CFU mL(-1)). More importantly, the bacteria can be enriched within 2 h, and the time for bacterial identification is effectively shortened in comparison to the "gold standard" in clinical diagnosis of bloodstream infection. The aptamer-based capture platform may pave a way for the detection of biomarkers and find potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Haoyang Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Fenglei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University , Wuhan, P. R. China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, P. R. China
| |
Collapse
|
117
|
Wang C, Wang J, Li M, Qu X, Zhang K, Rong Z, Xiao R, Wang S. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 2016; 141:6226-6238. [DOI: 10.1039/c6an01105e] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A rapid and efficient method for label-free SERS detection of bacteria in solution.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences & Bio-Engineering
- Beijing University of Technology
- Beijing 100124
- PR China
- Beijing Institute of Radiation Medicine
| | - Junfeng Wang
- College of Mechatronics and Automation
- National University of Defense Technology
- Changsha
- PR China
| | - Min Li
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
- Henan University of Chinese Medicine
- Zhengzhou
| | - Xinyan Qu
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Kehan Zhang
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Shengqi Wang
- College of Life Sciences & Bio-Engineering
- Beijing University of Technology
- Beijing 100124
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
118
|
Tao Y, Su D, Du Y, Li W, Cai B, Di L, Shi L, Hu L. Magnetic solid-phase extraction coupled with HPLC-Q-TOF-MS for rapid analysis of tyrosinase binders from San-Bai decoction by Box–Behnken statistical design. RSC Adv 2016. [DOI: 10.1039/c6ra22045b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tyrosinase is the rate-limiting enzyme for controlling the production of melanin.
Collapse
Affiliation(s)
- Yi Tao
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Key Laboratory of Chinese Medicine Processing
| | - Dandan Su
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Key Laboratory of Chinese Medicine Processing
| | - Yingshan Du
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Key Laboratory of Chinese Medicine Processing
| | - Weidong Li
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Key Laboratory of Chinese Medicine Processing
| | - Baochang Cai
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Key Laboratory of Chinese Medicine Processing
| | - Liuqing Di
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
| | - Liyun Shi
- Department of Microbiology and Immunology
- Nanjing University of Chinese Medicine
- Nanjing
- PR China
| | - Lihong Hu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
119
|
Fang W, Han C, Zhang H, Wei W, Liu R, Shen Y. Preparation of amino-functionalized magnetic nanoparticles for enhancement of bacterial capture efficiency. RSC Adv 2016. [DOI: 10.1039/c6ra13070d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PEI-MNPs were successfully fabricated, which showed higher bacterial capture ability than the triaminopropylalkoxysilane directly modified NH-MNPs at low concentration.
Collapse
Affiliation(s)
- Weijun Fang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
- Biopharmaceutical Research Institute
| | - Chen Han
- Institute of Quality Inspection of Light Industry & Chemical Products
- Shanghai Institute of Quality Inspection and Technical Research
- Shanghai 201114
- P. R. China
| | - Huabing Zhang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Wenmei Wei
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Rui Liu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
| | - Yuxian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei 230032
- P. R. China
- Biopharmaceutical Research Institute
| |
Collapse
|