101
|
Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W. MoS 2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Mikrochim Acta 2018; 185:239. [PMID: 29594715 DOI: 10.1007/s00604-018-2773-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/06/2023]
Abstract
A dual-channel ratiometric nanoprobe is described for detection and imaging of microRNA. It was prepared from MoS2 quantum dots (QDs; with blue emission and excitation/emission peaks at 310/398 nm) which acts as both the gene carrier and as a donor in fluorescence resonance energy transfer (FRET). Molecular beacons containing loops for molecular recognition of microRNA and labeled with carboxyfluorescein (FAM) were covalently attached to the MoS2 QDs and serve as the FRET acceptor. In the absence of microRNA, the nanoprobe exhibits low FRET efficiency due to the close distance between the FAM tag and the QDs. Hybridization with microRNA enlarges the distance between QD and beacon. This results in an enhancement of the FRET efficiency of the nanoprobe. The ratio of green and blue fluorescence (I520/I398) increases linearly in the 5 to 150 nM microRNA concentration range in both aqueous solution and diluted artificial cerebrospinal fluid. The limit of detection (LOD) is as low as 0.38 nM and 0.52 nM, respectively. Other features of this nanoprobe include (a) excellent resistance to nuclease-induced false positive signals and (b) the option to use it for distinguishing different cell lines by in-situ imaging of intracellular microRNAs. Graphical abstract Schematic of a dual-channel photoluminescence nanoprobe for the determination of microRNA-21 (miR-21) by monitoring the microRNA-triggered enhancement of the fluorescence resonance energy transfer (FRET) efficiency between MoS2 QDs and carboxyfluorescein-labeled molecular beacons.
Collapse
Affiliation(s)
- Xinsheng Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Feng Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
102
|
Cong X, Zhou M, Hou T, Xu Z, Yin Y, Wang X, Yin M. A Sensitive Photoelectrochemical Aptasensor for miRNA-21 Based on the Sensitization Effect of CdSe Quantum Dots. ELECTROANAL 2018. [DOI: 10.1002/elan.201800079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinxin Cong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 P. R. China
| | - Minfeng Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 P. R. China
| | - Ting Hou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 P. R. China
| | - Zijian Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences; Shandong Normal University; Jinan 250014 China
| | - Yizhi Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences; Shandong Normal University; Jinan 250014 China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 P. R. China
| | - Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences; Shandong Normal University; Jinan 250014 China
| |
Collapse
|
103
|
Vilela P, Heuer-Jungemann A, El-Sagheer A, Brown T, Muskens OL, Smyth NR, Kanaras AG. Sensing of Vimentin mRNA in 2D and 3D Models of Wounded Skin Using DNA-Coated Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703489. [PMID: 29464860 DOI: 10.1002/smll.201703489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Wound healing is a highly complex biological process, which is accompanied by changes in cell phenotype, variations in protein expression, and the production of active biomolecules. Currently, the detection of proteins in cells is done by immunostaining where the proteins in fixed cells are detected by labeled antibodies. However, immunostaining cannot provide information about dynamic processes in living cells, within the whole tissue. Here, an easy method is presented to detect the transition of epithelial to mesenchymal cells during wound healing. The method employs DNA-coated gold nanoparticle fluorescent nanoprobes to sense the production of Vimentin mRNA expressed in mesenchymal cells. Fluorescence microscopy is used to achieve temporal detection of Vimentin mRNA in wounds. 3D light-sheet microscopy is utilized to observe the dynamic expression of Vimentin mRNA spatially around the wounded site in skin tissue. The use of DNA-gold nanoprobes to detect mRNA expression during wound healing opens up new possibilities for the study of real-time mechanisms in complex biological processes.
Collapse
Affiliation(s)
- Patrick Vilela
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK
| | - Amelie Heuer-Jungemann
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK
| | - Afaf El-Sagheer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Neil R Smyth
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
104
|
Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H, Ge S, Yu J. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron 2018; 105:218-225. [PMID: 29412946 DOI: 10.1016/j.bios.2018.01.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
In this work, an electrochemical biosensor based on Au nanorods (NRs) modified microfluidic paper-based analytical devices (μPADs) were constructed for sensitive detection of microRNA (miRNA) by using cerium dioxide - Au@glucose oxidase (CeO2-Au@GOx) as an electrochemical probe for signal amplification. Au NRs were synthesized by in-situ growth method in μPADs surface to enhance the conductivity and modified hairpin probe through Au-S bonds. The construction of "the signal transducer layer" was carried out by GOx catalyzing glucose to produce H2O2, which was further electrocatalyzed by CeO2. After the biosensor was constructed, an obvious electrochemical signal was observed from the reduction of H2O2. In order to make the detection more convincing, the visual detection was performed based on the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 with the help of Exonuclease I. The electrochemical biosensor provided a wide linear range of 1.0fM to 1000fM with a relatively low detection limit of 0.434fM by the electrochemical measurement. Linear range of 10fM to 1000fM with a relatively low detection limit of 7.382fM was obtained by visual detection. The results indicated the proposed platform has potential utility for detection of miRNA.
Collapse
Affiliation(s)
- Xiaolu Sun
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - He Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Yannan Jian
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Feifei Lan
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Haiyun Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China.
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China.
| | - Jinghua Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
105
|
He D, Wong KW, Dong Z, Li HW. Recent progress in live cell mRNA/microRNA imaging probes based on smart and versatile nanomaterials. J Mater Chem B 2018; 6:7773-7793. [DOI: 10.1039/c8tb02285b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We summarize the recent progress in live cell mRNA/miRNA imaging probes based on various versatile nanomaterials, describing their structures and their working principles of bio-imaging applications.
Collapse
Affiliation(s)
- Dinggeng He
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- State Key Laboratory of Developmental Biology of Freshwater Fish
| | - Ka-Wang Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhenzhen Dong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hung-Wing Li
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
106
|
Yue S, Sun X, Wang N, Wang Y, Wang Y, Xu Z, Chen M, Wang J. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39699-39707. [PMID: 29063750 DOI: 10.1021/acsami.7b13321] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
Collapse
Affiliation(s)
- Shuai Yue
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Xiaoting Sun
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Ning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yaning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| |
Collapse
|
107
|
Ge L, Wang W, Li F. Electro-Grafted Electrode with Graphene-Oxide-Like DNA Affinity for Ratiometric Homogeneous Electrochemical Biosensing of MicroRNA. Anal Chem 2017; 89:11560-11567. [PMID: 28994278 DOI: 10.1021/acs.analchem.7b02896] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work demonstrated for the first time a simple and rapid approach to endow the electrode with the excellent discrimination ability over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) through the robust electrochemical grafting of in situ generated 1-naphthalenesulfonate (NS-) diazonium salt onto the surface of indium tin oxide (ITO) electrode. On the basis of understanding the influence of sequence and length on the binding affinity of ssDNA and dsDNA toward NS- grafted ITO (NS--ITO) electrode, these interesting findings were successfully employed to rationally develop a ratiometric homogeneous electrochemical biosensing platform for microRNA based on the affinity-mediated signal transduction. The achievement of ultrasensitive detection of microRNA lies in a compatibly designed T7 exonuclease-assisted isothermal amplification strategy, in which the presence of target microRNA initiated the continual and opposite affinity inversion of two rationally engineered electrochemical signal reporters, methylene blue (MB) labeled hairpin reporter and ferrocene (Fc) labeled dsDNA reporter, toward NS--ITO electrode, thereby providing the ratiometric transduction and amplification of the homogeneous electrochemical output signal. By measuring the distinct variation in the peak current intensity ratios of Fc and MB tags, this ratiometric homogeneous electrochemical microRNA biosensing platform showed a detection limit of 25 aM, which is much lower than that of the reported homogeneous electrochemical biosensors. Therefore, we envision that the proposed approach will find useful applications in disease molecular diagnoses and biomedicine.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, Shandong 266109, People's Republic of China
| | - Wenxiao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, Shandong 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
108
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
109
|
Kang H, Hong SH, Sung J, Yeo WS. Combination of Mass Signal Amplification and Isotope-Labeled Alkanethiols for the Multiplexed Detection of miRNAs. Chem Asian J 2017; 12:1895-1899. [PMID: 28593740 DOI: 10.1002/asia.201700696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Indexed: 11/06/2022]
Abstract
We report a fast and sensitive method for the multiplexed detection of miRNAs by combining mass signal amplification and isotope-labeled signal reporter molecules. In our strategy, target miRNAs are captured specifically by immobilized DNAs on gold nanoparticles (AuNPs), which carry a large number of small molecules, called amplification tags (Am-tags), as the reporter for the detection of target miRNAs. For multiplexed detection, we designed and synthesized four Am-tags containing 0, 4, 8, 12 isotopes so that they had same molecular properties but different molecular weights. By observing the mass signals of the Am-tags on AuNPs decorated along with different probe DNAs, four types of miRNAs in a sample could be easily discriminated, and the relative amounts of these miRNAs could be quantified. The practicability of our strategy was further verified by measuring the expression levels of two miRNAs in HUVECs in response to different CuSO4 concentrations.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea
| | - Seol-Hye Hong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea
| | - Jiha Sung
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea
| |
Collapse
|