101
|
Wei Y, Wang Y, Xia D, Guo S, Wang F, Zhang X, Gan Y. Thermosensitive Liposomal Codelivery of HSA-Paclitaxel and HSA-Ellagic Acid Complexes for Enhanced Drug Perfusion and Efficacy Against Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25138-25151. [PMID: 28696100 DOI: 10.1021/acsami.7b07132] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fibrotic stroma and tumor-promoting pancreatic stellate cells (PSCs), critical characters in the pancreatic ductal adenocarcinoma (PDA) microenvironment, promote a tumor-facilitating environment that simultaneously prevents drug penetration into tumor foci and stimulates tumor growth. Nab-PTX, a human serum albumin (HSA) nanoparticle of paclitaxel (PTX), indicates enhanced matrix penetration in PDA probably due to its small size in vivo and high affinity of HSA with secreted protein acidic and rich in cysteine (SPARC), overexpressed in the PDA stroma. However, this HSA nanoparticle shows poor drug blood retention because of its weak colloidal stability in vivo, thus resulting in insufficient drug accumulation within tumor. Encapsulating HSA nanoparticles into the internal aqueous phase of ordinary liposomes improves their blood retention and the following tumor accumulation, but the large 200 nm size and shielding of HSA in the interior might make it difficult for this hybrid nanomedicine to penetrate the fibrotic PDA matrix and promote bioavailability of the payload. In our current work, we prepared ∼9 nm HSA complexes with an antitumor drug (PTX) and an anti-PSC drug (ellagic acid, EA), and these two HSA-drug complexes were further coencapsulated into thermosensitive liposomes (TSLs). This nanomedicine was named TSL/HSA-PE. The use of TSL/HSA-PE could improve drug blood retention, and upon reaching locally heated tumors, these TSLs can rapidly release their payloads (HSA-drug complexes) to facilitate their further tumor accumulation and matrix penetration. With superior tumor accumulation, impressive matrix penetration, and simultaneous action upon tumor cells and PSCs to disrupt PSCs-PDA interaction, TSL/HSA-PE treatment combined with heat exhibited strong tumor growth inhibition and apoptosis in vivo.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yuxi Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Nano Science and Technology Institute, University of Science and Technology of China , 166 Renai Road, Suzhou, Jiangsu 215123, China
| | - Dengning Xia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Shiyan Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Feng Wang
- Shanghai Institute of Pharmaceutical Industry , 285 Gebaini Road, Shanghai 201203, China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
102
|
Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017; 131:36-46. [DOI: 10.1016/j.biomaterials.2017.03.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022]
|
103
|
The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 2017; 524:279-289. [DOI: 10.1016/j.ijpharm.2017.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
|
104
|
Al-Ahmady Z, Lozano N, Mei KC, Al-Jamal WT, Kostarelos K. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. Int J Pharm 2017; 514:133-141. [PMID: 27863656 DOI: 10.1016/j.ijpharm.2016.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
The engineering of responsive multifunctional delivery systems that combine therapeutic and diagnostic (theranostic) capabilities holds great promise and interest. We describe the design of thermosensitive liposome-nanoparticle (NP) hybrids that can modulate drug release in response to external heating stimulus. These hybrid systems were successfully engineered by the incorporation of gold, silver, and iron oxide NPs into the lipid bilayer of lysolipid-containing thermosensitive liposomes (LTSL). Structural characterization of LTSL-NP hybrids using cryo-EM and AFM revealed the incorporation of metallic NPs into the lipid membranes without compromising doxorubicin loading and retention capability. The presence of metallic NPs in the lipid bilayer reinforced bilayer retention and offered a nanoparticle concentration-dependent modulation of drug release in response to external heating. In conclusion, LTSL-NP hybrids represent a promising versatile platform based on LTSL liposomes that could further utilize the properties of the embedded NPs for multifunctional theranostic applications.
Collapse
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Neus Lozano
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Kuo-Ching Mei
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wafa' T Al-Jamal
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
105
|
Wang Y, Wei G, Zhang X, Xu F, Xiong X, Zhou S. A Step-by-Step Multiple Stimuli-Responsive Nanoplatform for Enhancing Combined Chemo-Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605357. [PMID: 28128876 DOI: 10.1002/adma.201605357] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/24/2016] [Indexed: 05/25/2023]
Abstract
A robust and smart protoporphyrin-based polymer nanoplatform, which is capable of successively recognizing the variation of biological signals and reacting with them in a dynamic mode, is successfully developed. It combines the chemotherapy and photodynamic therapy in a same system, leading to a high treatment outcome while a low adverse side effect of therapeutic agent.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Guoqing Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiang Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
106
|
Sangrà M, Estelrich J, Sabaté R, Espargaró A, Busquets MA. Evidence of Protein Adsorption in Pegylated Liposomes: Influence of Liposomal Decoration. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E37. [PMID: 28336870 PMCID: PMC5333022 DOI: 10.3390/nano7020037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
Abstract
In order to contribute to a better knowledge of the events involved in the formation of the protein corona when nanoparticles (NPs) come in contact with proteins, we report a study about the changes on the physicochemical properties of pristine, PEGylated and Cyclic Arginine-Glycine-Aspartate peptide (RGD)-functionalized large unilamelar liposomes (LUVs) or magnetoliposomes (MLs) upon incubation with Bovine Serum Albumin (BSA). The main phospholipid component of both LUVs and MLs was l-α-phosphatydylcholine (PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with 20% of cholesterol. The most obvious indication of the interaction of BSA-nanosystems is given by changes in the hydrodynamic diameter of the particles but other evidence is needed to corroborate the process. Our findings indicate that size modification is a process that is accomplished in few hours and that is strongly dependent not only on the surface decoration but also of the lipid composition of both LUVs and MLs. Fluorescence quenching experiments as well as cryogenic transmission electron microscopy (Cryo-TEM) images assessed these changes and confirmed that although each system has to be studied in a particular way, we can establish three distinctive features that turn into more reactive systems: (a) compositions containing PC compared with their DMPC counterparts; (b) the presence of PEG and/or RGD compared to the pristine counterparts; and (c) the presence of SPIONs: MLs show higher interaction than LUVs of the same lipid composition. Consequently, PEGylation (that is supposed to make stealth NPs) actually fails in preventing complete protein binding.
Collapse
Affiliation(s)
- Marc Sangrà
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Raimon Sabaté
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Alba Espargaró
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
107
|
Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 2016; 115:87-95. [PMID: 27865762 DOI: 10.1016/j.phrs.2016.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments.
Collapse
Affiliation(s)
- Alexandra G Arranja
- Department of Chemical Engineering, Delft University of Technology, 2628BL Delft, The Netherlands
| | - Vertika Pathak
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Yang Shi
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| |
Collapse
|
108
|
Li Z, Ye E, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4782-4806. [PMID: 27482950 DOI: 10.1002/smll.201601129] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The development of hybrid biomaterials has been attracting great attention in the design of materials for biomedicine. The nanosized level of inorganic and organic or even bioactive components can be combined into a single material by this approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. The recent advances in using hybrid nanovehicles as remotely controlled therapeutic delivery carriers are summarized with respect to different nanostructures, including hybrid host-guest nanoconjugates, micelles, nanogels, core-shell nanoparticles, liposomes, mesoporous silica, and hollow nanoconstructions. In addition, the controlled release of guest molecules from these hybrid nanovehicles in response to various remote stimuli such as alternating magnetic field, near infrared, or ultrasound triggers is further summarized to introduce the different mechanisms of remotely triggered release behavior. Through proper chemical functionalization, the hybrid nanovehicle system can be further endowed with many new properties toward specific biomedical applications.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| |
Collapse
|
109
|
Fu TF, Ao L, Gao ZC, Zhang XL, Wang F. Advances on supramolecular assembly of cyclometalated platinum(II) complexes. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.06.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
110
|
Haratake M, Tachibana Y, Emaya Y, Yoshida S, Fuchigami T, Nakayama M. Synthesis of Nanovesicular Glutathione Peroxidase Mimics with a Selenenylsulfide-Bearing Lipid. ACS OMEGA 2016; 1:58-65. [PMID: 30023472 PMCID: PMC6044637 DOI: 10.1021/acsomega.6b00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 06/08/2023]
Abstract
In this article, we describe the development of a nanosized-glutathione peroxidase (GPx) mimic based on liposomes of which the amphiphilic selenenylsulfide derivative (R-Se-S-R') was incorporated into a lipid membrane. A lipid membrane-compatible selenenylsulfide derivative, 1-oxo-headecyl-seleno-l-cysteine-methyl-Se-yl-S-l-penicillamine methyl ester (OHSeP), was synthesized. X-ray photoelectron spectroscopy revealed that the sulfur and selenium atoms of the OHSeP molecule formed a selenenylsulfide linkage. The use of OHSeP easily allowed the introduction of the seleno-l-cysteine (SeCys) moiety into the liposomal membranes by mixing with the phosphatidylcholines (PCs), which gave rise to the GPx-like catalytic activity because of the selenium atom in the SeCys moiety. The penicillamine moiety of the OHSeP molecule incorporated into the OHSeP/PC liposomes was thought to orient toward the outer water phase. The OHSeP/PC liposomes generated the GPx-like catalytic activity, which was ascribed to the SeCys moiety that was introduced into the PC-based liposomes. Consequently, the lipid/water interface of the liposomal membranes could possibly provide an effective colloidal platform for the development of water-soluble nanosized GPx mimics.
Collapse
Affiliation(s)
- Mamoru Haratake
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda Kumamoto, 860-0082 Kumamoto, Japan
| | - Yuri Tachibana
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi
Nagasaki, 852-8521 Nagasaki, Japan
| | - Yui Emaya
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi
Nagasaki, 852-8521 Nagasaki, Japan
| | - Sakura Yoshida
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi
Nagasaki, 852-8521 Nagasaki, Japan
| | - Takeshi Fuchigami
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi
Nagasaki, 852-8521 Nagasaki, Japan
| | - Morio Nakayama
- Graduate
School of Biomedical Sciences, Nagasaki
University, 1-14 Bunkyo-machi
Nagasaki, 852-8521 Nagasaki, Japan
| |
Collapse
|
111
|
Sou K, Chan LY, Lee CLK. Temperature Tracking in a Three-Dimensional Matrix Using Thermosensitive Liposome Platform. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keitaro Sou
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore
- Organization
for University Research Initiatives, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Li Yan Chan
- Centre
for Biomedical and Life Sciences, Department for Technology, Innovation
and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| | - Chi-Lik Ken Lee
- Centre
for Biomedical and Life Sciences, Department for Technology, Innovation
and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| |
Collapse
|
112
|
Yu JJ, Cao ZQ, Zhang Q, Yang S, Qu DH, Tian H. Photo-powered stretchable nano-containers based on well-defined vesicles formed by an overcrowded alkene switch. Chem Commun (Camb) 2016; 52:12056-12059. [DOI: 10.1039/c6cc06458b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photo-responsive nano-container was successfully constructed based on well-defined vesicles formed by an amphiphilic overcrowded alkene switch.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Zhan-Qi Cao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Shun Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
113
|
Pramanik A, Paikar A, Maji K, Haldar D. Photo-responsive modulation of hybrid peptide assembly, charge transfer complex formation and gelation. RSC Adv 2016. [DOI: 10.1039/c6ra13026g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Light has been used as trigger for modulation of supramolecular assembly of hybrid peptides followed by charge transfer complex formation and organogelation.
Collapse
Affiliation(s)
- Apurba Pramanik
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Arpita Paikar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Krishnendu Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|