101
|
Batrice RJ, Gordon JC. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction. RSC Adv 2020; 11:87-113. [PMID: 35423038 PMCID: PMC8691073 DOI: 10.1039/d0ra07790a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Solar energy has been used for decades for the direct production of electricity in various industries and devices; however, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuel combustion. The common feedstocks for producing such solar fuels are carbon dioxide and water, yet only the photoconversion of carbon dioxide presents the opportunity to generate liquid fuels capable of integrating into our existing infrastructure, while simultaneously removing atmospheric greenhouse gas pollution. This review presents recent advances in photochemical solar fuel production technology. Although efforts in this field have created an incredible number of methods to convert carbon dioxide into gaseous and liquid fuels, these can generally be classified under one of four categories based on how incident sunlight is utilised: solar concentration for thermoconversion (Category 1), transformation toward electroconversion (Category 2), natural photosynthesis for bioconversion (Category 3), and artificial photosynthesis for direct photoconversion (Category 4). Select examples of developments within each of these categories is presented, showing the state-of-the-art in the use of carbon dioxide as a suitable feedstock for solar fuel production. Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.![]()
Collapse
Affiliation(s)
- Rami J Batrice
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - John C Gordon
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
102
|
Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00085-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractBackgroundThe technical innovations are based on the principles of science with the assurance of outweighing their cost and risk factors with the benefits to society. But sometimes, the innovation either itself becomes a risk or brings in some risk factors along with it. For most of the alleyway of an innovation from its emergence to its road to societal acceptance and adoption, the focus remains on the benefits majorly. Only when we are at the neck of the hour we think about some of the apparent cost and risk issues. The understanding, proper communication, and address of the basics of risk factors are necessarily required much in advance to deal with this issue.Main bodyNanoparticles with very small size and huge surface area are being derived from various plants, microbes, chemical compounds, metals, and metal alloys. Without our realizations, nanotechnology has become a vital part of our day-to-day life, and nanoparticles are proving their worth in almost every field ranging from food, water, medicine, agriculture, construction, fashion, electronics, and computers to eco-remediation, but what about the costs involved and the risks associated? We strongly need to recognize these concerns and challenges, and it requires collaborative efforts from academicians, researchers, industries, government, and non-government organizations to involve people in dialogs to deal with them.ConclusionThrough reviewing various studies and articles on nanotechnology, this review has shown that nanotechnology can productively be used to produce consumer goods for pharma, electronics, food, agriculture, aviation, construction, security, and remediation sectors which are advantages in their characteristics. Regarding the future of nanotechnology, we need to focus on assessment and management of risks associated for its promising market growth.Graphical abstract
Collapse
|
103
|
Dessì P, Rovira-Alsina L, Sánchez C, Dinesh GK, Tong W, Chatterjee P, Tedesco M, Farràs P, Hamelers HMV, Puig S. Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO 2 emissions. Biotechnol Adv 2020; 46:107675. [PMID: 33276075 DOI: 10.1016/j.biotechadv.2020.107675] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
Decarbonisation of the economy has become a priority at the global level, and the resulting legislative pressure is pushing the chemical and energy industries away from fossil fuels. Microbial electrosynthesis (MES) has emerged as a promising technology to promote this transition, which will further benefit from the decreasing cost of renewable energy. However, several technological challenges need to be addressed before the MES technology can reach its maturity. The aim of this review is to critically discuss the bottlenecks hampering the industrial adoption of MES, considering the whole production process (from the CO2 source to the marketable products), and indicate future directions. A flexible stack design, with flat or tubular MES modules and direct CO2 supply, is required for site-specific decentralised applications. The experience gained for scaling-up electrochemical cells (e.g. electrolysers) can serve as a guideline for realising pilot MES stacks to be technologically and economically evaluated in industrially relevant conditions. Maximising CO2 abatement rate by targeting high-rate production of acetate can promote adoption of MES technology in the short term. However, the development of a replicable and robust strategy for production and in-line extraction of higher-value products (e.g. caproic acid and hexanol) at the cathode, and meaningful exploitation of the currently overlooked anodic reactions, can further boost MES cost-effectiveness. Furthermore, the use of energy storage and smart electronics can alleviate the fluctuations of renewable energy supply. Despite the unresolved challenges, the flexible MES technology can be applied to decarbonise flue gas from different sources, to upgrade industrial and wastewater treatment plants, and to produce a wide array of green and sustainable chemicals. The combination of these benefits can support the industrial adoption of MES over competing technologies.
Collapse
Affiliation(s)
- Paolo Dessì
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| | - Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Carlos Sánchez
- Microbiology Department, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - G Kumaravel Dinesh
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Wenming Tong
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology, Hyderabad, India
| | - Michele Tedesco
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Pau Farràs
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Hubertus M V Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| |
Collapse
|
104
|
Kong X, Gai P, Li F. Biohybrid Cells for Photoelectrochemical Conversion Based on the HCOO --CO 2 Circulation Approach. ACS APPLIED BIO MATERIALS 2020; 3:8069-8074. [PMID: 35019546 DOI: 10.1021/acsabm.0c01166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biohybrid photoelectrochemical systems could combine the light-harvesting ability of semiconductor photocatalysts and the CO2-processing capability of biocatalysts to realize CO2 reduction. How to develop the energy-utilized model can be of importance for the mechanism exploration of photosynthesis. Here, a biohybrid photoelectrochemical system based on HCOO--CO2 circulation was developed to realize the conversion both of solar-to-electric energy and chemical-to-electric energy. The device consists of a TiO2 nanoparticle photoanode and a laser-scribed graphene/formate dehydrogenase biocathode, which was utilized for the formic acid oxidation and the biocatalysis reduction of CO2 to HCOO-, respectively. The as-proposed biohybrid photoelectrochemical system exhibits good performance with an open-circuit potential of 0.93 V and a maximum power output density of 76 μW cm-2. This ingenious strategy not only exploits a robust carbon circulation system for the conversion of solar energy but also provides a way of constructing complex artificial photosynthesis systems.
Collapse
Affiliation(s)
- Xinke Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
105
|
Cui Y, He B, Liu X, Sun J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuandong Cui
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
106
|
Sahoo PC, Pant D, Kumar M, Puri S, Ramakumar S. Material–Microbe Interfaces for Solar-Driven CO2 Bioelectrosynthesis. Trends Biotechnol 2020; 38:1245-1261. [DOI: 10.1016/j.tibtech.2020.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
107
|
Stewart KN, Domaille DW. Enhancing Biosynthesis and Manipulating Flux in Whole Cells with Abiotic Catalysis. Chembiochem 2020; 22:469-477. [PMID: 32851745 DOI: 10.1002/cbic.202000458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Indexed: 01/08/2023]
Abstract
Metabolic engineering uses genetic strategies to drive flux through desired pathways. Recent work with electrochemical, photochemical, and chemocatalytic setups has revealed that these systems can also expand metabolic pathways and manipulate flux in whole cells. Electrochemical systems add or remove electrons from metabolic pathways to direct flux to more- or less-reduced products. Photochemical systems act as synthetic light-harvesting complexes and yield artificial photosynthetic organisms. Biocompatible chemocatalysis increases product scope, streamlines syntheses, and yields single-flask processes to deliver products that would be challenging to synthesize through biosynthetic means alone. Here, we exclusively highlight systems that combine abiotic systems with living whole cells, taking particular note of strategies that enable the merger of these typically disparate systems.
Collapse
Affiliation(s)
- Kelsey N Stewart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| |
Collapse
|
108
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
109
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Liu Y, Ding H, Sun Y, Li Y, Lu A. Genome Analysis of a Marine Bacterium Halomonas sp. and Its Role in Nitrate Reduction under the Influence of Photoelectrons. Microorganisms 2020; 8:E1529. [PMID: 33027938 PMCID: PMC7650824 DOI: 10.3390/microorganisms8101529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
The solar light response and photoelectrons produced by widespread semiconducting mineral play important roles in biogeochemical cycles on Earth's surface. To explore the potential influence of photoelectrons generated by semiconducting mineral particles on nitrate-reducing microorganisms in the photic zone, a marine heterotrophic denitrifier Halomonas sp. strain 3727 was isolated from seawater in the photic zone of the Yellow Sea, China. This strain was classified as a Halomonadaceae. Whole-genome analysis indicated that this strain possessed genes encoding the nitrogen metabolism, i.e., narG, nasA, nirBD, norZ, nosB, and nxr, which sustained dissimilatory nitrate reduction, assimilatory nitrate reduction, and nitrite oxidation. This strain also possessed genes related to carbon, sulfur, and other metabolisms, hinting at its substantial metabolic flexibility. A series of microcosm experiments in a simulative photoelectron system was conducted, and the results suggested that this bacterial strain could use simulated photoelectrons with different energy for nitrate reduction. Nitrite, as an intermediate product, was accumulated during the nitrate reduction with limited ammonia residue. The nitrite and ammonia productions differed with or without different energy electron supplies. Nitrite was the main product accounting for 30.03% to 68.40% of the total nitrogen in photoelectron supplement systems, and ammonia accounted for 3.77% to 8.52%. However, in open-circuit systems, nitrite and ammonia proportions were 26.77% and 11.17%, respectively, and nitrogen loss in the liquid was not observed. This study reveals that photoelectrons can serve as electron donors for nitrogen transformation mediated by Halomonas sp. strain 3727, which reveals an underlying impact on the nitrogen biogeochemical cycle in the marine photic zone.
Collapse
Affiliation(s)
| | - Hongrui Ding
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| | | | | | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| |
Collapse
|
111
|
Sahoo A, Chowdhury AH, Singha P, Banerjee A, Manirul Islam S, Bala T. Morphology of ZnO triggered versatile catalytic reactions towards CO2 fixation and acylation of amines at optimized reaction conditions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
112
|
Tian Y, Zhou Y, Zong Y, Li J, Yang N, Zhang M, Guo Z, Song H. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO 2 to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34795-34805. [PMID: 32805792 DOI: 10.1021/acsami.0c06684] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inorganic photocatalyst-enzyme systems are a prominent platform for the photoreduction of CO2 to value-added chemicals and fuels. However, poor electron transfer kinetics and enzyme deactivation by reactive oxygen species in the photoexcitation process severely limit catalytic efficiency. In chloroplast, enzymatic CO2 reduction and photoexcitation are compartmentalized by the thylakoid membrane, which protects enzymes from photodamage, while the tightly integrated photosystem facilitates electron transfer, promoting photocatalysis. By mimicking this strategy, we constructed a novel functionally compartmental inorganic photocatalyst-enzyme system for CO2 reduction to formate. To accomplish efficient electron transfer, we first synthesized an integrated artificial photosystem by conjugation of the cocatalyst (a Rh complex) onto thiophene-modified C3N4 (TPE-C3N4), demonstrating an NADH regeneration rate of 9.33 μM·min-1, 2.33 times higher than that of a homogeneous counterpart. The enhanced NADH regeneration activity was caused by the tightly conjugated structure of the artificial photosystem, enabling rapid electron transfer from TPE-C3N4 to the Rh complex. To protect formate dehydrogenase (FDH) from photoinduced deactivation, FDH was encapsulated into MAF-7, a metal-organic framework (MOF) material, to compartmentalize FDH from the toxic photoexcitation process, similar to the function of the thylakoid membrane. Moreover, the triazole linkers of MAF-7 possess both hydrophilicity and pH-buffering capacity providing a stable microenvironment for FDH, which could enhance enzyme stability in photosynthesis. The synergy between the enhanced electron transfer of TPE-C3N4 for NADH cofactor regeneration and MOF-protection of the redox enzyme enables the construction of a functionally compartmental inorganic photocatalyst-enzyme association system, promoting CO2 photoconversion to formic acid with a yield of 16.75 mM after 9 h of illumination, 3.24 times greater than that of the homogeneous reaction counterpart.
Collapse
Affiliation(s)
- Yao Tian
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yinuo Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yongchao Zong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiansheng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiqi Guo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
113
|
Zhang X, Zhang X, Yuan B, Liang C, Yu Y. Atomic-scale study of nanocatalysts by aberration-corrected electron microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:413004. [PMID: 32666936 DOI: 10.1088/1361-648x/ab977c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Aberration-corrected electron microscopy (AC-EM) including transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) has become one of the most powerful technologies in the studies of nanocatalysts. With the current spatial resolution of sub-0.5 Å and energy resolution of 10 meV, AC-EM can quantificationally articulate the connection between catalytic properties and atomic configurations of nanocatalysts. However, the restricted irradiation sensitive characteristics of specimens pose an obstacle to solve their intrinsic structure. Low-dose imaging should be applied to overcome this problem. In addition, the choice of appropriate imaging method is also crucial to tackle specific structural problems of nanocatalysts. On the basis of careful management of electron dose and selection of suitable imaging method,in situgas and liquid S/TEM are able to reveal the structure evolution of nanocatalysts in real-time. Further combination with residual gas analysis would deepen the understanding of the catalytic reaction.
Collapse
Affiliation(s)
- Xun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiuli Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
114
|
Yang C, Li S, Zhang Z, Wang H, Liu H, Jiao F, Guo Z, Zhang X, Hu W. Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001847. [PMID: 32510861 DOI: 10.1002/smll.202001847] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Indexed: 05/03/2023]
Abstract
Electrochemical CO2 reduction (ECR) to value-added chemicals and fuels is regarded as an effective strategy to mitigate climate change caused by CO2 from excess consumption of fossil fuels. To achieve CO2 conversion with high faradaic efficiency, low overpotential, and excellent product selectivity, rational design and synthesis of efficient electrocatalysts is of significant importance, which dominates the development of ECR field. Individual organic molecules or inorganic catalysts have encountered a bottleneck in performance improvement owing to their intrinsic shortcomings. Very recently, organic-inorganic hybrid nanomaterials as electrocatalysts have exhibited high performance and interesting reaction processes for ECR due to the integration of the advantages of both heterogeneous and homogeneous catalytic processes, attracting widespread interest. In this work, the recent advances in designing various organic-inorganic hybrid nanomaterials at the atomic and molecular level for ECR are systematically summarized. Particularly, the reaction mechanism and structure-performance relationship of organic-inorganic hybrid nanomaterials toward ECR are discussed in detail. Finally, the challenges and opportunities toward controlled synthesis of advanced electrocatalysts are proposed for paving the development of the ECR field.
Collapse
Affiliation(s)
- Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shuyu Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Haiqing Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Huiling Liu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Fei Jiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhenguo Guo
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
115
|
Fang Y, Lv K, Li Z, Kong N, Wang S, Xu A, Wu Z, Jiang F, Li C, Ozin GA, He L. Solution-Liquid-Solid Growth and Catalytic Applications of Silica Nanorod Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000310. [PMID: 32670762 PMCID: PMC7341079 DOI: 10.1002/advs.202000310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/04/2020] [Indexed: 05/16/2023]
Abstract
As an analogue to the vapor-liquid-solid process, the solution-liquid-solid (SLS) method offers a mild solution-phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. However, direct growth of 1D nanostructure arrays through SLS processes remains in its infancy. Herein, this study shows that SLS processes are also suitable for the growth of nanorod arrays on the substrate. As a proof of concept, seedless growth of silica nanorod arrays on a variety of hydrophilic substrates such as pristine and oxide-modified glass, metal sheets, Si wafers, and biaxially oriented polypropylene film are demonstrated. Also, the silica nanorod arrays can be used as a new platform for the fabrication of catalysts for photothermal CO2 hydrogenation and the reduction of 4-nitrophenol reactions. This work offers some fundamental insight into the SLS growth process and opens a new avenue for the mild preparation of functional 1D nanostructure arrays for various applications.
Collapse
Affiliation(s)
- Yaosi Fang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Kangxiao Lv
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Zhao Li
- Solar Fuels GroupChemistry DepartmentUniversity of Toronto80 St. George StTorontoOntarioM5S 3H6Canada
| | - Ning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Shenghua Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Ao‐Bo Xu
- Department of ChemistryThe University of Western OntarioLondonOntarioN6A 3K7Canada
| | - Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Fengluan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| | - Geoffrey A. Ozin
- Solar Fuels GroupChemistry DepartmentUniversity of Toronto80 St. George StTorontoOntarioM5S 3H6Canada
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123P. R. China
| |
Collapse
|
116
|
He J, Janáky C. Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS ENERGY LETTERS 2020; 5:1996-2014. [PMID: 32566753 PMCID: PMC7296618 DOI: 10.1021/acsenergylett.0c00645] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 05/09/2023]
Abstract
Solar-driven carbon dioxide (CO2) conversion to fuels and high-value chemicals can contribute to the better utilization of renewable energy sources. Photosynthetic (PS), photocatalytic (PC), photoelectrochemical (PEC), and photovoltaic plus electrochemical (PV+EC) approaches are intensively studied strategies. We aimed to compare the performance of these approaches using unified metrics and to highlight representative studies with outstanding performance in a given aspect. Most importantly, a statistical analysis was carried out to compare the differences in activity, selectivity, and durability of the various approaches, and the underlying causes are discussed in detail. Several interesting trends were found: (i) Only the minority of the studies present comprehensive metrics. (ii) The CO2 reduction products and their relative amount vary across the different approaches. (iii) Only the PV+EC approach is likely to lead to industrial technologies in the midterm future. Last, a brief perspective on new directions is given to stimulate discussion and future research activity.
Collapse
|
117
|
Abstract
AbstractAbiotic–biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide (CO2) to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission. We illustrate the recent progress in this field. Here, we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important. Second, we review the recent progress in the construction of abiotic–biological hybrid systems for CO2 transformation from two aspects: (i) microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and (ii) photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation. Lastly, we discuss potential approaches for further improvement of abiotic–biological hybrid systems.
Collapse
|
118
|
Shi J, Clayton C, Tian B. Nano-enabled cellular engineering for bioelectric studies. NANO RESEARCH 2020; 13:1214-1227. [PMID: 34295455 PMCID: PMC8294124 DOI: 10.1007/s12274-019-2580-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 06/13/2023]
Abstract
Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions. Nanomaterials, such as silicon nanowires and quantum dots, can establish tight interfaces with cells either extra- or intracellularly, and they have already been widely used to control cellular functions. The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications. In this review, we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells. First, we briefly review the latest progress in engineered or synthetic cells, such as protocells that create cell-like behaviors from nonliving building blocks, and cells made by genetic or chemical modifications. Next, we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces. We then provide discussions in detail about the semiconductor nanostructure-enabled neural, cardiac, and microbial modulations. We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions. We end this review by providing our perspectives for future development in non-genetic cellular engineering.
Collapse
Affiliation(s)
- Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
119
|
Nano on micro: tuning microbial metabolisms by nano-based artificial mediators to enhance and expand production of biochemicals. Curr Opin Biotechnol 2020; 64:161-168. [PMID: 32361627 DOI: 10.1016/j.copbio.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/27/2022]
Abstract
Advances in synthetic biology and metabolic engineering across the past few decades have enabled the successful production of many novel chemicals. However, bioproduction of such chemicals is often limited by low yield and titer due to disrupted metabolic homeostasis. Finely tuning cellular metabolism to restore robust metabolic functions entails various genetic modifications, which is often not practical. Alternatively, artificial mediators capable of tailoring microbial metabolisms open a new avenue for restoring physiological functions. In this context, nanoparticle-based artificial mediators have been pursued to tune cellular metabolisms. They can not only enhance production of molecules from endogenous metabolism, but also expand bioproducts spectrum. Here, we reviewed recent advances toward the employment of nano-based artificial mediators for the tuning of cellular metabolism, with a focus on their positive effects on electron transfer and pathway flux. Perspectives for potential applications of artificial mediators for mediating microbial metabolisms in the future were also provided.
Collapse
|
120
|
Zhou H, Xiao C, Yang Z, Du Y. 3D structured materials and devices for artificial photosynthesis. NANOTECHNOLOGY 2020; 31:282001. [PMID: 32240995 DOI: 10.1088/1361-6528/ab85ea] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Artificial photosynthesis is an effective way to convert solar energy into fuels, which is of great significance to energy production and reduction of atmospheric CO2 content. In recent years, 3D structured artificial photosynthetic system has made great progress as an effective design strategy. This review first highlights several typical mechanisms for improved artificial photosynthesis with 3D structures: improved light harvesting, mass transfer and charge separation. Then, we summarize typical examples of 3D structured artificial photosynthetic systems, including bioinspired structures, photonic crystals (PC), designed photonic structures (PC coupling structure, plasmon resonance structure, optical resonance structure, metamaterials), 3D-printed systems, nanowire integrated systems and hierarchical 3D structures. Finally, we discuss the problems and challenges to the application and development of 3D artificial photosynthetic system and the possible trends of future development. We hope this review can inspire more progress in the field of artificial photosynthesis.
Collapse
Affiliation(s)
- Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
121
|
Wang JL, Jiang HJ, He Z, Liu JW, Wang R, Huang WR, Feng LT, Ren XF, Hou ZH, Yu SH. Radial Nanowire Assemblies under Rotating Magnetic Field Enabled Efficient Charge Separation. NANO LETTERS 2020; 20:2763-2769. [PMID: 32125868 DOI: 10.1021/acs.nanolett.0c00408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing efficient charge separation strategies is essential to achieve high-power conversion efficiency in the fields of chemistry, biology, and material science. Herein, we develop a facile strategy for fabrication of unique wafer-scale radial nanowire assemblies by exploiting shear force in rotary solution. The assembly mechanism can be well revealed by the large-scale stochastic dynamics simulation. Free electrons can be rapidly generated to produce quantitatively tunable current output when the radial nanowire assemblies rotate under the magnetic field. Moreover, the photoconductive performance of the radial semiconductor nanowire assemblies can be remarkably enhanced as the electron-hole recombination was retrained by the efficient charge separation under the rotating magnetic field. Such large-scale unique nanowire assemblies will facilitate the design of an efficient charge separation process in biosystem, sensors, and photocatalysis.
Collapse
Affiliation(s)
- Jin-Long Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Ran Huang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lan-Tian Feng
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xi-Feng Ren
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zhong-Huai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
122
|
Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO 2: Challenges, opportunities and perspectives in the context of circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122863. [PMID: 32019708 DOI: 10.1016/j.biortech.2020.122863] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.
Collapse
Affiliation(s)
- Bin Bian
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Suman Bajracharya
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Jiajie Xu
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Deepak Pant
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| | - Pascal E Saikaly
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia.
| |
Collapse
|
123
|
Abstract
Root nodules are agricultural-important symbiotic plant-microbe composites in which microorganisms receive energy from plants and reduce dinitrogen (N2) into fertilizers. Mimicking root nodules using artificial devices can enable renewable energy-driven fertilizer production. This task is challenging due to the necessity of a microscopic dioxygen (O2) concentration gradient, which reconciles anaerobic N2 fixation with O2-rich atmosphere. Here we report our designed electricity-powered biological|inorganic hybrid system that possesses the function of root nodules. We construct silicon-based microwire array electrodes and replicate the O2 gradient of root nodules in the array. The wire array compatibly accommodates N2-fixing symbiotic bacteria, which receive energy and reducing equivalents from inorganic catalysts on microwires, and fix N2 in the air into biomass and free ammonia. A N2 reduction rate up to 6.5 mg N2 per gram dry biomass per hour is observed in the device, about two orders of magnitude higher than the natural counterparts.
Collapse
Affiliation(s)
- Shengtao Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
124
|
Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 2020. [DOI: 10.1038/s41929-019-0421-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
125
|
|
126
|
Smith PT, Nichols EM, Cao Z, Chang CJ. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Acc Chem Res 2020; 53:575-587. [PMID: 32124601 DOI: 10.1021/acs.accounts.9b00619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing demand for sustainable energy sources continues to motivate the development of new catalytic processes that store intermittent energy in the form of chemical bonds. In this context, photosynthetic organisms harvest light to drive dark reactions reducing carbon dioxide, an abundant and accessible carbon source, to store solar energy in the form of glucose and other biomass feedstocks. Inspired by this biological process, the field of artificial photosynthesis aims to store renewable energy in chemical bonds spanning fuels, foods, medicines, and materials using light, water, and CO2 as the primary chemical feedstocks, with the added benefit of mitigating the accumulation of CO2 as a greenhouse gas in the atmosphere. As such, devising new catalyst platforms for transforming CO2 into value-added chemical products is of importance. Historically, catalyst design for artificial photosynthesis has been approached from the three traditional fields of catalysis: molecular, materials, and biological. In this Account, we show progress from our laboratory in constructing new hybrid catalysts for artificial photosynthesis that draw upon design concepts from all three of these traditional fields of catalysis and blur the boundaries between them. Starting with molecular catalysis, we incorporated biological design elements that are prevalent in enzymes into synthetic systems. Specifically, we demonstrated that proper positioning of intramolecular hydrogen bond donors or addition of intermolecular multipoint hydrogen bond donors with classic iron porphyrin and nickel cyclam platforms can substantially increase rates of CO2 reduction and break electronic scaling relationships. In parallel, we incorporated a key materials design element, namely, high surface area and porosity for maximizing active site exposure, into molecular systems. A supramolecular porous organic cage molecule was synthesized with iron porphyrin building blocks, and the porosity was observed to facilitate substrate and charge transport through the catalyst film. In turn, molecular design elements can be incorporated into materials catalysts for CO2 reduction. First, we utilized molecular synthons in a bottom-up reticular approach to drive polymerization/assembly into a bulk framework material. Second, we established an organometallic approach in which molecular ligands, including chelating ones, are adsorbed onto a bulk inorganic solid to create and tune new active sites on surfaces. Finally, we describe two examples in which molecular, materials, and biological design elements are all integrated to catalyze the reduction of CO2 into CH4 using a hybrid biological-materials interface with sustainably generated H2 as the reductant or to reduce CO into value-added C2 products acetate and ethanol using a hybrid molecular-materials interface to construct a biomimetic, bimetallic active site. Taken together, our program in catalysis for energy and sustainability has revealed that combining more conventional design strategies in synergistic ways can lead to advances in artificial photosynthesis.
Collapse
Affiliation(s)
- Peter T. Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eva M. Nichols
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels CHINA Co., Ltd, Beijing 101400, China
| | - Christopher J. Chang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
127
|
Guo Z, Richardson JJ, Kong B, Liang K. Nanobiohybrids: Materials approaches for bioaugmentation. SCIENCE ADVANCES 2020; 6:eaaz0330. [PMID: 32206719 PMCID: PMC7080450 DOI: 10.1126/sciadv.aaz0330] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Nanobiohybrids, synthesized by integrating functional nanomaterials with living systems, have emerged as an exciting branch of research at the interface of materials engineering and biological science. Nanobiohybrids use synthetic nanomaterials to impart organisms with emergent properties outside their scope of evolution. Consequently, they endow new or augmented properties that are either innate or exogenous, such as enhanced tolerance against stress, programmed metabolism and proliferation, artificial photosynthesis, or conductivity. Advances in new materials design and processing technologies made it possible to tailor the physicochemical properties of the nanomaterials coupled with the biological systems. To date, many different types of nanomaterials have been integrated with various biological systems from simple biomolecules to complex multicellular organisms. Here, we provide a critical overview of recent developments of nanobiohybrids that enable new or augmented biological functions that show promise in high-tech applications across many disciplines, including energy harvesting, biocatalysis, biosensing, medicine, and robotics.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438 P. R. China
- Corresponding author. (B.K.); (K.L.)
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- Corresponding author. (B.K.); (K.L.)
| |
Collapse
|
128
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
129
|
Brown KA, King PW. Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis. PHOTOSYNTHESIS RESEARCH 2020; 143:193-203. [PMID: 31641988 DOI: 10.1007/s11120-019-00670-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Biohybrid artificial photosynthesis aims to combine the advantages of biological specificity with a range of synthetic nanomaterials to create innovative semi-synthetic systems for solar-to-chemical conversion. Biological systems utilize highly efficient molecular catalysts for reduction-oxidation reactions. They can operate with minimal overpotentials while selectively channeling reductant energy into specific transformation chemistries and product forming pathways. Nanomaterials can be synthesized to have efficient light-absorption capacity and tuneability of charge separation by manipulation of surface chemistries and bulk compositions. These complementary aspects have been combined in a variety of ways, for example, where biological light-harvesting complexes function as antenna for nanoparticle catalysts or where nanoparticles function as light capture, charge separation components for coupling to chemical conversion by redox enzymes and whole cells. The synthetic diversity that is possible with biohybrids is still being explored. The progress arising from creative approaches is generating new model systems to inspire scale-up technologies and generate understanding of the fundamental mechanisms that control energy conversion at the molecular scale. These efforts are leading to discoveries of essential design principles that can enable the development of scalable artificial photosynthesis systems.
Collapse
Affiliation(s)
| | - Paul W King
- National Renewable Energy Laboratory, Golden, CO, 80402, USA
| |
Collapse
|
130
|
Edwardes Moore E, Andrei V, Zacarias S, Pereira IA, Reisner E. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS ENERGY LETTERS 2020; 5:232-237. [PMID: 32010793 PMCID: PMC6986817 DOI: 10.1021/acsenergylett.9b02437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly active enzyme for H2 generation, with a triple cation mixed halide perovskite. The perovskite-hydrogenase photoelectrode produces a photocurrent of -5 mA cm-2 at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO4 water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis.
Collapse
Affiliation(s)
- Esther Edwardes Moore
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Virgil Andrei
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Sónia Zacarias
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| |
Collapse
|
131
|
Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc Natl Acad Sci U S A 2020; 117:1330-1338. [PMID: 31900367 DOI: 10.1073/pnas.1911159117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A rational design of an electrocatalyst presents a promising avenue for solar fuels synthesis from carbon dioxide (CO2) fixation but is extremely challenging. Herein, we use density functional theory calculations to study an inexpensive binary copper-iron catalyst for photoelectrochemical CO2 reduction toward methane. The calculations of reaction energetics suggest that Cu and Fe in the binary system can work in synergy to significantly deform the linear configuration of CO2 and reduce the high energy barrier by stabilizing the reaction intermediates, thus spontaneously favoring CO2 activation and conversion for methane synthesis. Experimentally, the designed CuFe catalyst exhibits a high current density of -38.3 mA⋅cm-2 using industry-ready silicon photoelectrodes with an impressive methane Faradaic efficiency of up to 51%, leading to a distinct turnover frequency of 2,176 h-1 under air mass 1.5 global (AM 1.5G) one-sun illumination.
Collapse
|
132
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
133
|
|
134
|
Gao M, Zhu Y, Liu Y, Wu K, Lu H, Tang S, Liu C, Yue H, Liang B, Yan J. The role of adsorbed oleylamine on gold catalysts during synthesis for highly selective electrocatalytic reduction of CO2 to CO. Chem Commun (Camb) 2020; 56:7021-7024. [DOI: 10.1039/d0cc01088j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorbed oleylamine on Au NP surfaces during preparation can efficiently enhance electrocatalysis of CO2 to CO and inhibit the hydrogen evolution reaction.
Collapse
|
135
|
Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020; 49:4926-4952. [DOI: 10.1039/c9cs00496c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of the cross-disciplinary field of semi-artificial photosynthesis, which combines strengths of biocatalysis and artificial photosynthesis to develop new concepts and approaches for solar-to-chemical conversion.
Collapse
Affiliation(s)
- Xin Fang
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Shafeer Kalathil
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
136
|
Tremblay PL, Xu M, Chen Y, Zhang T. Nonmetallic Abiotic-Biological Hybrid Photocatalyst for Visible Water Splitting and Carbon Dioxide Reduction. iScience 2019; 23:100784. [PMID: 31962238 PMCID: PMC6971392 DOI: 10.1016/j.isci.2019.100784] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Both artificial photosystems and natural photosynthesis have not reached their full potential for the sustainable conversion of solar energy into specific chemicals. A promising approach is hybrid photosynthesis combining efficient, non-toxic, and low-cost abiotic photocatalysts capable of water splitting with metabolically versatile non-photosynthetic microbes. Here, we report the development of a water-splitting enzymatic photocatalyst made of graphitic carbon nitride (g-C3N4) coupled with H2O2-degrading catalase and its utilization for hybrid photosynthesis with the non-photosynthetic bacterium Ralstonia eutropha for bioplastic production. The g-C3N4-catalase system has an excellent solar-to-hydrogen efficiency of 3.4% with a H2 evolution rate up to 55.72 μmol h−1 while evolving O2 stoichiometrically. The hybrid photosynthesis system built with the water-spitting g-C3N4-catalase photocatalyst doubles the production of the bioplastic polyhydroxybutyrate by R. eutropha from CO2 and increases it by 1.84-fold from fructose. These results illustrate how synergy between abiotic non-metallic photocatalyst, enzyme, and bacteria can augment solar-to-multicarbon chemical conversion.
H2O2-degrading enzymes from R. eutropha enable visible-light water splitting by C3N4 C3N4 coupled with bovine catalase has a solar-to-hydrogen efficiency of 3.4% C3N4-catalase increases CO2 conversion into bioplastic under light by R. eutropha Heterotrophic bioplastic production by R. eutropha is also improved by C3N4-catalase
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yiming Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
137
|
Sokol K, Robinson WE, Oliveira AR, Zacarias S, Lee CY, Madden C, Bassegoda A, Hirst J, Pereira IA, Reisner E. Reversible and Selective Interconversion of Hydrogen and Carbon Dioxide into Formate by a Semiartificial Formate Hydrogenlyase Mimic. J Am Chem Soc 2019; 141:17498-17502. [PMID: 31638793 PMCID: PMC6838786 DOI: 10.1021/jacs.9b09575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/20/2022]
Abstract
The biological formate hydrogenlyase (FHL) complex links a formate dehydrogenase (FDH) to a hydrogenase (H2ase) and produces H2 and CO2 from formate via mixed-acid fermentation in Escherichia coli. Here, we describe an electrochemical and a colloidal semiartificial FHL system that consists of an FDH and a H2ase immobilized on conductive indium tin oxide (ITO) as an electron relay. These in vitro systems benefit from the efficient wiring of a highly active enzyme pair and allow for the reversible conversion of formate to H2 and CO2 under ambient temperature and pressure. The hybrid systems provide a template for the design of synthetic catalysts and surpass the FHL complex in vivo by storing and releasing H2 on demand by interconverting CO2/H2 and formate with minimal bias in either direction.
Collapse
Affiliation(s)
- Katarzyna
P. Sokol
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - William E. Robinson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ana R. Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sonia Zacarias
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Chong-Yong Lee
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher Madden
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arnau Bassegoda
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - Judy Hirst
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
138
|
Wu B, Atkinson JT, Kahanda D, Bennett GN, Silberg JJ. Combinatorial design of chemical‐dependent protein switches for controlling intracellular electron transfer. AIChE J 2019. [DOI: 10.1002/aic.16796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bingyan Wu
- Biochemistry & Cell Biology Graduate Program Rice University Houston Texas
- Department of Biosciences Rice University Houston Texas
| | - Joshua T. Atkinson
- Department of Biosciences Rice University Houston Texas
- Systems, Synthetic, & Physical Biology Graduate Program Rice University Houston Texas
| | | | - George N. Bennett
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
| | - Jonathan J. Silberg
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
- Department of Bioengineering Rice University Houston Texas
| |
Collapse
|
139
|
Zhao TT, Feng GH, Chen W, Song YF, Dong X, Li GH, Zhang HJ, Wei W. Artificial bioconversion of carbon dioxide. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
140
|
|
141
|
Natinsky B, Lu S, Copeland ED, Quintana JC, Liu C. Solution Catalytic Cycle of Incompatible Steps for Ambient Air Oxidation of Methane to Methanol. ACS CENTRAL SCIENCE 2019; 5:1584-1590. [PMID: 31572785 PMCID: PMC6764157 DOI: 10.1021/acscentsci.9b00625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Direct chemical synthesis from methane and air under ambient conditions is attractive yet challenging. Low-valent organometallic compounds are known to activate methane, but their electron-rich nature seems incompatible with O2 and prevents catalytic air oxidation. We report selective oxidation of methane to methanol with an O2-sensitive metalloradical as the catalyst and air as the oxidant at room temperature and ambient pressure. The incompatibility between C-H activation and O2 oxidation is reconciled by electrochemistry and nanomaterials, with which a concentration gradient of O2 within the nanowire array spatially segregated incompatible steps in the catalytic cycle. An unexpected 220 000-fold increase of the apparent reaction rate constants within the nanowire array leads to a turnover number up to 52 000 within 24 h. The synergy between nanomaterials and organometallic chemistry warrants a new catalytic route for CH4 functionalization.
Collapse
|
142
|
Hancock AM, Meredith SA, Connell SD, Jeuken LJC, Adams PG. Proteoliposomes as energy transferring nanomaterials: enhancing the spectral range of light-harvesting proteins using lipid-linked chromophores. NANOSCALE 2019; 11:16284-16292. [PMID: 31465048 DOI: 10.1039/c9nr04653d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bio-hybrid nanomaterials have great potential for combining the most desirable aspects of biomolecules and the contemporary concepts of nanotechnology to create highly efficient light-harvesting materials. Light-harvesting proteins are optimized to absorb and transfer solar energy with remarkable efficiency but have a spectral range that is limited by their natural pigment complement. Herein, we present the development of model membranes ("proteoliposomes") in which the absorption range of the membrane protein Light-Harvesting Complex II (LHCII) is effectively enhanced by the addition of lipid-tethered Texas Red (TR) chromophores. Energy transfer from TR to LHCII is observed with up to 94% efficiency and increased LHCII fluorescence of up to three-fold when excited in the region of lowest natural absorption. The new self-assembly procedure offers the modularity to control the concentrations incorporated of TR and LHCII, allowing energy transfer and fluorescence to be tuned. Fluorescence Lifetime Imaging Microscopy provides single-proteoliposome-level quantification of energy transfer efficiency and confirms that functionality is retained on surfaces. Designer proteoliposomes could act as a controllable light-harvesting nanomaterial and are a promising step in the development of bio-hybrid light-harvesting systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
143
|
Wang Q, Zhang Y, Lin H, Zhu J. Recent Advances in Metal-Organic Frameworks for Photo-/Electrocatalytic CO 2 Reduction. Chemistry 2019; 25:14026-14035. [PMID: 31271476 DOI: 10.1002/chem.201902203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Indexed: 02/01/2023]
Abstract
Considerable attention has been paid to the utilization of CO2 , an abundant carbon source in nature. In this regard, porous catalysts have been eagerly explored with excellent performance for photo-/electrocatalytic reduction of CO2 to high valued products. Metal-organic frameworks (MOFs), featuring large surface area, high porosity, tunable composition and unique structural characteristics, have been widely exploited in catalytic CO2 reduction. This Minireview first reports the current progress of MOFs in CO2 reduction. Then, a specific interest is focused on MOFs in photo-/electrocatalytic reduction of CO2 by modifying their metal centers, organic linkers, and pores. Finally, the future directions of study are also highlighted to satisfy the requirement of practical applications.
Collapse
Affiliation(s)
- Qingqing Wang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Yao Zhang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Huijuan Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Jixin Zhu
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P.R. China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of, Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center, for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China
| |
Collapse
|
144
|
Affiliation(s)
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley
- Department of Materials Science and Engineering, University of California, Berkeley
- Materials Sciences Division, Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
145
|
Abstract
Biological systems have evolved biochemical, electrical, mechanical, and genetic networks to perform essential functions across various length and time scales. High-aspect-ratio biological nanowires, such as bacterial pili and neurites, mediate many of the interactions and homeostasis in and between these networks. Synthetic materials designed to mimic the structure of biological nanowires could also incorporate similar functional properties, and exploiting this structure-function relationship has already proved fruitful in designing biointerfaces. Semiconductor nanowires are a particularly promising class of synthetic nanowires for biointerfaces, given (1) their unique optical and electronic properties and (2) their high degree of synthetic control and versatility. These characteristics enable fabrication of a variety of electronic and photonic nanowire devices, allowing for the formation of well-defined, functional bioelectric interfaces at the biomolecular level to the whole-organ level. In this Focus Review, we first discuss the history of bioelectric interfaces with semiconductor nanowires. We next highlight several important, endogenous biological nanowires and use these as a framework to categorize semiconductor nanowire-based biointerfaces. Within this framework we then review the fundamentals of bioelectric interfaces with semiconductor nanowires and comment on both material choice and device design to form biointerfaces spanning multiple length scales. We conclude with a discussion of areas with the potential for greatest impact using semiconductor nanowire-enabled biointerfaces in the future.
Collapse
Affiliation(s)
- Bozhi Tian
- Department of Chemistry, the University of Chicago, Chicago, IL USA
- The James Franck Institute, the University of Chicago, Chicago, IL USA
- The Institute for Biophysical Dynamics, Chicago, IL USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
146
|
Soundararajan M, Ledbetter R, Kusuma P, Zhen S, Ludden P, Bugbee B, Ensign SA, Seefeldt LC. Phototrophic N 2 and CO 2 Fixation Using a Rhodopseudomonas palustris-H 2 Mediated Electrochemical System With Infrared Photons. Front Microbiol 2019; 10:1817. [PMID: 31474945 PMCID: PMC6705187 DOI: 10.3389/fmicb.2019.01817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
A promising approach for the synthesis of high value reduced compounds is to couple bacteria to the cathode of an electrochemical cell, with delivery of electrons from the electrode driving reductive biosynthesis in the bacteria. Such systems have been used to reduce CO2 to acetate and other C-based compounds. Here, we report an electrosynthetic system that couples a diazotrophic, photoautotrophic bacterium, Rhodopseudomonas palustris TIE-1, to the cathode of an electrochemical cell through the mediator H2 that allows reductive capture of both CO2 and N2 with all of the energy coming from the electrode and infrared (IR) photons. R. palustris TIE-1 was shown to utilize a narrow band of IR radiation centered around 850 nm to support growth under both photoheterotrophic, non-diazotrophic and photoautotrophic, diazotrophic conditions with growth rates similar to those achieved using broad spectrum incandescent light. The bacteria were also successfully cultured in the cathodic compartment of an electrochemical cell with the sole source of electrons coming from electrochemically generated H2, supporting reduction of both CO2 and N2 using 850 nm photons as an energy source. Growth rates were similar to non-electrochemical conditions, revealing that the electrochemical system can fully support bacterial growth. Faradaic efficiencies for N2 and CO2 reduction were 8.5 and 47%, respectively. These results demonstrate that a microbial-electrode hybrid system can be used to achieve reduction and capture of both CO2 and N2 using low energy IR radiation and electrons provided by an electrode.
Collapse
Affiliation(s)
- Mathangi Soundararajan
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Rhesa Ledbetter
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Paul Kusuma
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Shuyang Zhen
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Paul Ludden
- Department of Biology, Southern Methodist University, Dallas, TX, United States
| | - Bruce Bugbee
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Scott A Ensign
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
147
|
Liang C, Pan L, Liang S, Xia Y, Liang Z, Gan Y, Huang H, Zhang J, Zhang W. Ultraefficient Conversion of CO 2 into Morphology-Controlled Nanocarbons: A Sustainable Strategy toward Greenhouse Gas Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902249. [PMID: 31231950 DOI: 10.1002/smll.201902249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The ability to efficiently convert CO2 into nanocarbons at low temperatures is highly desirable, as it would enable the environmentally benign utilization of greenhouse gases, yet this remains a considerable challenge. Herein, a one-step, ultrafast, and scalable strategy is demonstrated to efficiently convert CO2 into morphology-controlled nanocarbons at low temperatures. The conversion reactions between CO2 and LiH are achieved in less than 30 s at moderate conditions by introducing a very small amount of water, ball milling, or heating. Nanocarbons featuring wildly tunable morphology with characteristic dimensions ranging from nanoscale to macroscale are successfully synthesized by controlling the CO2 pressure and the synthesis routes. The gas blowing velocity and its distribution are revealed as the main reasons for the CO2 pressure and synthesis route dependent morphology and porosity of nanocarbons. Moreover, a two closed-loop reaction process including five-stage reactions is proposed for nanocarbons synthesis and LiH regeneration. The strategy provides a new opportunity for efficient and environmentally benign nanocarbons synthesis.
Collapse
Affiliation(s)
- Chu Liang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liangbin Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Sheng Liang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yongping Gan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jun Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
148
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
149
|
Affiliation(s)
- Jiao Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Dong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
150
|
Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim YJ, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Laible PD, Rozhkova EA. Semi-artificial Photosynthetic CO2 Reduction through Purple Membrane Re-engineering with Semiconductor. J Am Chem Soc 2019; 141:11811-11815. [DOI: 10.1021/jacs.9b05564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - He Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jingjing Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gregory Tira
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yimin A. Wu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|