101
|
Xu B, Liu Y, Li Y, Wang L, Li N, Fu M, Wang P, Wang Q. High strength and anti-fatigue nanocomposite hydrogels prepared via self-initiated free radical polymerization triggered by daylight. NEW J CHEM 2018. [DOI: 10.1039/c8nj01869c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of high strength nanocomposite hydrogel was synthesized using TiO2 nanoparticles as both cross-linkers and photo-initiators under daylight.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Yuwei Liu
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Yu Li
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Lanlan Wang
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Nannan Li
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Min Fu
- College of Chemical and Environmental Engineering Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Ping Wang
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| | - Qiang Wang
- Key Laboratory of Eco-Textile
- Ministry of Education
- College of Textile and Clothing
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
102
|
Zhu P, Deng Y, Wang C. Graphene/cyclodextrin-based nanocomposite hydrogel with enhanced strength and thermo-responsive ability. Carbohydr Polym 2017; 174:804-811. [DOI: 10.1016/j.carbpol.2017.06.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
103
|
Zong L, Li X, Han X, Lv L, Li M, You J, Wu X, Li C. Activation of Actuating Hydrogels with WS 2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32280-32289. [PMID: 28828853 DOI: 10.1021/acsami.7b10348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).
Collapse
Affiliation(s)
- Lu Zong
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiankai Li
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiangsheng Han
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, P. R. China
| | - Lili Lv
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, P. R. China
| | - Mingjie Li
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
| | - Jun You
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
| | - Xiaochen Wu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
| | - Chaoxu Li
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049, P. R. China
- Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province (Qingdao University) , 308 Ningxia Road, Qingdao 266071, P. R. China
| |
Collapse
|
104
|
Mechanically strong Janus poly(N-isopropylacrylamide)/graphene oxide hydrogels as thermo-responsive soft robots. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1970-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
105
|
Liang X, Zheng L, Li S, Fan X, Shen S, Hu D. Electrochemical removal of stains from paper cultural relics based on the electrode system of conductive composite hydrogel and PbO 2. Sci Rep 2017; 7:8865. [PMID: 28821778 PMCID: PMC5562847 DOI: 10.1038/s41598-017-08907-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022] Open
Abstract
Constructing methods for cleaning stains on paper artworks that meet the requirements of preservation of cultural relics are still challenging. In response to this problem, a novel electrochemical cleaning method and the preparation of corresponding electrodes were proposed. For this purpose, the conductive graphene (rGO)/polyacryamide (PAM)/montmorillonite (MMT) composite hydrogel as cathode and PbO2-based material as anode were prepared and characterized. The electrochemical cleaning efficiencies of real sample and mimicking paper artifacts were evaluated, and the effects of the electrochemical cleaning on paper itself were detected. Based on the above experiments, the following results were obtained. The composite hydrogel with attractive mechanical properties is mainly based on the hydrogen bond interactions between PAM chains and MMT. The results of cleaning efficiency revealed that the black mildew stains together with the yellowish foxing stains were almost completely eliminated within 6 min at 8 mA/cm2, and various stains formed by tideline, foxing, organic dyes and drinks could be thoroughly removed at 4 mA/cm2 within 5 min. In addition, the proposed cleaning method has advantages in local selectivity, easy control of cleaning course, and reusability, which represents a potential utility of this approach.
Collapse
Affiliation(s)
- Xingtang Liang
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
- School of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou, 535000, China
| | - Lizhen Zheng
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Shirong Li
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyu Fan
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Shukun Shen
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Daodao Hu
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
106
|
Berke B, Sós L, Bérczes V, Domján A, Porcar L, Czakkel O, László K. Graphene derivatives in responsive hydrogels: Effect of concentration and surface chemistry. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
107
|
Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20361-20375. [PMID: 28532154 DOI: 10.1021/acsami.7b02307] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, gold nanorods (GNRs) were incorporated into the hydrogel networks formed by the copolymerization of N-isopropylacrylamide (NIPAm) and methacrylated poly-β-cyclodextrin (MPCD)-based macromer to fabricate an injectable and near-infrared (NIR)/pH-responsive poly(NIPAm-co-MPCD)/GNRs nanocomposite hydrogel, which could serve as a long-acting implant for chemophotothermal synergistic cancer therapy. The nanocomposite hydrogel showed superior mechanical and swelling properties, gelation characteristics, and excellent NIR-responsive property. A hydrophobic acid-labile adamantane-modified doxorubicin (AD-DOX) prodrug was loaded into the hydrogel efficiently by host-guest interaction. The nanocomposite hydrogel exhibited a manner of sustained drug release and could sustain the slow and steady release of DOX for more than 1 month. The pH-responsive release of DOX from the nanocomposite hydrogel was observed owing to the cleavage of acid-labile hydrazone bond between DOX and the adamantyl group in acidic environment. NIR irradiation could accelerate the release of DOX from the networks, which was controlled by the collapse of the hydrogel networks induced by photothermal effect of GNRs. The in vitro cytotoxicity test demonstrated the excellent biocompatibility and photothermal effect of the nanocomposite hydrogel. Moreover, the in situ-forming hydrogel showed promising tissue biocompatibility in the mouse model study. The in vivo antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemophotothermal synergistic therapy with reduced adverse effects owing to the prolonged drug retention in the tumor region and efficient photothermal effect. Therefore, this injectable and NIR/pH-responsive nanocomposite hydrogel exhibited great potential as a long term drug delivery platform for chemophotothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xuefei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Siyu He
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xiaoqi Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Yifeng Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Mina Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| |
Collapse
|
108
|
Tang M, Hu P, Zheng Q, Tirelli N, Yang X, Wang Z, Wang Y, Tang Q, He Y. Polymeric micelles with dual thermal and reactive oxygen species (ROS)-responsiveness for inflammatory cancer cell delivery. J Nanobiotechnology 2017; 15:39. [PMID: 28511687 PMCID: PMC5434630 DOI: 10.1186/s12951-017-0275-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Background The object of this study was to develop a thermally and reactive oxygen species-responsive nanocarrier system for cancer therapy. Results PPS-PNIPAm block copolymer was designed and synthesised using a combination of living anionic ring-opening polymerization and atom transfer radical polymerization. The synthesized polymer formed micellar aggregates in water and demonstrated dual responsiveness towards temperature and oxidants. Using doxorubicin (DOX) as a model drug, encapsulation and in vitro release of the drug molecules in PPS-PNIPAm nanocarriers confirmed the responsive release properties of such system. Cell uptake of the DOX loaded micelles was investigated with human breast cancer cell line (MCF-7). The results showed Dox-loaded micelles were able to be taken by the cells and mainly reside in the cytoplasma. In the stimulated cells with an elevated level of ROS, more released DOX was observed around the nuclei. In the cytotoxicity experiments, the Dox-loaded micelles demonstrated comparable efficacy to free DOX at higher concentrations, especially on ROS stimulated cells. Conclusions These results demonstrated that PPS-PNIPAm nanocarriers possess the capability to respond two typical stimuli in inflammatory cells: temperature and oxidants and can be used in anticancer drug delivery. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0275-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meiqiong Tang
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Ping Hu
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China.
| | - Qiang Zheng
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Nicola Tirelli
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Pharmacy, and Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Zhanlong Wang
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Xinjiang, 832008, People's Republic of China
| | - Qing Tang
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China.
| |
Collapse
|
109
|
Ren X, Huang C, Duan L, Liu B, Bu L, Guan S, Hou J, Zhang H, Gao G. Super-tough, ultra-stretchable and strongly compressive hydrogels with core-shell latex particles inducing efficient aggregation of hydrophobic chains. SOFT MATTER 2017; 13:3352-3358. [PMID: 28422241 DOI: 10.1039/c7sm00415j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.
Collapse
Affiliation(s)
- Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju XJ, Wang W, Xie R, Chu LY. Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15758-15767. [PMID: 28425695 DOI: 10.1021/acsami.7b01710] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel reduced graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) (rGO/poly(AMPS-co-AAm)) nanocomposite hydrogel that possesses excellent electro-response and mechanical properties has been successfully developed. The rGO nanosheets that homogeneously dispersed in the hydrogels could provide prominent conductive platforms for promoting the ion transport inside the hydrogels to generate significant osmotic pressure between the outside and inside of such nanocomposite hydrogels. Thus, the electro-responsive rate and degree of the hydrogel for both deswelling and bending performances become rapid and remarkable. Moreover, the enhanced mechanical properties including both the tensile strength and compressive strength of rGO/poly(AMPS-co-AAm) hydrogels are improved by the hydrogen-bond interactions between the rGO nanosheets and polymer chains, which could dissipate the strain energy in the polymeric networks of the hydrogels. The proposed rGO/poly(AMPS-co-AAm) nanocomposite hydrogels with improved mechanical properties exhibit rapid, significant, and reversible electro-response, which show great potential for developing remotely controlled electro-responsive hydrogel systems, such as smart actuators and soft manipulators.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Chen Chen
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Kun Shi
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Lei Zhang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
111
|
Wu Y, Wang K, Huang S, Yang C, Wang M. Near-Infrared Light-Responsive Semiconductor Polymer Composite Hydrogels: Spatial/Temporal-Controlled Release via a Photothermal "Sponge" Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13602-13610. [PMID: 28304158 DOI: 10.1021/acsami.7b01016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Near-infrared (NIR) light-responsive hydrogels are important for biomedical applications, such as remote-controlled release, but the NIR agents previously used were largely limited to heavy-metal inorganic materials such as gold nanoparticles. In this article, we report a new type of NIR photothermal-responsive hydrogel that can undergo structural changes in response to NIR light for biomedical applications in drug delivery and controlled release. The hydrogels synthesized by integrating a narrow-bandgap semiconductor polymer poly(diketopyrrolopyrrole-alt-3,4-ethylenedioxythiophene) with the polymerization of N-isopropylacrylamide show rapid and reversible mechanical shrinkage upon NIR light irradiation and can serve as carriers for anticancer drug loading and spatial/temporal control of drug release. These stimuli-responsive hydrogels, which can be prepared in different sizes and shapes, integrate photothermal properties and hydrogel characteristics and can provide on-demand, repeated, remote-controlled drug delivery for biomedical applications such as cancer treatment.
Collapse
Affiliation(s)
- Yingjie Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| | - Kai Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| | - Shuo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| | - Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
112
|
Zaibudeen A, Philip J. Multi-stimuli responsive nanofluid with easy-to-visualize structural color patterns. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
113
|
Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. NANOSCALE 2017; 9:3698-3718. [PMID: 28272614 DOI: 10.1039/c6nr09177f] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In general, effective clinical treatment demands precision medicine, which requires specific perturbation to disease cells with no damage to normal tissue. Thus far, guaranteeing that selective therapeutic effects occur only at targeted disease areas remains a technical challenge. Among the various endeavors to achieve such an outcome, strategies based on light-controlled therapies have received special attention, mostly due to their unique advantages, including the low-invasive property and the capability to obtain spatial and temporal precision at the targeted sites via specific wavelength light irradiation. However, most conventional light-mediated therapies, especially those based on short-wavelength UV or visible light irradiation, have potential issues including limited penetration depth and harmful photo damage to healthy tissue. Therefore, the implemention of near-infrared (NIR) light illumination, which can travel into deeper tissues without causing obvious photo-induced cytotoxcity, has been suggested as a preferable option for precise phototherapeutic applications in vitro and in vivo. In this article, an overview is presented of existing therapeutic applications through NIR light-absorbed nanostructures, such as NIR light-controlled drug delivery, NIR light-mediated photothermal and photodynamic therapies. Potential challenges and relevant future prospects are also discussed.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China 215123.
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore and Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|
114
|
Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
115
|
Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.051] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
116
|
Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, Dolatshahi-Pirouz A. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603612. [PMID: 27966826 DOI: 10.1002/adma.201603612] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one-step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| | - Ashish Thakur
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| | - Christian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, Aalborg, 9220, Denmark
| | - Sepehr Talebian
- Department of Mechanical Engineering and Center of Advanced Material, University of Malaya, 50603, Persiaran Universiti 2, Kuala Lumpur, Malaysia
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran - Karaj Highway, Tehran, Iran
| | - Mehdi Nikkhah
- Engineering Center G Wing 334 School of Biological Health and Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Ørsteds Plads, Kongens Lyngby, Denmark
| |
Collapse
|
117
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
118
|
Feng K, Li S, Feng L, Feng S. Synthesis of thermo- and photo-responsive polysiloxanes with tunable phase separation viaaza-Michael addition. NEW J CHEM 2017. [DOI: 10.1039/c7nj03177g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two kinds of thermo- and photo-dual-responsive polysiloxanes were synthesized through a facile, effective, and catalyst-free aza-Michael addition.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| | - Shusheng Li
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
- School of Chemistry and Chemical Engineering, University of Jinan
- Jinan
| | - Linglong Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University
- Jinan
- China
| |
Collapse
|
119
|
Motealleh A, Kehr NS. Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 27900856 DOI: 10.1002/adhm.201600938] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Indexed: 01/21/2023]
Abstract
Nanocomposite (NC) hydrogels, organic-inorganic hybrid materials, are of great interest as artificial three-dimensional (3D) biomaterials for biomedical applications. NC hydrogels are prepared in water by chemically or physically cross-linking organic polymers with nanomaterials (NMs). The incorporation of hard inorganic NMs into the soft organic polymer matrix enhances the physical, chemical, and biological properties of NC hydrogels. Therefore, NC hydrogels are excellent candidates for artificial 3D biomaterials, particularly in tissue engineering applications, where they can mimic the chemical, mechanical, electrical, and biological properties of native tissues. A wide range of functional NMs and synthetic or natural organic polymers have been used to design new NC hydrogels with novel properties and tailored functionalities for biomedical uses. Each of these approaches can improve the development of NC hydrogels and, thus, provide advanced 3D biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| |
Collapse
|
120
|
Tang Z, Chen F, Chen Q, Zhu L, Yan X, Chen H, Ren B, Yang J, Qin G, Zheng J. The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py01068k] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyacrylamide/graphene oxide hybrid NC gels exhibited high strength, high toughness and rapid self-recovery properties.
Collapse
Affiliation(s)
- Ziqing Tang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Feng Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Qiang Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Lin Zhu
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xiaoqiang Yan
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Jia Yang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Gang Qin
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| |
Collapse
|
121
|
Peng X, Liu T, Jiao C, Wu Y, Chen N, Wang H. Complex shape deformations of homogeneous poly(N-isopropylacrylamide)/graphene oxide hydrogels programmed by local NIR irradiation. J Mater Chem B 2017; 5:7997-8003. [DOI: 10.1039/c7tb02119d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The homogeneous PNIPAM/GO hydrogels could undergo complex shape deformations (e.g., imitating the postures of human) under local NIR irradiation.
Collapse
Affiliation(s)
- Xin Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Tianqi Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yuqing Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Nan Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
122
|
Wu J, Wang L, Yu H, Zain-ul-Abdin, Khan RU, Haroon M. Ferrocene-based redox-responsive polymer gels: Synthesis, structures and applications. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.10.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
123
|
Xiong C, Peng K, Tang X, Ye Z, Shi Y, Yang H. CO2-responsive self-healable hydrogels based on hydrophobically-modified polymers bridged by wormlike micelles. RSC Adv 2017. [DOI: 10.1039/c7ra06418g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A versatile and simple strategy is proposed to design CO2-responsive self-healable hydrogels based on hydrophobically-modified polymers bridged by worm like micelles.
Collapse
Affiliation(s)
- Chunming Xiong
- Research Institute of Science and Technology
- China National Petroleum Corporation
- Beijing
- P. R. China
| | - Kang Peng
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xiaofen Tang
- Research Institute of Science and Technology
- China National Petroleum Corporation
- Beijing
- P. R. China
| | - Zhengrong Ye
- Research Institute of Science and Technology
- China National Petroleum Corporation
- Beijing
- P. R. China
| | - Yang Shi
- Research Institute of Science and Technology
- China National Petroleum Corporation
- Beijing
- P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
124
|
Jia H, Huang Z, Fei Z, Dyson PJ, Zheng Z, Wang X. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31339-31347. [PMID: 27782401 DOI: 10.1021/acsami.6b11241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrogels are polymeric materials that have a relatively high capacity for holding water. Recently, a double network (DN) technique was developed to fabricate hydrogels with a toughness comparable to rubber. The mechanical properties of DN hydrogels may be attributed to the brittle sacrificial bonding network of one hydrogel, facilitating stress dispersion, combined with ductile polymer chains of a second hydrogel. Herein, we report a novel class of tunable DN hydrogels composed of a polyurethane hydrogel and a stronger, dipole-dipole and H-bonding interaction reinforced (DHIR) hydrogel. Compared to conventional DN hydrogels, these materials show remarkable improvements in mechanical recovery, modulus, and yielding, with excellent self-healing and self-gluing properties. In addition, the new DN hydrogels exhibit excellent tensile and compression strengths and possess shape-memory properties, which make them promising for applications in engineering, biomedicine, and other domains where load bearing is required.
Collapse
Affiliation(s)
- Haiyan Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , Dongchuan Road No. 800, Shanghai 200240, China
| | - Zhangjun Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , Dongchuan Road No. 800, Shanghai 200240, China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , Dongchuan Road No. 800, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , Dongchuan Road No. 800, Shanghai 200240, China
| |
Collapse
|
125
|
Hu Y, Han W, Huang G, Zhou W, Yang Z, Wang C. Highly Stretchable, Mechanically Strong, Tough, and Self-Recoverable Nanocomposite Hydrogels by Introducing Strong Ionic Coordination Interactions. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600398] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Hu
- College of Materials and Energy; South China Agricultural University; Guangzhou 510642 China
- Research Institute of Materials Science; South China University of Technology; Guangzhou 510640 China
| | - Wenfang Han
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Guanhua Huang
- College of Materials and Energy; South China Agricultural University; Guangzhou 510642 China
| | - Wuyi Zhou
- College of Materials and Energy; South China Agricultural University; Guangzhou 510642 China
| | - Zhuohong Yang
- College of Materials and Energy; South China Agricultural University; Guangzhou 510642 China
| | - Chaoyang Wang
- Research Institute of Materials Science; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
126
|
Berke B, Czakkel O, Porcar L, Geissler E, László K. Static and dynamic behaviour of responsive graphene oxide-poly(N-isopropyl acrylamide) composite gels. SOFT MATTER 2016; 12:7166-7173. [PMID: 27494097 DOI: 10.1039/c6sm00666c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thermoresponsive hydrogels have enormous potential e.g., as sensors, actuators, and pollution control remedies or in drug delivery systems. Nevertheless, their application is often restricted by physical limitations (poor mechanical strength and uncontrolled thermal response). Composite systems may offer a means of overcoming these limitations. This paper presents a systematic study of the structure and dynamics of graphene oxide-poly-(N-isopropylacrylamide) composite systems, and investigates the effect of the nanoparticle filler content on the mechanical and swelling properties of the systems. A combination of macroscopic (swelling and elastic modulus) and microscopic (differential scanning microcalorimetry, small angle neutron scattering and neutron spin-echo spectroscopy) investigations reveals that the architecture of the polymer network is modified by chain nucleation at the surface of the GO platelets, and these form a percolating network inside the gel. Our results show that the elastic modulus of the gels is reinforced by the filler, but the mobility of the polymer chains in the swollen state is practically unaffected. The macroscopic deswelling of the composites, however, is slowed by the kinetics of ordering in the GO network.
Collapse
Affiliation(s)
- B Berke
- Institut Laue Langevin, CS 20156, F - 38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
127
|
Yao C, Liu Z, Yang C, Wang W, Ju XJ, Xie R, Chu LY. Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21721-21730. [PMID: 27490585 DOI: 10.1021/acsami.6b07713] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel and facile assembly strategy has been successfully developed to construct smart nanocomposite (NC) hydrogels with inhomogeneous structures using nanoclay-cross-linked stimuli-responsive hydrogel subunits as building blocks via rearranged hydrogen bonding between polymers and clay nanosheets. The assembled thermoresponsive poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAM-co-AM)) hydrogels with various inhomogeneous structures exhibit excellent mechanical properties due to plenty of new hydrogen bonding interactions created at the interface for locking the NC hydrogel subunits, which are strong enough to tolerate external forces such as high levels of elongations and multicycles of swelling/deswelling operations. The proposed approach is featured with flexibility and designability to build assembled hydrogels with diverse architectures for achieving various responsive deformations, which are highly promising for stimuli-responsive manipulation such as actuation, encapsulation, and cargo transportation. Our assembly strategy creates new opportunities for further developing mechanically strong hydrogel systems with complex architectures that composed of diverse internal structures, multistimuli-responsive properties, and controllable shape deformation behaviors in the soft robots and actuators fields.
Collapse
Affiliation(s)
- Chen Yao
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Chao Yang
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University , No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
128
|
Zhu Z, Li Y, Xu H, Peng X, Chen YN, Shang C, Zhang Q, Liu J, Wang H. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15637-15644. [PMID: 27254730 DOI: 10.1021/acsami.6b04325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.
Collapse
Affiliation(s)
- Zhongcheng Zhu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Yang Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Hui Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Xin Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Ya-Nan Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Cong Shang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Qin Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Jiaqi Liu
- Department of Chemistry, Capital Normal University , Beijing 100048, P. R. China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| |
Collapse
|
129
|
Zhang J, Du P, Xu D, Li Y, Peng W, Zhang G, Zhang F, Fan X. Near-Infrared Responsive MoS2/Poly(N-isopropylacrylamide) Hydrogels for Remote Light-Controlled Microvalves. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Junyang Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ping Du
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Danyun Xu
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guoliang Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|