101
|
Zhang Y, Chen M, Tian J, Gu P, Cao H, Fan X, Zhang W. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7:3266-3276. [DOI: 10.1039/c9bm00561g] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biodegradable hybrid double-network hydrogel for stem cell-enhanced bone regeneration.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
102
|
Han L, Wang M, Li P, Gan D, Yan L, Xu J, Wang K, Fang L, Chan CW, Zhang H, Yuan H, Lu X. Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine-Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28015-28026. [PMID: 30052419 DOI: 10.1021/acsami.8b05314] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycosaminoglycan-based hydrogels are widely used for cartilage repair because glycosaminoglycans are the main component of the cartilage extracellular matrix and can maintain chondrocyte functions. However, most of the glycosaminoglycan-based hydrogels are negatively charged and cell-repellant, and they cannot host cells or favor tissue regeneration. Inspired by mussel chemistry, we designed a polydopamine-chondroitin sulfate-polyacrylamide (PDA-CS-PAM) hydrogel with tissue adhesiveness and super mechanical properties for growth-factor-free cartilage regeneration. Thanks to the abundant reactive catechol groups on the PDA, a cartilage-specific PDA-CS complex was formed by the self-assembly of PDA and CS, and then the PDA-CS complex was homogenously incorporated into an elastic hydrogel network. This catechol-group-enriched PDA-CS complex endowed the hydrogel with good cell affinity and tissue adhesiveness to facilitate cell adhesion and tissue integration. Compared with bare CS, the PDA-CS complex in the hydrogel was more effective in exerting its functions on adhered cells to upregulate chondrogenic differentiation. Because of the synergistic effects of noncovalent interactions caused by the PDA-CS complex and covalently cross-linked PAM network, the hydrogel exhibited super resilience and toughness, meeting the mechanical requirement of cartilage repair. Collectively, this tissue-adhesive and tough PDA-CS-PAM hydrogel with good cell affinity creates a growth-factor-free and biomimetic microenvironment for chondrocyte growth and cartilage regeneration and sheds light on the development of growth-factor-free biomaterials for cartilage repair.
Collapse
Affiliation(s)
- Lu Han
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Menghao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Liwei Yan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Jielong Xu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials , Sichuan University , Chengdu 610064 Sichuan , China
| | - Liming Fang
- Department of Polymer Science and Engineering, School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Chun Wai Chan
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Huipin Yuan
- College of Physical Science and Technology , Sichuan University , Chengdu 610064 Sichuan , China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 Sichuan , China
| |
Collapse
|
103
|
Qi P, Ohba S, Hara Y, Fuke M, Ogawa T, Ohta S, Ito T. Fabrication of calcium phosphate-loaded carboxymethyl cellulose non-woven sheets for bone regeneration. Carbohydr Polym 2018; 189:322-330. [DOI: 10.1016/j.carbpol.2018.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 10/18/2022]
|
104
|
Kim I, Lee SS, Bae S, Lee H, Hwang NS. Heparin Functionalized Injectable Cryogel with Rapid Shape-Recovery Property for Neovascularization. Biomacromolecules 2018; 19:2257-2269. [PMID: 29689163 DOI: 10.1021/acs.biomac.8b00331] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryogel based scaffolds have high porosity with interconnected macropores that may provide cell compatible microenvironment. In addition, cryogel based scaffolds can be utilized in minimally invasive surgery due to its sponge-like properties, including rapid shape recovery and injectability. Herein, we developed an injectable cryogel by conjugating heparin to gelatin as a carrier for vascular endothelial growth factor (VEGF) and fibroblasts in hindlimb ischemic disease. Our gelatin/heparin cryogel showed gelatin concentration-dependent mechanical properties, swelling ratios, interconnected porosities, and elasticities. In addition, controlled release of VEGF led to effective angiogenic responses both in vitro and in vivo. Furthermore, its sponge-like properties enabled cryogels to be applied as an injectable carrier system for in vivo cells and growth factor delivery. Our heparin functionalized injectable cryogel facilitated the angiogenic potential by facilitating neovascularization in a hindlimb ischemia model.
Collapse
Affiliation(s)
- Inseon Kim
- School of Chemical and Biological Engineering, the Institute of Chemical Processes , Seoul National University , Seoul , 08826 , Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering , Seoul National University , Seoul , 08826 , Republic of Korea
| | - Sunghoon Bae
- School of Chemical and Biological Engineering, the Institute of Chemical Processes , Seoul National University , Seoul , 08826 , Republic of Korea
| | - Hoyon Lee
- School of Chemical and Biological Engineering, the Institute of Chemical Processes , Seoul National University , Seoul , 08826 , Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes , Seoul National University , Seoul , 08826 , Republic of Korea.,Interdisciplinary Program in Bioengineering , Seoul National University , Seoul , 08826 , Republic of Korea.,BioMAX/N-Bio Institute , Seoul National University , Seoul , 08826 , Republic of Korea
| |
Collapse
|
105
|
Kim J, Kim HD, Park J, Lee ES, Kim E, Lee SS, Yang JK, Lee YS, Hwang NS. Enhanced osteogenic commitment of murine mesenchymal stem cells on graphene oxide substrate. Biomater Res 2018; 22:1. [PMID: 29308274 PMCID: PMC5748957 DOI: 10.1186/s40824-017-0112-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tissue engineering is an interdisciplinary field that attempts to restore or regenerate tissues and organs through biomimetic fabrication of scaffolds with specific functionality. In recent years, graphene oxide (GO) is considered as promising biomaterial due to its nontoxicity, high dispersity, and hydrophilic interaction, and these characteristics are key to stimulating the interactions between substrates and cells. METHOD In this study, GO substrates were fabricated via chemically immobilizing GO at 1.0 mg/ml on glass slides. Furthermore, we examined the osteogenic responses of murine mesenchymal-like stem cells, C3H10T1/2 cells, on GO substrates. RESULTS C3H10T1/2 cells on GO substrates resulted in increased cell surface area, enhanced cellular adhesions, and instigated osteogenic differentiation. Furthermore, priming of C3H10T1/2 cells with chondrocyte-conditioned medium (CM) could further induce a synergistic effect of osteogenesis on GO substrates. CONCLUSIONS All of these data suggest that GO substrate along with CM is suitable for upregulating osteogenic responses of mesenchymal stem cells.
Collapse
Affiliation(s)
- Jiyong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Hwan D. Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Jungha Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Eun-seo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Eugene Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Seunghun S. Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 152-742 Republic of Korea
| | - Jin-Kyung Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 152-742 Republic of Korea
- N-Bio/BioMAX Institute, Seoul National University, Seoul, 152-742 Republic of Korea
| |
Collapse
|
106
|
Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 29171714 DOI: 10.1002/adhm.201700612] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed.
Collapse
Affiliation(s)
- Hwan D. Kim
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
| | | | - Seunghyun L. Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Seunghun S. Lee
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine; Amrita University; Kochi 682041 India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
- The BioMax Institute of Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
107
|
Hong Y, Koh I, Park K, Kim P. On-Chip Fabrication of a Cell-Derived Extracellular Matrix Sheet. ACS Biomater Sci Eng 2017; 3:3546-3552. [DOI: 10.1021/acsbiomaterials.7b00613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yoonmi Hong
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ilkyoo Koh
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kwideok Park
- Center
for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Pilnam Kim
- Department
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|